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Abstract Over the past few years, more and more
systems and control concepts have been applied in
reservoir engineering, such as optimal control, Kalman
filtering, and model reduction. The success of these ap-
plications is determined by the controllability, observ-
ability, and identifiability properties of the reservoir at
hand. The first contribution of this paper is to analyze
and interpret the controllability and observability of
single-phase flow reservoir models and to investigate
how these are affected by well locations, heterogeneity,
and fluid properties. The second contribution of this
paper is to show how to compute an upper bound on
the number of identifiable parameters when history
matching production data and to present a new method
to regularize the history matching problem using a
reservoir’s controllability and observability properties.
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Nomenclature

Ac, Bc Continuous-time state-space matrices
A, B, C, D Discrete-time state-space matrices
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Â, B̂, Ĉ, D State-space matrices in canonical form
Ã11, B̃1, C̃1, D State-space matrices of controllable

and observable part
c Compressibility
Ck Controllability matrix
H∞ Worst case energy norm
Jcon Minimal required input energy
Jobs Maximal produced output energy
Jp, Jq Matrix of well indices
k j Grid block permeability
L Number of regularized parameters
L Cholesky factorization of Q
M Number of uncertain physical parame-

ters
n Number of time-steps in history

matching
N Total number of grid blocks
Nu Number of manipulated inputs
Ny Number of measured outputs
Ny Maximum number of identifiable

parameters
Ok Observability matrix
p̄1 Vector of pressures in grid blocks

without wells
p̄2 Vector of pressures in grid blocks with

flow-rate controlled wells
p̄3 Vector of pressures in grid blocks with

pressure controlled wells
p̆w Vector of prescribed pressures
p̄w Vector of measured pressures
p Vector of grid block pressures
pk Vector of grid block pressures at time-

step k
pr Vector of reference pressures
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p̂k Transformed vector of grid block pres-
sures at time-step k

P Controllability Gramian
Q Observability Gramian
q̆w Vector of prescribed flow rates
q̄w Vector of measured flow rates
t Time
t̂ j j th column of inverse balancing matrix
T Transformation matrix
Tbal Balancing matrix
T̂bal Inverse balancing matrix
T Transmissibility matrix
u Vector of manipulated inputs
uk Vector of manipulated inputs at time-

step k
U Cholesky factorization of P
V History match cost function
V Accumulation matrix
X

con Controllable subspace
X

unobs Unobservable subspace
y Vector of measured outputs
yk Vector of measured outputs at time-

step k
init Initial
up Updated
α Vector of regularized parameters
θi Uncertain physical parameter
θ Vector of uncertain physical parame-

ters
ε Scaling factor
λ Eigenvalue
λmin Smallest eigenvalue
μ Viscosity
σk kth Hankel singular value
σmax Largest singular value
φ j Grid block porosity
� Regularization matrix
�t Discretization time-step

1 Introduction

Flow though porous media is often modelled by com-
bining a mass-balance equation with Darcy’s law, lead-
ing to a set of partial differential equations (PDEs).
Subsequently, these PDEs are usually discretized in
space by dividing the reservoir into a finite number of
grid blocks, the properties of which are assumed to be
homogeneous. The time-invariant fluid and geological
properties of the resulting reservoir model are called
the model parameters, whereas the time-varying pres-
sures and saturations in each grid block are called the
states. Using an estimate of the model parameters and

an estimate of the initial state, a reservoir simulator
computes the state trajectory that results from a certain
choice of the well configuration and associated produc-
tion settings.

Reservoir simulators are, of course, often used to
make predictions of future hydrocarbon production.
Moreover, reservoir engineers usually try to optimize
the predicted output (e.g., in terms of cumulative oil
production after 10 years) over the manipulated inputs
(e.g. the well configuration and associated production
settings). In order to make these predictions more re-
liable, reservoir engineers often incorporate observa-
tions (e.g., measured production rates) into a reservoir
model, for example by adapting the estimate of the
initial state and the model parameters such that the
model predictions match the observations in a history
matching procedure. In short, the success of their ef-
forts is essentially determined by the degree to which a
reservoir is controllable and observable.

Two fundamental concepts in systems and control
theory are controllability and observability. For a linear
system, the so-called controllable subspace is defined
as the set of states that can be reached by a suitable
choice of the control input. Similarly, the unobserv-
able subspace is defined as the set of states that can-
not be distinguished from zero through the measured
output. Together, these two concepts determine the
behavior from controlled input to measured output.
Consequently, investigating a linear system’s control-
lability and observability properties is an important
step to understanding it. Although the definitions of
controllability and observability for nonlinear systems
such as oil and gas reservoirs are more complicated,
similar reasoning applies. Another important concept
in systems and control theory is identifiability. The
parameters in a model are said to be identifiable if they
can be uniquely estimated from measured output data
by a suitable choice of the control input.

Over the past few years, more and more systems
and control concepts have been applied in reservoir en-
gineering. Examples include optimal control, Kalman
filtering, and model reduction. In these applications,
little attention is paid to understanding the control-
lability, observability, and identifiability properties of
the reservoir at hand. This is surprising since, as men-
tioned earlier, these properties essentially determine
a reservoir’s behavior and, thereby, the success of the
chosen application. Since the concepts of controllability
and observability are more complicated for nonlin-
ear systems and since the nonlinearity of oil and gas
reservoirs is mainly due to time-varying saturations in
multiphase flow, this paper focuses on single-phase flow
(Section 2).
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The main contributions of this paper are to:

1. Analyze and interpret the controllability and obser-
vability of single-phase flow reservoir models and
investigate how these are affected by well locations,
heterogeneity, and fluid properties (Section 3)

2. Show how to compute an upper bound on the num-
ber of identifiable parameters in history matching
production data

3. Present a new method to regularize the history
matching problem using a reservoir’s controllabil-
ity and observability properties (Section 4)

2 Single-phase flow equations

We consider the usual equations for isothermal weakly
compressible single-phase flow through porous media,
based on conservation of mass and Darcy’s law [4].
Using some form of spatial discretization, such as a
finite volume or finite element method, we obtain
continuous-time system equations, which can be writ-
ten in partitioned form as:
⎡
⎣

V11 0 0
0 V22 0
0 0 V33

⎤
⎦
⎡
⎣

˙̄p1˙̄p2˙̄p3

⎤
⎦

+
⎡
⎣

T11 T12 T13

T21 T22 T23

T31 T32 T33 + Jp

⎤
⎦
⎡
⎣

p̄1

p̄2

p̄3

⎤
⎦ =

⎡
⎣

0
q̆w

Jpp̆w

⎤
⎦ , (1)

where the diagonal block matrices, Vii, i = 1, 2, 3, are
accumulation matrices with entries that depend on
the grid block size, grid block porosities, and total
compressibility, and the band-diagonal block matrices,
Tij, i = 1, 2, 3, j = 1, 2, 3, are transmissibility matrices
with entries that depend on the grid block size, grid
block permeabilities, and fluid viscosity. The elements
of vector p1 are the pressures in those grid blocks (ele-
ments) that are not penetrated by a well. The elements
of p2 are the pressures in the blocks where the source
terms are prescribed well flow rates q̆w, and those of p3

are the pressures in the blocks where the source terms
are obtained through prescription of the bottom hole
pressures with the aid of a well inflow model

q̄w = Jp
(
p̆w − p̄3

)
, (2)

where Jp is a diagonal matrix of well indices, the el-
ements of p̆w are the prescribed pressures, and the
elements of q̄w are the resulting well flow rates. To
compute the bottom hole pressures p̄w in the wells
where the flow rates have been prescribed, we need an
additional diagonal matrix Jq of well indices such that

q̆w = Jq
(
p̄w − p̄2

)
. (3)

