Skip to main content
Log in

Auto-scaling techniques for IoT-based cloud applications: a review

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Cloud and IoT applications have inquiring effects that can strongly influence today’s ever-growing internet life along with necessity to resolve numerous challenges for each application such as scalability, security, privacy, and reliability. During the deployment of IoT-based Cloud applications, the demand for Cloud tenants is dynamic that makes challenging to maintain scalability of the system. Developing an effective scaling technique is not merely a big concern, but how to achieve autonomic scaling results using future load prediction and migration policies is also a crucial phase. Also, to evaluate such auto-scaling strategy, certain Quality of Service (QoS) metrics must be recognized, explored and leveraged to enhance the performance of the system. Therefore, in this paper, a survey of existing auto-scaling, load prediction and VM migration techniques for IoT-based Cloud applications has been carried out along with the evaluation of various QoS parameters. Further, the future trends have also been discussed for performing auto-scaling in a Cloud environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Dukaric, R., Juric, M.B.: Towards a unified taxonomy and architecture of Cloud frameworks. Future Gen. Comp. Syst. 29(5), 1196–1210 (2013)

    Google Scholar 

  2. Botta, Alessio, Walter De Donato, Valerio Persico, Antonio Pescapé: On the integration of cloud computing and internet of things. In International Conference on Future Internet of Things and Cloud (FiCloud), pp. 23-30. IEEE, (2014)

  3. Gupta, Anisha, Christie, R., Manjula. , P.R.: Scalability in internet of things: features, techniques and research challenges. Int. J. Comput. Intell. Res 13(7), 1617–1627 (2017)

    Google Scholar 

  4. Botta, A., Donatode, A., Persico, V., Pescapé, A.: Integration of cloud computing and internet of things: a survey. Future Gener. Comp. Syst. 56, 684–700 (2016)

    Google Scholar 

  5. Butpheng, C., Yeh, K.-H., Xiong, H.: Security and privacy in IoT-Cloud-based e-health systems—A comprehensive review. Symmetry 12(7), 1191 (2019)

    Google Scholar 

  6. Al-Turjman, F., Zahmatkesh, H., Shahroze, R.: An overview of security and privacy in smart cities’ IoT communications. Transact. Emerg. Telecommun. Technol. (2019). https://doi.org/10.1002/ett.3677

    Article  Google Scholar 

  7. Nilabja, R., Abhishek, D., Aniruddha, G.: Efficient autoscaling in the cloud using predictive models for workload forecasting. In 4th International Conference on Cloud Computing, pp. 500–507. IEEE, (2011)

  8. Evangelidis, A., Parker, D., Bahsoon, R.: Performance modelling and verification of cloud-based auto-scaling policies. Future Gener. Comp. Syst. 87, 629–638 (2018)

    Google Scholar 

  9. Pranali, G., Brona, S.: Survey on different auto scaling techniques in cloud computing environment. Int. J. Adv. Res. Comp. Commun. Eng. (IJARCCE). (2015). https://doi.org/10.17148/IJARCCE.2015.41298

    Article  Google Scholar 

  10. Lorido-Botrán, T., Miguel-Alonso, J., Lozano, J.A.: Auto-scaling techniques for elastic applications in cloud environments. Department of Computer Architecture and Technology, University of Basque Country, Tech. Rep. EHU-KAT-IK-09-12, (2012)

  11. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-scaling techniques for elastic applications in cloud environments. J. Grid Comp. 12(4), 559–592 (2014)

    Google Scholar 

  12. Yisel, G., Monge, D.A., Pacini, E., Mateos, C., Garino, C.G.: Reinforcement learning-based autoscaling of workflows in the cloud: A survey, enginnering applications of artificial intelligence. arXiv preprint. arXiv:2001.09957 (2020)

  13. Singh, P., Gupta, P., Jyoti, K., Nayyar, A.: Research on auto-scaling of web applications in cloud: survey, trends and future directions. Scal. Comp. Practice Exp. 20(2), 399–432 (2019)

    Google Scholar 

  14. Alfandi, O., Khanji, S., Ahmad, L., Khattak, A.: A survey on boosting IoT security and privacy through blockchain. Cluster Comp. 24(1), 1–19 (2020)