Equations 2 and 3 can be combined to give
⎡
⎣

0
p̄w

q̄w

⎤
⎦ =

⎡
⎣

0 0 0
0 I 0
0 0 −Jp

⎤
⎦
⎡
⎣

p̄1

p̄2

p̄3

⎤
⎦+

⎡
⎣

0 0 0
0 J−1

q 0
0 0 Jp

⎤
⎦
⎡
⎣

0
q̆w

p̆w

⎤
⎦ . (4)

If we define the vectors

p :=
⎡
⎣

p̄1

p̄2

p̄3

⎤
⎦ ∈ R

N, u :=
[

q̆w

p̆w

]
∈ R

Nu ,

y :=
[

p̄w

q̄w

]
∈ R

Ny ,

Equations 1 and 4 can be rewritten as

ṗ = Acp + Bcu, (5)

y = Cp + Du, (6)

where

Ac = −

⎡
⎢⎢⎣

V−1
11 T11 V−1

11 T12 V−1
11 T13

V−1
22 T21 V−1

22 T22 V−1
22 T23

V−1
33 T31 V−1

33 T32 V−1
33

(
T33 + Jp

)

⎤
⎥⎥⎦ ,

Bc =
⎡
⎣

0 0
V−1

22 0
0 V−1

33 Jp

⎤
⎦ , C =

[
0 I 0
0 0 −Jp

]
,

D =
[

J−1
q 0

0 Jp

]
.

Equations 5 and 6 are the standard continuous-time
linear time-invariant state space equations as used in
the systems and control literature. The matrices Ac, Bc,
C, and D are often referred to as the system matrix, the
input matrix, the output matrix, and the direct through-
put matrix, and the vectors u, p, and y as the input vec-
tor, the state vector, and the output vector, respectively.
Using an explicit time discretization, Eqs. 5 and 6 can
be rewritten in discrete-time form as

pk+1 = Apk + Buk, (7)

yk = Cpk + Duk, (8)

where A = (I + �tAc) and B = �tBc. We apply the
usual notation pk to indicate p(k�t), where the sub-
script k is the time step counter or discrete time. The
discretization time step is set to

�t = 0.5/ |λmin (Ac)| , (9)

where λmin represents the most negative eigenvalue.
This leads to quite small time steps and is referred to as
the so-called Nyquist–Shannon sampling time needed to
accurately capture all of the dynamics in Eq. 5—see [3].
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In the following, we show how the controllability and
observability of the pressures throughout the reservoir
model are determined by the matrix pairs (A, B) and
(A, C), respectively. We stress, however, that both the
theory and results that follow do not depend on implicit
or explicit time discretization or on the particular value
of the discretization time-step �t, and also apply to the
continuous-time case.

3 Controllability and observability

The material treated in this section was pioneered by
[16, 24, 29], and is usually included in any advanced
course on systems and control. The reader is referred
to these works or, for example, the textbooks [2, 12] for
details and proofs.

3.1 Controllability and observability

For a system (Eqs. 7–8) with Nu control inputs (i.e.,
controlled flow rates or bottom-hole pressures) and Ny

outputs (i.e., measured flow rates or bottom-hole pres-
sures), the controllability matrix Ck and observability
matrix Ok are defined as follows:

Ck(A, B) := [
B AB A2B . . . Ak−1B

]
, (10)

Ok(C, A) :=

⎡
⎢⎢⎢⎢⎢⎣

C
CA
CA2

...

CAk−1

⎤
⎥⎥⎥⎥⎥⎦

. (11)

By the so-called Cayley–Hamilton theorem, the rank
of C∞ and its image are determined by, at most, the
first N × Nu columns, where N is the state dimen-
sion. In other words, im(C∞) = im(CN) ⊂ R

N . Similarly,
the rank of O∞ and its kernel are determined by, at
most, the first N × Ny rows. In other words, ker(O∞) =
ker(ON) ⊂ R

N .
Given initial condition

p0 = p̄0, (12)

it follows from Eqs. 7–8 that

pn = Anp̄0 +
n−1∑
k=0

An−k−1Buk. (13)

It is clear by inspection of Eq. 13, together with the
previous remark on the image of CN , that pk is a linear
combination of the columns of CN , together with a
p0-dependent term. Consequently, if CN has full rank,
then im(CN) = R

N , and any pN can be reached by a

suitable choice of {u0, . . . , uN−1}. This is why a linear
system of the form Eqs. 7–8 is called controllable1 if its
controllability matrix CN has full rank (i.e., rank N). If
rank (CN) < N, then

X
con := im(CN(A, B)) ⊂ R

N (14)

is often referred to as the controllable subspace and
consists of the states that can be reached by suitable
choice of the control.

It is clear by inspection of Eqs. 13 and 8 that yk

equals CAkp̄0 plus a control-dependent term, which we
assume known. Consequently, if ON has full rank, then
ker(ON) = ∅ (empty) and any p̄0 can be distinguished
from zero through the measured output {y0, . . . , yN−1}.
This is why a linear system of the form Eqs. 7–8 is called
observable if its observability matrix ON has full rank.
If rank (ON) < N, then

X
unobs := ker(ON(C, A)) ⊂ R

N (15)

is often referred to as the unobservable subspace and
consists of the states that cannot be distinguished from
zero through the measured output.

From Eq. 13, it appears that the pressures can be-
come unbounded if A has an eigenvalue whose magni-
tude or absolute value is strictly larger than one. It turns
out that if at least one well is controlled by its bottom-
hole pressure, A has eigenvalues strictly smaller than
one. This is quite intuitive, as increased reservoir pres-
sure through injected water then automatically leads to
increased production, which would not be the case if
the flow rates of all the other wells are set to zero.

Strictly speaking, all of the states in X
con can be

reached provided that there are no bounds on the
manipulated input (i.e., the bottom-hole pressures).
Similarly, all of the states not in X

unobs can, strictly
speaking, be distinguished from zero provided that
there are no bounds on the accuracy of the measured
output (i.e., the flow meters). In practice, neither is re-
alistic. However, there are elements of X

con that require
significantly more energy2 in terms of

∞∑
k=0

uT
k uk

1Under these conditions, the system is actually called reachable
in the systems and control literature, which is equivalent to con-
trollable if A is nonsingular. Since A is nonsingular throughout
this paper, we stick to the term controllable.
2The term “energy” is used loosely here, motivated by the fact
that energy can often be written as a quadratic form (e.g., kinetic
energy as a function of squared velocity). A more precise term is
the squared l2 norm of the input.
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to be reached than others. Similarly, there are elements
not in X

unobs that produce significantly more energy in
terms of
∞∑

k=0

yT
k yk

when observed than others. To quantify this, the so-
called controllability Gramian P and the observability
Gramian Q are defined as follows:

P := C∞(A, B)CT
∞(A, B) =

∞∑
k=0

AkBBT (AT)k , (16)

Q := OT
∞(C, A)O∞(C, A) =

∞∑
k=0

(
AT)k CTCAk. (17)

These can be computed by solving the so-called
discrete-time Lyapunov (or Stein) equations

APAT + BBT = P, (18)

ATQA + CTC = Q, (19)

as can be seen by substituting Eqs. 16–17 into Eqs. 18–
19 and using the fact that Ak → 0 for k → ∞ since the
eigenvalues of A are strictly smaller than one. Note that
im(CN) = im(P) and ker(ON) = ker(Q).

Consider a reference state pr ∈ R
N . In [16], it is

shown that the minimal energy Jcon required to steer
the state from 0 to pr is3

Jcon(pr) = pT
r P−1pr, (20)

and that the maximal energy Jobs produced by observ-
ing the output of the system whose initial state is given
by pr is

Jobs(pr) = pT
r Qpr. (21)

This means that the elements in X
con that require the

most energy to reach have a significant component in
the span of the eigenvectors of P corresponding to
small (absolute) eigenvalues. Similarly, the elements
not in X

unobs that produce the least energy when ob-
served have a significant component in the span of the
eigenvectors of Q corresponding to small (absolute)
eigenvalues.

The controllability and observability Gramians,
however, are coordinate-dependent, meaning that the
energy required/produced to reach/observe reference
states depends on the particular choice of coordinates
(e.g., the grid block numbering). This can be seen

3Assuming P−1 exist, which holds if the system is controllable.

by considering a linear combination of the original
pressures

p̂k = Tpk, (22)

with T ∈ R
N×N nonsingular. The dynamics of p̂k are

given by

p̂k+1 = TAT−1︸ ︷︷ ︸
=:Ã

p̂ + TB︸︷︷︸
=:B̃

uk, (23)

yk = CT−1︸ ︷︷ ︸
=:C̃

p̂k + Duk. (24)

The associated Gramians P̃ and Q̃ satisfy

P̃ = TPTT , Q̃ = T−TQT−1 ⇒ P̃Q̃ = TPQT−1.

In other words, by choosing a transformation such that
a particular reference state is easier to reach simul-
taneously makes it harder to observe, and vice versa.
Although the Gramians themselves are coordinate-
dependent, the eigenvalues of their product are not.
The latter are called the Hankel singular values

σk := √
λk (PQ), k = 1, . . . , N, (25)

and, being coordinate independent, are input–output
system invariants.

3.2 Balancing and truncation

We can find a coordinate transformation such that the
Gramians P̃ and Q̃ are equal, diagonal, and nonneg-
ative. By computing a Cholesky factorization of P =
UUT and Q = LLT and a singular value decomposition
of UTL = Z�YT , it can be shown that setting

T = �−1/2YTLT︸ ︷︷ ︸
=:Tbal

and T−1 = UZ�−1/2︸ ︷︷ ︸
=:T−1

bal

(26)

leads to

P̃ = Q̃ = � = diag (σ1, . . . , σN) , (27)

where σ1 ≥ σ2 ≥ . . . ≥ σN . Tbal is called a balancing
transformation matrix. Note that because in the bal-
anced coordinates P̃ = Q̃, states are equally difficult to
reach as observe. In the original coordinates, this means
that, letting t̂ j denote the j th column of T−1

bal, we have

Jcon(t̂ j) = 1/σ j and Jobs(t̂ j) = σ j.

It is important to note that the kth Hankel singular value
σk can be interpreted as the energy contribution of the
kth component of the balanced state p̂k to the input–
output behavior of the system. If the Hankel singular
values decrease rapidly, we can therefore conclude that
most of the input–output behavior is determined by the
first few balanced states. In fact, it can be shown that
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eliminating (or truncating) the last N − k components
of the balanced state leads to a reduced kth order
approximation of the full N th order system for which
the error in input–output behavior, measured in terms
of the worst-case energy norm (i.e., the so-called H∞
norm), is given by

2(σk+1 + . . . + σN),

or twice the sum of the deleted N − k Hankel singular
values.

In the following sections, this type of model reduc-
tion is not actually applied to reservoir models (as done
in [15, 19, 28]). We merely point out that we can analyze
when a high-order model in fact behaves like a low-
order one. Moreover, we can distinguish between those
linear combinations of the pressures that contribute to
the input–output behavior and those that do not. In the
section that follows, the controllability and observabil-
ity properties of single-phase flow reservoir models are
analyzed and interpreted, and it is shown how these
are affected by well locations, heterogeneity, and fluid
properties.

3.3 Example 1: homogeneous permeability

Consider a 2D homogeneous reservoir containing one
phase and modeled as in the previous section. The
model has 21 × 21 × 1 grid blocks of 10m × 10m ×
10m. The absolute permeability is 10 mDarcy. The
porosity is chosen constant in every grid block and
is given by φ = 0.20. The fluid compressibility is c =
10−10 Pa−1 and viscosity μ = 10−3 Pa s. There are
five wells configured in a standard five-spot pattern
depicted in Fig. 1. Wells 1, 3, 5, and 4 are production
or injection wells. In wells 1, 3, and 5, we can control
the bottom-hole pressure; in well 4, the flow rate. Wells
1, 3, 5, and 2 have pressure gauges or flow meters.
In wells 1, 3, and 5, we can measure the flow rate; in
well 2 (a nonproducing or injecting well), the bottom-
hole pressure. The well indices are computed using a
Peaceman model with a wellbore radius rw = 0.1 m and
skin factor S = 0.

The matrices A, B, C, and D are computed as in
Section 2 with a discretization time step given by Eq. 9,
which, in this example, leads to �t = 1.2 s. In this
particular example, the nonzero entries in C corre-
sponding to the flow rate measurements (i.e., the well
indices of wells 1, 3, and 5) are in the order of 10−8:
much smaller than the nonzero entry in C correspond-
ing to the pressure measurement in well 2, which is
equal to 1. This is problematic because the previously
discussed energy produced by observing pressures in
well 2 (in [Pa]2) will then generally be much larger
than the energy produced by observing flow rates in

1 3 5 7 9 11 13 15 17 19 21

1

3

5

7

9

11

13

15

17

19

21

2

1

5

4

3

well

well

well

well

well

x–grid

y–
gr

id
Fig. 1 Well locations: wells 1, 3, and 5 are bottom-hole pressure
controlled production or injection wells containing a flow meter
(circled crosses), well 4 is a flow rate controlled production or
injection well without a pressure gauge (open circle), and well 2
is an observation well containing a pressure gauge (cross)

wells 1, 3, and 5 (in [m3/s]2). In the following ex-
amples, the nonzero entry in C corresponding to the
pressure measurement is therefore scaled to the well
index of well 2. Similarly, the nonzero entries in B,
corresponding to the bottom-hole pressure-controlled
wells (i.e., wells 1, 3, and 5), are much smaller than
the nonzero entry in B corresponding to the flow rate
controlled well (i.e., well 4). In the following examples,
the nonzero entry in B corresponding to the flow rate
controlled well is therefore scaled to the well index of
well 4. Subsequently, all of the matrices discussed in
the previous section (e.g., Gramians, Hankel singular
values, balancing transformation) are computed using
the Matlab functions gram and balreal.

The Hankel singular values, depicted on a logarith-
mic scale in Fig. 2, decrease very rapidly. This is in line
with earlier results from [15, 19, 28] and means that
the 441th order reservoir model behaves like a model
of much lower order.

The eigenvectors corresponding to the three largest
absolute eigenvalues of the Gramians P and Q, as
well as the first three columns of the inverse balancing
matrix T−1

bal, are depicted in Fig. 3. In each of the plots,
the vector under consideration is projected onto the
model grid. Since each component of the state relates
to the pressure in a specific grid block, and thereby a
specific physical location, this projection allows us to
interpret how the reservoir model’s controllability and
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Fig. 2 All 441 Hankel
singular values σ1, . . . , σ441
(left) and 21 largest ones
σ1, . . . , σ21 (right) for
homogeneous example.
The dashed line represents
machine precision

1 441

10
–30

10
– 20

10
– 10

1 21
10

– 14

10
– 12

10
– 10

10
– 8

observability properties vary over space. Note that the
scales of these plots differ and that the nonzero areas
are of particular interest, as these represent areas where
reference pressures are controllable and/or observable.