    Google Scholar 

  15. Parminder, S., Kaur, A., Gupta, P., Gill, S.S., Jyoti, K.: RHAS: robust hybrid auto-scaling for web applications in cloud computing. Cluster Comp. (2020). https://doi.org/10.1007/s10586-020-03148-5

    Article  Google Scholar 

  16. Arora, S., Bala, A.: A survey: ICT enabled energy efficiency techniques for big data applications. Cluster Comput. (2019). https://doi.org/10.1007/s10586-019-02958-6

    Article  Google Scholar 

  17. Salman, T., Stankovski, V.: Auto-scaling applications in edge computing: taxonomy and challenges. In Proceedings of the International Conference on Big Data and Internet of Thing, pp. 158-163. (2017)

  18. Aslanpour, M.S., Gill, S.S., Toosi, A.N.: Performance evaluation metrics for cloud, fog and edge computing: a review, taxonomy, benchmarks and standards for future research. Internet Things 12, 100273 (2020)

    Google Scholar 

  19. Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., Kong, J., Jue, J.P.: All one needs to know about fog computing and related edge computing paradigms: a complete survey. J. Syst. Archit. 98, 289–330 (2019)

    Google Scholar 

  20. Mahmud, R., Ramamohanarao, K., & Buyya, R. Application management in fog computing environments: A taxonomy, review and future directions. ACM Computing Surveys (CSUR), vol. 53, no. 4, pp. 1–43 (2020)

  21. Abdulkareem, K.H., Mohammed, M.A., Gunasekaran, S.S., Al-Mhiqani, M.N., Mutlag, A.A., Mostafa, S.A., Ali, N.S., Ibrahim, D.A.: A review of Fog computing and machine learning: concepts, applications, challenges, and open issues. IEEE Access 7, 153123–153140 (2019)

    Google Scholar 

  22. Mutlag, A.A., Ghani, M.K.A., Arunkumar, N., Mohammed, M.A., Mohd, O., et al.: Enabling technologies for fog computing in healthcare IoT systems. Future Gener. Comp. Syst. 90, 62–78 (2019)

    Google Scholar 

  23. Tomas, V.: Automatic scaling in cloud computing. Doctoral Thesis, Czech Technical University in Prague, (2017)

  24. Biswas, A., Majumdar, S., Nandy, B., El-Haraki, A.: A hybrid auto-scaling technique for clouds processing applications with service level agreements. J. Cloud Comput. 6(1), 29 (2017)

    Google Scholar 

  25. Patil, M.: Enhancing Static Auto-scaling Approach to Mitigate Resource Over-Provisioning in Cloud Computing. PhD diss, Dublin, National College of Ireland (2019)

    Google Scholar 

  26. Yongyu, C., Cattaneo, J.C.V.: Auto-scaling for allocation of cloud service resources in application deployments. U.S. Patent 10,698,735, issued June 30, 2020.

  27. Rajkumar, B., Ranjan, R., Calheiros, R.N.: Modeling and simulation of scalable Cloud computing environments and the CloudSim toolkit: Challenges and opportunities. In International Conference on High Performance Computing & Simulation (HPCS'09), pp. 1-11, IEEE, (2009)

  28. Alipour, H., Yan, L., Abdelwahab, H.-L.: Analyzing auto-scaling issues in cloud environments. In Proceedings of 24th Annual International Conference on Computer Ssscience and Software Engineering, pp. 75-89. IBM Corp., (2014)

  29. Kim, J.H.: A review of cyber-physical system research relevant to the emerging it trends: industry 4.0, iot, big data, and cloud computing. J. Indus. Integr. Manag. World Sci. Publ. 2(3), 1–22 (2017)

    Google Scholar 

  30. Gupta, N., Ahuja, N., Malhotra, S., Bala, A., Kaur, G.: Intelligent heart disease prediction in cloud environment through ensembling. Exp. Syst. 34(3), e12207 (2017)

    Google Scholar 

  31. Davinder, R., Ahuja, R., Nayyar, N.: Sustainable future IoT services with touch-enabled handheld devices. Sec. Privacy Electron Healthcare Records: Concepts, Paradigms Solut. 131-148, (2019)