Since the observation well (well 2 in Fig. 1) is the
only well that does not appear as a nonzero area in the
plots of the controllability Gramian, we conclude that
reference pressures in areas near production or injec-
tion wells require the least energy to reach. Similarly,
since the production well without any measurement
(well 4 in Fig. 1) is the only well that does not appear
as a nonzero area in the plots of the observability
Gramian, we conclude that reference pressures in areas
near wells with flow meters or pressure gauges produce
the most energy when observed. In short, pressures

near wells in which we can control the flow rate or
bottom-hole pressure are controllable, whereas pres-
sures near wells in which we can measure the flow rate
or bottom-hole pressure are observable. Since a column
t̂ j of the inverse balancing matrix T−1

bal represents a state
(i.e., a vector of pressures) that is equally difficult to
reach as observe, it makes sense that particularly the
wells in which we can control and observe (wells 1, 3
and 5 in Fig. 1) appear as nonzero areas in the plots
of T−1

bal.

Remark It is important to mention that the previously
mentioned scalings of the entry in C corresponding
to the pressure measurement in well 2 and entry in
B corresponding to the flow-rate controlled well 4

Fig. 3 Eigenvectors
corresponding to 3 largest
absolute eigenvalues of
controllability Gramian P
(top row), observability
Gramian Q (middle row), and
first 3 columns of inverse
transformation matrix T−1

bal
(bottom row) projected onto
model grid for homogeneous
example
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gr
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Fig. 4 Heterogeneous permeability

have a large influence on Fig. 3. For example, smaller
scaling factors (i.e., smaller entries in B and C) make
the nonzero areas surrounding wells 2 and 4 in Fig. 3
less pronounced. Recall that the main reason for these
scalings is that “energy” in [Pa]2 will generally be much
larger than in [m3/s]2. Therefore, if in each well, the
bottom-hole pressure is controlled and the flow rate
is measured (and “required energy” is thereby consis-
tently in [Pa2] while “produced energy” is consistently
in [m3/s]2), then these scalings are no longer necessary.

3.4 Example 2: heterogeneous permeability

Consider the same reservoir model as in the previ-
ous example, but with a high permeability zone of
1,000 mDarcy in the northwest corner, a low permeabil-
ity zone of 10 mDarcy in the southeast corner, and a
permeability of 100 mDarcy throughout the rest of the
reservoir—see Fig. 4. The discretization time step �t is
still given by Eq. 9 and its value is therefore different
from before, namely, �t = 0.013 s.

The results are similar to the homogeneous exam-
ple. The Hankel singular values, depicted in Fig. 5,
decrease very rapidly. As before, this indicates that the
441th-order reservoir model behaves like a model of
much lower order.

The eigenvectors corresponding to the three largest
absolute eigenvalues of the Gramians P and Q, as well
as the first three columns of T−1

bal, are depicted in Fig. 6.
Contrary to Fig. 3, only the production well in the high
permeable zone (well 1 in Fig. 1) appears as a nonzero
area in the plots of the controllability Gramian. From
this, we conclude that reference pressures in areas near
production wells in high permeable zones require the
least energy to reach. Contrary to Fig. 3, only the well
with a measurement in the high permeable zone (well 1
Fig. 1) appears as a nonzero area in the plots of the
observability Gramian. From this, we conclude that
reference pressures in areas near observation wells in
high permeable zones produce the most energy when
observed. The following section shows how these re-
sults depend on the physical reservoir parameters, the
time discretization, and the spatial discretization.

3.5 Effect of physical reservoir parameters

Recall that the matrices A and B in Eq. 7 are given by:

A = I + Ac�t, B = Bc�t.

It can be shown that scaling the value of

– compressibility c to (1/ε)c, or
– the entire porosity field

[
φ1 . . . φN

]
to

(1/ε)
[
φ1 . . . φN

]
, or

– viscosity μ to (1/ε)μ, or
– the entire permeability field

[
k1 . . . kN

]
to

ε
[

k1 . . . kN
]
,

for some constant value ε > 0 leads to

A = I + εAc�t, B = εBc�t.

Fig. 5 All 441 Hankel
singular values σ1, . . . , σ441
(left) and 21 largest ones
σ1, . . . , σ21 (right) for
heterogeneous example.
The dashed line represents
machine precision
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Fig. 6 Eigenvectors
corresponding to 3 largest
absolute eigenvalues of
controllability Gramian P
(top row), observability
Gramian Q (middle row), and
first 3 columns of inverse
transformation matrix T−1

bal
(bottom row) projected onto
model grid for heterogeneous
example
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In other words, scaling the above mentioned physical
parameters by ε has the same effect on A and B as
scaling the discretization time step �t by ε. Further-
more, it can be shown that, for the viscosity or the entire
permeability, this also leads to a scaling of the values
of C and D in Eq. 8 to εC and εD, respectively. Note
that in case only certain grid block permeability values
are scaled and not the entire permeability field, there
can be an effect on the controllability and observability
properties.

It is important to note that the dynamics of the
discrete-time reservoir model Eqs. 7–8 are unaffected
by scaling �t, provided that ε�t is still smaller than
the value given by Eq. 9.4 In fact, the results obtained
in this section (in terms of Hankel singular values
and spatial variation of controllability and observability
properties) using the original continuous-time matrices
(Ac, Bc) are virtually the same. This therefore also
holds for the compressibility and porosity scalings men-
tioned above. The viscosity and permeability scalings,
on the other hand, also influence C, leading to a scaling

4Recall that a discrete-time model Eq. 7 obtained with a time-
step larger than Eq. 9 does not capture all of the dynamics of the
original continuous-time model Eqs. 5–6.

of the Hankel singular values
[
σ1 . . . σN

]
in Eq. 25 to

ε
[
σ1 . . . σN

]
.

The spatial discretization also does not have a sig-
nificant influence on the results: the spatial patterns
depicted in Figs. 3 and 6 clearly resemble the ones ob-
tained by modelling the reservoir with, say, 11 × 11 × 1
or 31 × 31 × 1 grid blocks. This is important, as it points
out that controllability and observability are reservoir
properties, and not just reservoir model properties.
Furthermore, the overall decrease in Hankel singular
values is very similar—see Fig. 7. This is important,
as it points out that the number of grid blocks, often
chosen as high as computationally possible, does not
have a significant influence on the relevant order of the
pressure dynamics throughout the reservoir.

To summarize: the controllability and observability
properties of single-phase flow reservoir models have
been analyzed, showing that pressures near wells in
which we can control the flow rate or bottom-hole
pressure are controllable, whereas pressures near wells
in which we can measure the flow rate or bottom-hole
pressure are observable. These properties are deter-
mined by the well configuration and, to a lesser extent,
by the heterogeneity of the reservoir at hand. The
Hankel singular values of single-phase flow reservoir
models decrease rapidly, indicating that they behave as
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Fig. 7 All Hankel singular
values (left) and 21 largest
ones (right) of three reservoir
models based on the reservoir
treated in homogenous
example, where each model is
spatially discretized by a
different number of grid
blocks
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models of much lower order than the order that follows
from the number of discretization grid blocks.