  32. Mutlag, A.A., Ghani, M.K.A., Mohammed, M.A., Maashi, M.S., Mohd, O., Mostafa, S.A., Abdulkareem, K.H., Marques, G., de la TorreDíez, I.: MAFC: multi-agent fog computing model for healthcare critical tasks management. Sensors 20(7), 1853 (2020)

    Google Scholar 

  33. Raja, S.P., Dhiliphan Rajkumar, T., Raj, V.P.: Internet of things: challenges, issues and applications. J. Circ. Syst. Comput. 27(9), 1830007 (2018)

    Google Scholar 

  34. Mostafa, S.A., Gunasekaran, S.S., Mustapha, A., Mohammed, M.A., Abduallah, W.M.: Modelling an Adjustable Autonomous Multi-agent Internet of Things System for Elderly Smart Home. In: International Conference on Applied Human Factors and Ergonomics, pp. 301–311. Springer, Cham (2019)

    Google Scholar 

  35. Kim, J.H.: A survey of IoT security: Risks, requirements, trends, and key technologies. J. Indus. Integr. Manag. 2(2), 1750008 (2017)

    Google Scholar 

  36. Moore, S.J., Nugent, C.D., Zhang, S., Cleland, I.: IoT reliability: a review leading to 5 key research directions. Transact. Pervasive Comp. Inter. 2, 147–163 (2020)

    Google Scholar 

  37. Biswas, A.: Auto-scaling techniques for clouds processing requests with service level agreements. Carleton University, Canada (2019)

    Google Scholar 

  38. Paulo, P., Araujo, J., Maciel, P.: A hybrid mechanism of horizontal auto-scaling based on thresholds and time series. In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 2065-2070, (2019)

  39. SILVA, Paulo Roberto Pereira da. A hybrid strategy for auto-scaling of VMs: an approach based on time series and thresholds. Master's thesis, Universidade Federal de Pernambuco, (2019)

  40. Lorido-Botran, T., Miguel-Alonso, J., Antonio Lozano, J.: Comparison of auto-scaling techniques for cloud environments (2013)

  41. Rui, H., Guo, L., Ghanem, M.M., Guo, Y.: Lightweight resource scaling for cloud applications. In 12th IEEE/ACM International Symposium onCluster, Cloud and Grid Computing (CCGrid), pp. 644-651, IEEE (2012)

  42. Hasan, M.Z., Magana, E., Clemm, A., Tucker, L., Gudreddi, S.L.D.: Integrated and autonomic cloud resource scaling. In network operations and management symposium (NOMS), pp. 1327-1334, IEEE, (2012)

  43. RightScale, “Set up Autoscaling using Voting Tags”, http://support.rightscale.com/03-Tutorials/02-AWS/02-Website_Edition/Set_up_Autoscaling_using_Voting_ Tags, 2012.

  44. Chieu, T.C., Mohindra, A., Karve, A.A., Segal, A.: Dynamic scaling of web applications in a virtualized cloud computing environment. In International Conference on e-Business Engineering ICEBE ‘09, pp. 281-286, IEEE, (2009)

  45. Kupferman, J., Silverman, J., Jara, P., Browne, J.: Scaling into the cloud. Technical report, University of California, Santa Barbara; CS270 - Advanced Operating Systems, (2009)

  46. Beloglazov, A., Buyya, R.: Adaptive threshold-based approach for energy-efficient consolidation of virtual machines in cloud data centers. In Proceedings of the 8th International Workshop on Middleware for Grids, Clouds and e-Science, pp.4, ACM, (2010)

  47. Lim, H.C., Babu, S., Rey, JSC, Parekh, SS., Automated control in cloud computing: challenges and opportunities. In Proceedings of the 1st workshop on Automated control for datacenters and clouds, ACDC '09, pp. 13-18, ACM, New York, USA, (2009)

  48. Wei, Y., Kudenko, D., Liu, S., Pan, L., Lei, W., Meng, X.: A reinforcement learning based auto-scaling approach for saas providers in dynamic cloud environment. Math Probl Eng 2019, 1–11 (2019)

    Google Scholar 

  49. Zhong, J., Duan, S., Li, Q.: Auto-scaling cloud resources using LSTM and reinforcement learning to guarantee service-level agreements and reduce resource costs. J. Phys. 1237(2), 022033 (2019)