Despite these results, there is much work still to be
done in this area. Since a reservoir’s recovery factor
can be defined in terms of the saturations at the end
of its lifecycle, a reservoir’s saturation dynamics are at
least as relevant for field development planning as its
pressure dynamics. However, a reservoir’s saturation
dynamics are described by nonlinear equations, and
it is therefore important to investigate how the con-
trollability and observability of saturations change with
time. This could be done by linearizing the nonlinear
dynamics along a certain trajectory.

4 Identifiability

4.1 History matching and identifiability

Reservoir models generally contain a significant
amount of uncertainty originating from many different
sources, and this can have a large influence on the
predictions of future production. In order to reduce the
uncertainty associated with physical reservoir parame-
ters, it is common to define a cost function (typically
the weighted squared difference between predicted and
measured data), and minimize it over all possible para-
meter values. In reservoir engineering, this procedure
is referred to as history matching, and in this paper, we
consider history matching production data to identify
physical parameters in single-phase flow reservoirs.

Let us stack all of the uncertain parameters in a
vector θ . Furthermore, let us assume that measure-
ments ȳ1, . . . , ȳn are available, and that these have been
generated by the system

pk+1 = A(θ)pk + B(θ)uk, (28)

yk = C(θ)pk + D(θ)uk (29)

with initial condition

p0 = p̄0 (30)

for some unknown θ = θ̄ (i.e., the parameters of
the data-generating system), known manipulated input
u0, . . . , un−1 and known initial state p̄0, where Eqs. 28
and 29 are the generalizations of Eqs. 7 and 8, re-
spectively. We assume that the input contains enough
frequencies to obtain informative measurements, also
called persistently exciting—[26]. A common history
matching approach is, then, to consider the following
nonlinear least-squares problem:

Problem 1

minimize V(θ) :=
n∑

k=1

[
ȳk − yk(θ)

]T [ȳk − yk(θ)
]
,

over θ ∈ R
M

subject to Eqs. 28, 29, and 30.

Because we assume that all modeling errors are cap-
tured in θ and that the measurements are noisefree,
Problem 1 is a least-squares problem with

V(θ̄) = 0,
∂V
∂θ

(θ̄) = 0 and
∂2V

∂θ2 (θ̄) ≥ 0.

If Problem 1 has a unique local minimum at θ = θ̄

(e.g., ∂2V/∂θ2(θ̄) > 0), the model structure (Eqs. 28–
29) is said to be locally identifiable. If this minimum is
global, the structure is said to be globally identifiable—
see [5, 17, 26] for a more detailed discussion.

It is well-known in the petroleum engineering com-
munity that if the vector of to-be-estimated physical
parameters θ contains the geological properties (e.g.,
permeability values) in all grid blocks, virtually all
reservoir models of the form Eqs. 28–29 are not identi-
fiable. Often called ill-posed, this lack of identifiability
in Problem 1 is mentioned in almost all publications on



Comput Geosci (2008) 12:605–622 615

history matching and is problematic because a wrongly
updated estimate θup of θ̄ can lead to a perfect history
match (i.e., V(θup) = 0) but incorrect long-term predic-
tions (e.g., when the saturation front has significantly
advanced)—see [34].

Since permeability cannot be uniquely estimated
from production data, it is common to regularize the
problem (i.e., render it “less” ill-posed). The most com-
mon method is to add the difference between θ and the
initial estimate θ init to the original cost function V

Vreg(θ) :=
n∑

k=1

[
ȳk − yk(θ)

]T Py
[
ȳk − yk(θ)

]

+ [θ − θ init)]
T Pθ [θ − θ init)] ,

where Py ∈ R
Ny and Pθ ∈ R

N are weighting matrices.
By weighting the data and prior mismatch terms, the
resulting problem can, under certain conditions, be in-
terpreted as finding the maximum a posteriori estimate.
This is often referred to as the Bayesian estimation
approach to history matching—see [14, 33].

Whatever the history-match cost function V that
is considered, it is often minimized using a gradient-
based optimization procedure. The gradients ∂V/∂θ

can be efficiently computed using the so-called adjoint
method from optimal control theory—see [10, 11, 20].
The Gauss–Newton and Levenberg–Marquardt meth-
ods have been applied, among others, in [25, 30]. A
disadvantage of these methods is that they require the
sensitivities or partial derivatives of the measurements
{y1, . . . , yn} with respect to the to-be-estimated para-
meters θ . Despite the use of the adjoint method, this
becomes computationally demanding when the number
of measurements and the number of parameters are
large.

Reducing the computational burden in history
matching has been one of the main motivations for
reparameterizing θ by a small number of basis functions
(the other being the desire to generate estimates that
are geologically realistic). Some of the reparameteriza-
tion techniques applied in history matching to achieve
this include

– Zonation—[20, 23], and adapted versions thereof—
[6, 18]

– Grad zones—[7–9]
– Spectral decomposition and subspace methods—[1,

30, 32]
– Kernel principle component analysis—[31]
– Discrete cosine transform—[21, 22]

Despite all of these applications, it is not clear how
many parameters can be uniquely identified for any
particular reservoir model.

4.2 Number of identifiable parameters

For any kth-order linear system of the form Eqs. 28–29
with Nu manipulated inputs and Ny measured outputs,
there exists a transformation Tcan such that, in the
transformed coordinates, the state-space matrices that
result from Eqs. 23–24 are in a so-called canonical form,
which we will denote by

Â(θ) := TcanA(θ)T−1
can, B̂(θ) := TcanB(θ),

Ĉ := C(θ)T−1
can, D(θ).

There are several canonical forms for linear multi-
variable systems. We consider the one discussed in
[13, 26, 27], which has the following form:

– Â is initially filled with zeros and ones along the
superdiagonal. The Ny rows r1, r2, rNy , where r0 = 0
and rNy = k, are filled with parameters.

– B̂ is filled with parameters.
– Ĉ is filled with zeros, but each row i has a one in

column ri−1 + 1.

The parameterization is uniquely characterized by the
Ny numbers ri that are to be chosen by the user. Note
that only Ny rows in Â have elements not equal to zero
or one, B̂ is a full matrix and Ĉ only contains zeros and
ones.

As an example, for the specific situation that k = 9,
Nu = 2, Ny = 3, r1 = 3, r2 = 5, and r3 = 9 this canonical
form is as follows:

Â(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
× × × × × × × × ×
0 0 0 0 1 0 0 0 0
× × × × × × × × ×
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
× × × × × × × × ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B̂(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× ×
× ×
× ×
× ×
× ×
× ×
× ×
× ×
× ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ĉ =
⎡
⎣

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0

⎤
⎦ , D(θ) =

⎡
⎣

× ×
× ×
× ×

⎤
⎦ ,

and, as such, is completely described by the nonzero
elements of Â, B̂, and D. In other words, any kth-
order linear system of the form Eqs. 28–29 with Nu

manipulated inputs and Ny can be completely described
by at most

Nmax = (Nu + Ny) × k + Nu Ny (31)

parameters—[26]. In the example above, Nmax = 51.
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However, as shown in Section 3, the relevant order
k of single-phase flow reservoir models is much smaller
than their original order N (determined by the num-
ber of grid blocks, often chosen as high as possible).
Furthermore, while the physical reservoir parameters
(e.g., the grid block permeabilities) do influence the
input–output behavior, they do not significantly influ-
ence the relevant order of the input–output behavior
(e.g., Figs. 2 and 5 show the same rapid decline in
Hankel singular values). This means that, unless there
are many wells Nu in which we can control the flow rate
or bottom-hole pressure and many wells Ny in which we
can observe the flow rate or bottom-hole pressure, the
number of identifiable parameters will be much smaller
than the number of grid blocks N. Consequently, if
the grid block permeabilities are to be estimated, the
resulting reservoir model structure is not identifiable.
We stress that this lack of identifiability is not the result
of applying a particular transformation to the original
state-space matrices {A(θ), B(θ), C(θ), D(θ)} describ-
ing single-phase flow, but that there are fundamental
reasons for it.