    Google Scholar 

  50. Dutreilh, X., Kirgizov, S., Melekhova, O., Malenfant, J., Rivierre, N, Truck, I.: Using Reinforcement Learning for Autonomic Resource Allocation in Clouds: towards a fully automated workflow. In Seventh International Conference on Autonomic and Autonomous Systems, ICAS, pp. 67-74, IEEE, (2011)

  51. Barrett, E., Howley, E., Duggan, J.: Applying reinforcement learning towards automating resource allocation and application scalability in the cloud. Concurr. Comput.: Practice Exp. 12, 1656–1674 (2012)

    Google Scholar 

  52. Cooper, T.: Proactive scaling of distributed stream processing work flows using workload modelling: doctoral symposium. In Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems, pp. 410-413, ACM, (2016)

  53. Hai-Jun, Z., Zhu, Q.M., Xiao N.-F.: Application research of neural networks based on map-reduce on cloud computing clusters. In Materials, Manufacturing Technology, Electronics and Information Science (MMTEI2015) Proceedings for the 2015 International Workshop on Materials, Manufacturing Technology, Electronics and Information Science (MMTEI2015), pp. 345-357. (2016)

  54. Rao, J., Bu, X, Xu, C.-Z., Wang, L., Yin, G., “VCONF: a reinforcement learning approach to virtual machines auto-configuration. In Proceedings of the 6th international conference on Autonomic computing, ICAC '09, pp. 137-146, New York, NY, USA, ACM, (2009)

  55. Villela, D., Pradhan, P., Rubenstein, D.: Provisioning servers in the application tier for e-commerce systems. In Twelfth IEEE International Workshop on Quality of Service, IWQOS, pp. 57-66, IEEE, (2004)

  56. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., Wood, T.: Agile dynamic provisioning of multi-tier Internet applications. ACM Transact. Autonomous Adapt Syst. 3(1), 1 (2008)

    Google Scholar 

  57. Zhang, L.C., Smirni, E.: A regression-based analytic model for dynamic resource provisioning of multi-tier applications. In Fourth International Conference on Autonomic Computing, ICAC'07, pp. 27, IEEE, (2007)

  58. Gerald, T., Jong, N.K., Das, N.K., Bennani, M.N.: A hybrid reinforcement learning approach to autonomic resource allocation. In International Conference on Autonomic Computing, pp. 65-73, IEEE, (2006)

  59. Park, S.-M., Humphrey M.: Self-tuning virtual machines for predictable escience. In 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 356-363. IEEE, (2009)

  60. Padala, P., Hou, K.Y., Shin, K.G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A.: Automated control of multiple virtualized resources. In Proceedings of the 4th ACM European conference on Computer systems, pp. 13-26, ACM, (2009)

  61. Bodik, P., Grith, R., Sutton, C., Fox, A., Jordan, M., Patterson, D.: Statistical machine learning makes automatic control practical for internet datacenters, pp. 12, (2009)

  62. Kalyvianaki, E., Charalambous, T., Hand, S.: Self-adaptive and self-configured CPU resource provisioning for virtualized servers using kalman filters. In Proceedings of the 6th international conference on Autonomic computing, pp. 117-126, ACM, (2009)

  63. Xu, J., Zhao, M., Fortes, J., Carpenter R., Yousif M.: On the Use of Fuzzy Modeling in Virtualized Data Center Management. In Proceedings of the Fourth International Conference on Autonomic Computing, ICAC '07, pp. 25, Washington, DC, USA, IEEE, (2007)

  64. Wang, L., Xu, J., Zhao, M., Tu, Y., Fortes J.A.B.: Fuzzy modeling based resource management for virtualized database systems. In IEEE 19th International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 32-42. IEEE, (2011)

  65. Lama, P., Zhou, X.: Autonomic provisioning with self-adaptive neural fuzzy control for end-to-end delay guarantee. In IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, pp. 151-160. IEEE, (2010)

  66. Shveta, V., Bala, A.: A review: intelligent load prediction techniques for CloudIoT. In Proceedings of the Third International Conference on Advanced Informatics for Computing Research, pp. 1-8. (2019)

  67. Feng, D., Zhibo, W., Zuo, D., Zhang, Z.: Auto-scaling provision basing on workload prediction in the virtualized data center. Int. J. Grid High Perform. Comp. (IJGHPC) 12(1), 53–69 (2019)

    Google Scholar 

  68. Samuel, A.A., Bankole, A.: Using machine learning algorithms for cloud client prediction models in a web VM resource provisioning environment. Transact. Mach. Learn. Artificial Intellig 4(1), 28 (2016)

    Google Scholar 

  69. Simic, V., Stojanovic, B., Ivanovic, M.: Optimizing the performance of optimization in the cloud environment–An intelligent auto-scaling approach. Future Gene. Comp. Syst. 101, 909–920 (2019)

    Google Scholar 

  70. Alipour, H.: Model-Driven Machine Learning for Predictive Cloud Auto-scaling. PhD diss Concordia University, USA (2019)

    Google Scholar 

  71. Gong, Z., Gu, X., Wilkes, J.: Press: Predictive elastic resource scaling for cloud systems. In International Conference on Network and Service Management (CNSM), pp. 9-16, IEEE, (2010)

  72. Mi, H., Wang, H., Yin, G., Zhou, Y., Shi, D., Yuan, L.: Online self-reconfiguration with performance guarantee for energy-efficient large-scale cloud computing data centers. In IEEE International Conference on Services Computing (SCC), pp. 514-521, IEEE, (2010)

  73. Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. “Empirical prediction models for adaptive resource provisioning in the cloud.” In Future Generation Computer Systems 28, vol. no. 1, pp. 155-162, 2012.

  74. Iqbal, W., Dailey, M.N., Carrera, D., Janecek, P.: Adaptive resource provisioning for read intensive multi-tier applications in the cloud. Future Gener Comp Syst 27(6), 871–879 (2011)

    Google Scholar 

  75. Shen, Z., Subbiah S., Gu X., Wilkes, J.: Cloudscale: Elastic resource scaling for multi-tenant cloud systems. In Proceedings of the 2nd ACM Symposium on Cloud Computing, pp. 5, (2011)

  76. Caron, E., Desprez, F., Muresan A.: Forecasting for cloud computing on-demand resources based on pattern matching. Research Report RR-7217, INRIA, (2010)

  77. Chandra A., Gon, W., Shenoy, P.: Dynamic resource allocation for shared data centers using online measurements. In Proceedings of the 11th international conference on Quality of service, pp. 381-398, (2003)

  78. Ekhande, A.: Improvement in auto scaling mechanism of cloud computing resources using Composite ANN. PhD diss, Dublin, National College of Ireland (2020)

    Google Scholar 

  79. Li, T., Wang, J., Li, W., Xu, T., Qi, Q.: Load prediction-based automatic scaling cloud computing, In International Conference on Networking and Network Applications (NaNA), pp. 330–335, IEEE (2016)

  80. Chandini, M., Pushpalatha, R., Boraia, R.: A brief study on prediction of load in cloud environment. Int. J. Adv. Res. Comp. Commun. Eng. 5(5), 157–162 (2016)

    Google Scholar 

  81. Jayakumar, Kumaran, V., Lee J., Kim, IK., Wang, W.: A self-optimized generic workload prediction framework for cloud computing. In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 779-788, 2020.

  82. Kumar, J., Singh, A.K.: Workload prediction in cloud using artificial neural network and adaptive differential evolution. Future Gener. Comp. Syst. 81, 41–52 (2018)

    Google Scholar 

  83. Liu, C., Liu, C., Shang, Y., Chen, S., Cheng, B., Chen, J.: An adaptive prediction approach based on workload pattern discrimination in the cloud. J. Netw. Comp. Appl. 80, 35–44 (2017)

    Google Scholar 

  84. Anshuman, B., Majumdar, S., Nandy, B., El-Haraki, A.: Predictive auto-scaling techniques for clouds subjected to requests with service level agreements. In World Congress on Services, pp. 311-318. IEEE, (2015)

  85. Fang, W., Lu, Z., Wu, J. and Cao, Z.: RPPS: a novel resource prediction and provisioning scheme in cloud data center. In IEEE Ninth International Conference on Services Computing, IEEE, pp. 609–616, (2012)

  86. Messias, V.R., Estrella, J.C., Ehlers, R., Santana, M.J., Santana, R.C., Reiff-Marganiec, S.: Combining time series prediction models using genetic algorithm to autoscaling Web applications hosted in the cloud infrastructure. Neural Comp. Appl. 27(8), 2383–2406 (2016)