For example, consider again the homogeneous
single-phase flow reservoir model of Section 3.3. Recall
that the reservoir is modeled by 21 × 21 × 1 grid blocks,
and the order of the model is, therefore, N = 441.
However, the Hankel singular values depicted in Fig. 2
decline very rapidly. In fact, we have

2(σ16 + . . . + σ441) = 8.0 × 10−3.

According to Section 3, the H∞ norm of the error
between the full order model and a 15th-order approx-
imation is therefore less than 10−2. In other words, the
relevant order of the model is k = 15 and the relevant
input–output behavior is described by at most

Nmax = (Nu + Ny) × k + Nu Ny

= (4 + 4) × 15 + 4 × 4 = 136

parameters. If θ contains the permeability in all 441 grid
blocks, then the model structure Eqs. 28–29 is clearly
not identifiable. This gap between the maximum num-
ber of identifiable parameters Nmax and the number
of to-be-identified parameters (e.g., N in the case of
grid block permeabilities) is much larger for realistic
reservoir models with N = 104 − 106 grid blocks.

4.3 Relevant spatial patterns of permeability

In Section 3, it was demonstrated that Eqs. 28–29 can
be decomposed into a part that is both controllable

and observable (i.e., belongs to the k largest Hankel
singular values) and a part that is poorly controllable
and/or poorly observable (i.e., belongs to the N − k
smallest Hankel singular values). The choice of k of
course depends on what is considered to be relevant
for the input–output behavior. For example, if the
H∞ norm of the approximation error should be less
than 10−3, k will generally be larger than for 10−2.
Let us assume that a particular choice for k has been
made, and let Tbal denote the balancing matrix as in-
troduced in Section 3.2, corresponding to Eqs. 28–29.
The controllable and observable part of Eqs. 28–29 is
represented by

{Ã11(θ), B̃1(θ), C̃1(θ), D(θ)},

resulting from

⎡
⎣

Tbal,1 0
Tbal,2 0

0 I

⎤
⎦
[

A(θ) B(θ)

C(θ) D(θ)

] [
T̂bal,1 T̂bal,2 0

0 0 I

]

=
⎡
⎢⎣

Ã11(θ) Ã12(θ) B̃1(θ)

Ã21(θ) Ã22(θ) B̃2(θ)

C̃1(θ) C̃2(θ) D(θ)

⎤
⎥⎦ ,

where Ã12(θ), Ã21(θ)B̃2(θ), and C̃2(θ) are almost zero
and Tbal and T−1

bal have been partitioned according to
the first k rows and columns, respectively:

Tbal =
[

Tbal,1

Tbal,2

]
, T−1

bal =
[

T̂bal,1 T̂bal,2

]
.

This decomposition is depicted in Fig. 8.
From a history-matching perspective, it clearly only

makes sense to change an initial permeability estimate
θ in a direction �θ that affects the cost function V
as defined in Problem 1. Similarly, from a control-
lability and observability perspective, it clearly only
makes sense to change an initial permeability estimate
in a direction that affects the controllable and observ-
able part of the reservoir model (i.e., the quadruple
{Ã11(θ), B̃1(θ), C̃1(θ), D(θ)} in Fig. 8). If the inputs are
persistently exciting, this boils down to the same thing.

Consider the special situation that θ contains the
permeability values in all N grid blocks, or

θ = [k1 . . . kN
]T

. (32)

Let us focus on the effect of a variation �θ on
{Ã11(θ), B̃1(θ), C̃1(θ), D(θ)} in the coordinates corre-
sponding to a fixed Tbal. Recall from Section 2 that
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Fig. 8 Decomposition of a
reservoir model into a
controllable and observable
part, and a poorly
controllable and poorly
observable part that hardly
contributes to the
input–output behavior (the
double slash signs indicate
poor coupling)

manipulated
input

measured
output

controllable and observable

poorly controllable and
poorly observable

+
+

u y

A11(  ),B1(  ),C1(  ),D(  )
~ ~ ~θ θ θ θ

the permeability value k j only enters B if grid block j
contains a well. A variation �θ j will therefore only have
an effect on B̃1 if grid block j contains a well. The same
reasoning applies to C̃1 and D. On the other hand, the
effect of a variation �θ on Ã11 is

Tbal,1A(θ + �θ)T̂bal,1 − Tbal,1A(θ)T̂bal,1︸ ︷︷ ︸
=Ã11(θ)

=
N∑

j=1

Tbal,1
∂A
∂θ j

(θ)T̂bal,1�θ j + o(�θ). (33)

where o denotes terms of small order �θ . By defining
	(θ) ∈ R

k2×N

	(θ) :=
[

vec
{

Tbal,1
∂A
∂θ1

(θ)T̂bal,1

}
. . .

vec
{

Tbal,1
∂A
∂θN

(θ)T̂bal,1

}]
, (34)

we can rewrite Eq. 33 as

vec

⎧⎪⎨
⎪⎩

Tbal,1A(θ + �θ)T̂bal,1 − Tbal,1A(θ)T̂bal,1︸ ︷︷ ︸
=Ã11(θ)

⎫⎪⎬
⎪⎭

= �(θ)�θ + o(�θ). (35)

Consider again the homogeneous example of Section
3.3. In Section 4.2, we computed that the relevant
order of the model is k = 15. The matrix � can now
be computed using Eq. 34. The right singular vectors
corresponding to the three largest singular values of �

are depicted in Fig. 9. In each of the plots, the vector
under consideration is projected onto the model grid.
Since each component of θ relates to the permeability
k j in a specific grid block j and, thereby, a specific
physical location, this projection allows us to interpret
how the reservoir model’s relevant input–output be-
havior (as captured by Ã11) varies over space. Note
that the scales of these plots differ and that the nonzero
areas are of particular interest, as these represent areas
where changes in permeability affect the input–output
behavior.

Since wells 2 and 4 from Fig. 1 do not appear as
nonzero areas in the plots of Fig. 9, we conclude that
permeability variations in grid blocks near wells in
which we can both control and observe affect the input–
output behavior more than permeability variations in
grid blocks far from these wells. This is in line with
results presented in [35], and is also very similar to
the results from Section 3 on how a reservoir model’s
controllability and observability properties vary over
space. In fact, the nonzero areas in the plots of Fig. 9
strongly resemble those in the bottom row of Fig. 3. In

Fig. 9 Right singular vectors
corresponding to three largest
singular values of 	 projected
onto model grid for
homogeneous example
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Fig. 10 Grid block
numbering for a 2D model of
5 × 5 grid blocks (a) and
corresponding nonzero
elements of ∂A/∂θ12 (b).
Note that these only appear
in the rows and columns of
grid block 12 and its
neighbors 7, 11, 13, and 17
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other words, the relevant spatial patterns of pressure
strongly resemble the relevant spatial patterns of per-
meability. This can be explained as follows.

The matrices Tij from Section 2, which are used
to construct A, have a very sparse structure. Conse-
quently, A also has a very sparse structure, as does
∂A/∂θj. In fact, ∂A/∂θj has, at most, 13 nonzero ele-
ments for a 2D reservoir model—see Fig. 10. Moreover,
the nonzero components of ∂A/∂θj only appear in the
rows and columns corresponding to grid block j and its
neighbors.

Similarly, Figs. 3 and 6 show that the nonzero com-
ponents of T̂bal,1 spatially correspond to grid blocks
near wells in which we can both control and observe.
Although not depicted in any of the figures, this also
holds for the rows of Tbal,1. Consequently, the

Tbal,1
∂A
∂θj

(θ)T̂bal,1

term in Eq. 33 and thereby the j th column of 	 only
contains nonzero elements if j corresponds to a grid
block near a production or injection well with a flow
meter or a pressure gauge.

To summarize: the relevant spatial patterns of per-
meability strongly resemble the relevant spatial pat-
terns of pressure. This is quite intuitive, as it implies

that permeability in an area where we can control
and observe has a greater effect on the input–output
behavior than in an area where we cannot.

4.4 Controllability and observability-based
reparameterization

In Section 4.2, it was shown that the model structure of
Eqs. 28–29 is not identifiable if θ contains the grid block
permeability values as in Eq. 32. We therefore propose
to regularize Problem 1 by reparameterizing θ as

θ = �α, (36)

where � ∈ R
N×L is called the reparameterization ma-

trix and L 	 N is the number of to-be-estimated (non-
physical) parameters (i.e., the number of elements in
α). The columns of � are referred to as basis functions,
and linear combinations of these can represent relevant
spatial patterns of permeability.

Since the relevant spatial patterns of permeability
strongly resemble the relevant spatial patterns of pres-
sure, we propose to choose the first L − 1 columns of
the inverse balancing matrix T̂bal,1, with an additional
vector of ones to account for an overall increase or
decrease in permeability. By solving the regularized
problem

Fig. 11 Iterative procedure
for controllability and
observability-based
reparameterization of grid
block permeabilities
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Fig. 12 Bottom-hole
pressures (left) and flow rates
(right)
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Problem 2

minimize V(�α) =
n∑

k=1

[
ȳk − yk(�α)

]T [ȳk − yk(�α)
]

over α ∈ R
L

subject to pk+1 = A(�α)pk + B(�α)uk,

p0 = p̄0,

yk = C(�α)pk + D(�α)uk.

using a gradient-based optimization procedure starting
from an initial estimate θ init = �αinit, we only update
the permeability in directions that affect the control-
lable and observable part of the reservoir model and,
thereby, V. Note that L should be smaller than or equal
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Fig. 13 Minimum value of history match cost function V for
different number of basis functions L

to Nmax, as given by Eq. 31, if Problem 2 is to have a
unique solution.

However, T̂bal,1 varies with θ—see, for example, the
lower plots in Fig. 3, which closely resemble but are
not identical to those in Fig. 6. Therefore, our approach
might lead to a local minimum for Problem 2 that is
not equal to zero (i.e., not a perfect history match).
An alternative method is therefore depicted in Fig. 11.
Here, T̂bal,1 is reevaluated if there is no more decrease
in V and a local minimum for Problem 2 is found. This
reevaluation leads to a new set of basis functions, which
might possibly succeed in further decreasing V. This
controllability and observability-based regularization is
applied in the following example.

4.5 Example

Consider again the heterogeneous reservoir treated in
Section 3 and the problem of identifying the logarithm5

of its permeability as depicted in Fig. 4. This perme-
ability, whose logarithm is denoted by θ̄ , is assumed to
be the only source of uncertainty. There are 200 per-
fect pressure measurements ȳ1, . . . , ȳ200 available every
�t = 0.013 s, which have been generated by Eqs. 28–
29 using θ = θ̄ , an initial state of p0 = 100 bar, and a
manipulated input u0, . . . , u199 depicted in Fig. 12. This
input contains enough frequencies to obtain informa-
tive measurements (i.e., it is persistently exciting).

5The logarithm of permeability is used in order to avoid negative
permeability estimates and to improve the numerical condition-
ing of the problem.
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basis functions

The initial estimate θ init of θ̄ is chosen to be ho-
mogeneous with a permeability equivalent to 5 mD =
5 × 10−14 m2. Since we estimate the logarithm of
permeability in square meters, the initial estimate
is 10 log(5 × 10−14) = −13.3. Based on this estimate,
the Hankel singular values and the balancing matrix
Tbal(θ init) are computed as in Section 3 using �t =
0.013 s. We stress that this balancing matrix corre-
sponds to the initially estimated model, and not the true
one. The squared difference of the measured outputs of
this model with the true measured outputs, as defined
in Eq. 37, is V(θ init) = 8.7 × 10−2. The goal is to update
this estimate by solving Problem 2 using a gradient-
based optimization procedure (e.g., the Matlab func-
tion lsqnonlin).

The reparameterization matrix � is chosen as

� = [ IN×1 t̂1 . . . t̂L
]
, (37)

αinit = [−13.3 0 . . . 0
]
. (38)

where t̂ j denotes the j th column of T−1
bal. The number of

columns L of the reparameterization matrix � should
be smaller or equal to the maximum number of iden-
tifiable parameters, which, in this case, is Nmax = 120.
However, very good history matches are achieved with
far fewer basis functions. This is shown in Fig. 13,
which depicts the minimum value of Problem 2 that is
achieved with L = 1, . . . , 10. Note that V decreases by
five orders of magnitude using only six basis functions.
The corresponding updated permeability estimate, de-
picted in Fig. 14, only shows a resemblance with the true
permeability, depicted in Fig. 4, in the vicinity of the
wells in which we can control and observe. Moreover,
comparison of Figs. 2 and 5 illustrates that the decay in
magnitude of singular values is of a similar nature for
both cases, which implies that the number of identifi-
able basis functions is only weakly related to the degree
of heterogeneity.

It is interesting to note that we can construct per-
meability estimates that appear different but lead to
virtually the same input–output behavior and, thereby,
history match cost function V. Three such estimates are
depicted in Fig. 15. These permeability estimates are
constructed by adding linear combinations of columns
of T̂bal,2 to the estimate depicted in Fig. 14. The cor-
responding value of the history match cost function V,
originally 1.3 × 10−6, hardly changes.

Finally, it should be noted that this particular ap-
plication involves history matching with 200 measure-
ments taken every �t = 0.013 s, which is clearly not
very realistic—see the signals depicted in Fig. 12. This is
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Fig. 15 Alternative estimates of heterogeneous permeability constructed by adding columns of T̂bal,2 to the estimate depicted in Fig. 14,
and corresponding values of history match cost function V
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due to the reservoir’s relatively small size and high per-
meability, as well as the low compressibility of the fluid.
However, for larger reservoirs with lower permeability
and higher compressibility, the sampling time �t can be
much larger.

5 Conclusions

The most controllable and observable pressures in
single-phase flow reservoir models can be computed by
performing an eigenvalue decomposition of the con-
trollability and observability Gramians. By projecting
the eigenvectors corresponding to the largest absolute
eigenvalues of the Gramians onto the model grid, we
can interpret how the reservoir model’s controllability
and observability properties vary over space. It turns
out that pressures near wells in which we can control
the flow rate or bottom-hole pressure are controllable,
whereas pressures near wells in which we can mea-
sure the flow rate or bottom-hole pressure are observ-
able. Furthermore, the controllability and observability
properties are determined by the well configuration
(i.e., the number and location of wells) and, to a lesser
extent, the heterogeneity of the reservoir at hand.