    Google Scholar 

  87. Bala, A., Chana, I.: Prediction-based proactive load balancing approach through vm migration. Eng. Comp. 32(4), 581–592 (2016)

    Google Scholar 

  88. Huang, J., Li, C., Yu, J.: Resource prediction based on double exponential smoothing in cloud computing, In 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), pp. 2056–2060, IEEE, (2012)

  89. Neto, Pinto, E.C., Callou, G., Aires, F.: An algorithm to optimise the load distribution of fog environments. In 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1292-1297. IEEE, (2017)

  90. Zhang, Q., Yang, L.T., Yan, Z., Chen, Z., Li, P.: An efficient deep learning model to predict cloud workload for industry informatics. IEEE Transact. Indus. Inform. 14(7), 3170–3178 (2018)

    Google Scholar 

  91. Rahmanian, A.A., Ghobaei-Arani, M., Tofighy, S.: A learning automata-based ensemble resource usage prediction algorithm for cloud computing environment. Future Gener. Comp. Syst. 79, 54–71 (2018)

    Google Scholar 

  92. Zhang, F., Liu, G., Xiaoming, F., Yahyapour, R.: A survey on virtual machine migration: challenges, techniques, and open issues. IEEE Commun. Surv. Tutor. 20(2), 1206–1243 (2018)

    Google Scholar 

  93. Shirvani, M.H., Rahmani, A.M., Sahafi, A.: A survey study on virtual machine migration and server consolidation techniques in DVFS-enabled cloud datacenter: Taxonomy and challenges. J. King Saud Univ. Comp. Inform. Sci. 32(3), 267–286 (2020)

    Google Scholar 

  94. Masdari, M., Khezri, H.: Efficient VM migrations using forecasting techniques in cloud computing: a comprehensive review.". Cluster Comput. 23, 2629–2658 (2020)

    Google Scholar 

  95. Jin, H., Deng, L., Song, W., Shi, X., Chen, H., Pan, X.: MECOM: live migration of virtual machines by adaptively compressing memory pages. Future Gener. Comp. Syst. 38, 23–35 (2014)

    Google Scholar 

  96. Hines, M.R., Deshpande, U., Gopalan, K.: Post-copy live migration of virtual machines. ACM SIGOPS Oper. Syst. Rev. 43(3), 14–26 (2009)

    Google Scholar 

  97. Badawy, M.M., Ali, Z.H., Ali, H.A.: Qos provisioning framework for service-oriented internet of things (iot). Cluster Comp. 23, 575–591 (2019)

    Google Scholar 

  98. Casalicchio, E.: A study on performance measures for auto-scaling CPU-intensive containerized applications. Cluster Comput. 22(3), 995–1006 (2019)

    MathSciNet  Google Scholar 

  99. Banker, G., Jain, G.: A literature survey on cloud autoscaling mechanisms. Int. J. Eng. Dev. Res. 2(4), 3811–3817 (2014)

    Google Scholar 

  100. Tao, C., Bahsoon, R.: Survey and taxonomy of self-aware and self-adaptive autoscaling systems in the cloud, arXiv preprint. arXiv:1609.03590 (2016)

  101. Tao, C.: Self-aware and self-adaptive autoscaling for cloud based services, Ph.D. dissertation, School of Computer Science, College of Engineering and Physical Sciences University of Birmingham, arXiv preprint. arXiv:1608.04030 (2016)

  102. Kriushanth, M., Arockiam, L., Justy Mirobi, G.: "Auto scaling in cloud computing: an overview. Int. J. Adv. Res. Comp. Commun. Eng. 2(7), 2278–1021 (2013)

    Google Scholar 

  103. Jingqi, Y., Liu, C., Shang, Y., Cheng, B., Mao, Z., Liu, C., Niu, L., Chen, J.: A cost-aware auto-scaling approach using the workload prediction in service clouds. Informat. Syst. Front. 16(1), 7–18 (2014)

    Google Scholar 

  104. Khan, Mehran, NAH., Liu, Y., Alipour, H., Singh, S.: Modeling the autoscaling operations in cloud with time series data. In 34th Symposium on Reliable Distributed Systems Workshop (SRDSW), pp. 7-12. IEEE, (2015)

  105. Nikravesh, Yadavar, A., Ajila, S.A., Lung, C.-H.: Towards an autonomic auto-scaling prediction system for cloud resource provisioning. In IEEE/ACM 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, pp. 35-45. IEEE, (2015)

  106. Jacobson, Isaac, D., Joshi, N., Oberai, P., Yuan Y., Tuffs P.S.: Predictive auto scaling engine. U.S. Patent 10,552,745, (2020)

  107. Nascimento, D.C., Pires, C.E., Mestre, D.G.: Applying machine learning techniques for scaling out data quality algorithms in cloud computing environments. Int. J. Artif. Intellig. Neural Netw. Complex Problem-Solv. Technol. 45(2), 530–548 (2016)

    Google Scholar 

  108. Akhter, N., Othman, M.: Energy aware resource allocation of cloud data center: review and open issues. Cluster Comp. 19(3), 1163–1182 (2016)

    Google Scholar 

  109. Gill, S.S., Tuli, S., Minxian, X., Singh, I., Singh, K.V., Lindsay, D., Tuli, S., et al.: Transformative effects of IoT, Blockchain and Artificial Intelligence on cloud computing: Evolution, vision, trends and open challenges. Internet Things 8, 100118 (2019)

    Google Scholar 

  110. Khanna, A., Kaur, S.: Internet of things (IoT), applications and challenges: a comprehensive review. Wireless Person. Commun. 114, 1687–1762 (2020)

    Google Scholar 

  111. Qu, C., Calheiros, R.N., Buyya, R.: Auto-scaling web applications in clouds: a taxonomy and survey. ACM Comp. Surv. (CSUR) 51(4), 1–33 (2018)

    Google Scholar 

  112. Filippo Lorenzo, F., Franceschelli D., Pio Gioiosa, M., Lucia, D., Ardagna, D., Di Nitto, D., Sharif, T.: Evaluating the auto scaling performance of flexiscale and amazon ec2 clouds. In 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2012, pp. 423-429. IEEE, (2012)

  113. Dominique, D., Bertram, J., Budina, A., Koschel, A., Pfänder, B., Serowy, C., Astrova, I., Gatziu Grivas, S., Schaaf, M.: Scaling in cloud environments. Recent Res Comp Sci 33, 145–150 (2011)

    Google Scholar 

  114. Eddy, C, Rodero-Merino, L., Desprez, F., Muresan, A.: Auto-scaling, load balancing and monitoring in commercial and open-source cloud. PhD diss., INRIA, (2012)

  115. Guilherme, G., de Bona L.C.E.: A survey on cloud computing elasticity. In IEEE Fifth International Conference on Utility and Cloud Computing (UCC), pp. 263-270, IEEE, (2012)

  116. Bibal, J.V.B., Dejey, D.: An Auto-Scaling Framework for Heterogeneous Hadoop Systems. Int. J. Cooperat. Inform. Syst. 26(4), 1750004 (2017)

    Google Scholar 

  117. Eugen, F., Rilling, L., Morin, C.: Snooze: A scalable and autonomic virtual machine management framework for private clouds. In Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), pp. 482-489, IEEE Computer Society, (2012)

  118. Cardosa, M., Chandra, A.: Resource bundles: using aggregation for statistical large-scale resource discovery and management. IEEE Transact Parallel Distrib Syst 21(8), 1089–1102 (2010)

    Google Scholar 

  119. Yadavar, N.A., Ajila, S.A., Lung, C.-H.: Measuring prediction sensitivity of a cloud auto-scaling system. In IEEE 38th International Computer Software and Applications Conference Workshops (COMPSACW), pp. 690-695, IEEE, (2014)

  120. Mahallat, I.: ASTAW: auto-scaling threshold-based approach for web application in cloud computing environment. Int J u- Serv Sci Technol 8(3), 221–230 (2015)

    Google Scholar 

  121. Monireh, F., Arani, M.G., Maeen, M.: NASLA: novel auto scaling approach based on learning automata for web application in cloud computing environment. Int. J. Comp. Appl. (2015)

  122. Xu, C.Z., Rao, J., Bu, X. “URL: A unified reinforcement learning approach for autonomic cloud management.” In Journal of Parallel & Distributed Computing 72, vol. no. 2, pp. 95–105, 2012.