The Hankel singular values of single-phase flow
reservoir models decrease rapidly, indicating that they
behave as models of much lower order. The latter
severely limits the number of identifiable parameters.
An upper bound Nmax for the maximum number of
identifiable parameters is given. It is shown that if
the vector of to-be-estimated parameters contains the
N grid block permeabilities, then Nmax 	 N and the
model structure is not identifiable. Furthermore, by
inspecting how the controllable and observable part
of a reservoir model depends on permeability, it is
shown that the relevant spatial patterns of permeabil-
ity strongly resemble the relevant spatial patterns of
pressure. Consequently, a new method of regulariza-
tion is to reparameterize permeability through a linear
combination of the most relevant spatial patterns of
pressure. A history matching example shows that this
controllability and observability-based regularization
leads to good results.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.

References

1. Abacioglu, Y., Oliver, D., Reynolds, A.: Efficient reservoir
history matching using subspace vectors. Comput. Geosci. 5,
151–172 (2001)

2. Antoulas, A.C.: Approximation of Large-Scale Dynamical
Systems. SIAM, Philadelphia (2005)

3. Astrom, K.J., Wittenmark, B.: Computer Controlled Sys-
tems, 2nd edn. Prentice Hall, Englewood Cliffs (1990)

4. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Ap-
plied Science, Barking (1979)

5. Bellman, R., Astrom, K.J.: On structural identifiability. Math.
Biosci. 7, 329–339 (1970)

6. Berre, I., Lien, M., Mannseth, T.: A level-set corrector to an
adaptive multiscale permeability prediction. Comput. Geosci.
11, 27–42 (2007)

7. Bissell, R.C.: Calculating optimal parameters for history
matching. In: 4th European Conference on the Mathematics
of Oil Recovery, Roros, 7–10 June 1994

8. Bissell, R.C., Sharma, Y., Killough, J.E.: History matching
using the method of gradients: two case studies. In: SPE
Annual Conference and Exhibition (SPE 28590-MS), New
Orleans, 25–28 September 1994

9. Brun, B., Gosselin, O., Barker, J.W.: Use of prior information
in gradient-based history matching. SPE J. (SPE 87680-PA)
9(1), 67–78 (2004)

10. Carter, R.D., Kemp, L.F., Pierce, A.C., Williams, D.L.: Per-
formance matching with constraints. SPE J. (SPE 4260) 14,
187–196 (1974)

11. Chavent, G.: History matching by use of optimal theory.
SPE J. (SPE 4627) 1, 74–86 (1975)

12. Chen, C.T.: Linear System Theory and Design, 2nd edn. Holt,
Rinehart and Winston, New York (1984)

13. Denham, M.J.: Canonical forms for the identification of
multiviarable linear systems. IEEE Trans. Automat. Contr.
19(6), 646–656 (1974)

14. Gavalas, G.R., Shah, P.C., Seinfeld, J.H.: Reservoir history
matching by Bayesian estimation. SPE J. (SPE 5740-PA)
16(6), 337–350 (1976)

15. Gildin, E., Klie, H., Rodriguez, A., Wheeler, M.F.: Develop-
ment of low-order controllers for high-order reservoir models
and smart wells. In: SPE Annual Techical Conference and
Exhibition (SPE 102214-MS), San Antonio, 24–27 September
2006

16. Glover, K.: All optimal hankel-norm approximations of lin-
ear multivariable systems and their L∞-error bounds. Int. J.
Control 39(6), 1115–1193 (1984)

17. Glover, K., Willems, J.C.: Parameterizations of linear dynam-
ical systems: Canonical forms and identifiability. IEEE Trans.
Automat. Contr. 19(6), 640–646 (1974)

18. Grimstad, A., Mannseth, T., Naevdal, G.: Adaptive multi-
scale permeability estimation. Comput. Geosci. 7(1), 1–25
(2003)

19. Heijn, T., Markovinovic, R., Jansen, J.D.: Generation of low-
order reservoir models using system-theoretical concepts.
SPE J. (SPE 88361) 9(2), 202–218 (2004)

20. Jacquard, P., Jain, C.: Permeability distribution from field
pressure data. SPE J. (SPE 1307) 5, 281–294, (1965)

21. Jafarpour, B., McLaughlin, D.B.: Efficient permeability pa-
rameterization with the discrete cosine transform. In: SPE
Reservoir Simulation Symposium (SPE 106453), Houston,
February 2007

22. Jafarpour, B., McLaughlin, D.B.: History matching with an
ensemble Kalman filter and discrete cosine parameterization.



622 Comput Geosci (2008) 12:605–622

In: SPE Annual Technical Conference and Exhibition (SPE
108761), Anaheim, November 2007

23. Jahns, H.O.: A rapid method for obtaining a two-dimensional
reservoir description from well pressure response data. SPE
J. (SPE 1473-PA) 6(4), 315–327 (1966)

24. Kalman, R.E.: Mathematical description of linear dynamical
systems. SIAM J. Control 1(2), 152–192 (1963)

25. Li, R., Reynolds, A.C., Oliver, D.S.: History matching of
three-phase flow production data. SPE J. (SPE 87336) 8(4),
328–340 (2003)

26. Ljung, L.: System Identification—Theory for the User, 2nd
edn. Prentice Hall, Englewood Cliffs (1999)

27. Luenberger, D.G.: Canonical forms for linear multivariable
systems. IEEE Trans. Automat. Contr. 12, 290–293 (1967)

28. Markovinovic, R., Geurtsen, E.L., Heijn, T., Jansen, J.D.:
Generation of low-order reservoir models using POD, empir-
ical Gramians and subspace identification. In: 8th European
Conference on the Mathematics of Oil Recovery, Freiberg,
3–6 September 2002

29. Moore, B.C.: Principal component analysis in linear systems:
controllability, observability, and model reduction. IEEE
Trans. Automat. Contr. 26(1), 17–32 (1981)

30. Reynolds, A.C., He, N., Chu, L., Oliver, D.S.: Reparameteri-
zation techniques for generating reservoir descriptions con-
ditioned to variograms and well-test pressure data. SPE J.
(SPE 30588-PA) 1(4), 413–426 (1996)

31. Sarma, P., Durlofsky, L.J., Aziz, K., Chen, W.H.: A new
approach to automatic history matching using kernel PCA.
In: SPE Reservoir Simulation Symposium (SPE 106176),
Houston, February 2007

32. Shah, P.C., Gavalas, G.R., Seinfeld, J.H.: Error analysis in
history matching: the optimum level of parameterization.
SPE J. (SPE 6508-PA) 18(3), 219–228 (1978)

33. Tarantola, A.: Inverse Problem Theory and Methods
for Model Parameter Estimation. SIAM, Philadelphia
(2005)

34. Tavassoli, Z., Carter, J.N., King, P.R.: Errors in history
matching. SPE J. (SPE 86883) 9(3), 352–361 (2004)

35. Van Doren, J.F.M., Van den Hof, P.M.J., Jansen, J.D.,
Bosgra, O.H.: Determining identifiable parameterizations for
large-scale physical models in reservoir engineering. In: Pro-
ceedings of the 17th IFAC World Congress, Seoul, 6–11 July
2008


	Controllability, observability and identifiability in single-phase porous media flow
	Abstract
	Introduction
	Single-phase flow equations
	Controllability and observability
	Controllability and observability
	Balancing and truncation
	Example 1: homogeneous permeability
	Example 2: heterogeneous permeability
	Effect of physical reservoir parameters

	Identifiability
	History matching and identifiability
	Number of identifiable parameters
	Relevant spatial patterns of permeability
	Controllability and observability-based reparameterization
	Example

	Conclusions
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