  123. Arabnejad, H., Pooyan, J., Estrada G., El Ioini N., Pahl, C.: An Auto-Scaling Cloud Controller Using Fuzzy Q-Learning-Implementation in OpenStack. In European Conference on Service-Oriented and Cloud Computing, pp. 152-167. Springer International Publishing, (2016)

  124. Pengcheng, T., Li, F., Zhou, W., Hu, W., Yang, L.: Efficient auto-scaling approach in the telco cloud using self-learning algorithm. In IEEE Global Communications Conference (GLOBECOM), pp. 1-6. IEEE, (2015)

  125. Habib, M.: Reinforcement learning based autonomic virtual machine management in clouds. PhD dissertation, BRAC University, (2016)

  126. Veni, T., Saira Bhanu, S.M.: Auto-scale: automatic scaling of virtualised resources using neuro-fuzzy reinforcement learning approach. Int. J. Big Data Intellig. 3(3), 145–153 (2016)

    Google Scholar 

  127. Han, R., Ghanem, M.M., Guo, L., Guo, Y., Osmond, M.: Enabling cost-aware and adaptive elasticity of multi-tier cloud applications. Future Gener. Comp. Syst. 32, 82–98 (2012)

    Google Scholar 

  128. Didona, D., Romano, P., Peluso, S., Quaglia, F.: Transactional auto scaler: Elastic scaling of replicated in-memory transactional data grids. ACM Transact. Autonomous Adapt. Syst. (TAAS) 9(2), 11 (2014)

    Google Scholar 

  129. Vilaplana, J., Solsona, F., Teixidó, I., Mateo, J., Abella, A., Rius, J.: A queuing theory model for cloud computing. J. Supercomp. 69(1), 492–507 (2014)

    Google Scholar 

  130. Simon, S., Kounev, S., Zhu, X., Lu, L., Uysal, M., Holler, A., Griffith, R.: Runtime vertical scaling of virtualized applications via online model estimation. In Eighth International Conference on Self-Adaptive and Self-Organizing Systems, pp. 157-166. IEEE, (2014)

  131. Ali-Eldin, A., Kihl, M., Tordsson, J., Elmroth, E.: Efficient provisioning of bursty scientific workloads on the cloud using adaptive elasticity control. Proceedings of the 3rd workshop on Scientific Cloud Computing, ScienceCloud 12, pp. 31–40. ACM, (2012)

  132. Dutta, S., Gera, S., Verma, A., Viswanathan, B.: SmartScale: Automatic application scaling in enterprise clouds. In Fifth International Conference on Cloud Computing, IEEE, pp. 221-228, (2012)

  133. Ali Yadavar, N., Ajila S.A., Lung, C.-H.: Cloud resource auto-scaling system based on hidden markov model (hmm). In International Conference on Semantic Computing (ICSC), pp. 124-127. IEEE, (2014)

  134. Wang, H., Li, Y., Zhang, Y., Jin, D.: Virtual machine migration planning in software-defined networks,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Hong Kong, pp. 487–495, (2015)

  135. Liu, H., He, B.: VMbuddies: coordinating live migration of multitier applications in cloud environments. IEEE Trans. Parallel Distrib. Syst. 26(4), 1192–1205 (Apr. 2015)

    Google Scholar 

  136. Raghunath, B.R., Annappa, B.: Virtual machine migration triggering using application workload prediction. Procedia Comput. Sci. 54, 167–176 (Aug. 2015)

    Google Scholar 

  137. Hu, L., Zhao, J., Xu, G., Ding, Y., Chu, J.: HMDC: Live virtual machine migration based on hybrid memory copy and delta compression. Appl. Math. 7(2L), 639–646 (2013)

    Google Scholar 

  138. Kim, J., Chae, D., Kim, J., Kim, J.: Guide-copy: Fast and silent migration of virtual machine for datacenters, In Proc. Int. Conf. High Perform. Comput. Netw. Stor. Anal., Denver, CO, USA, p. 66, (2013)

  139. Sahni S.., Varma, V.: A hybrid approach to live migration of virtual machines, In Proc. IEEE Int. Conf. Cloud Comput. Emerg. Markets (CCEM), Bengaluru, India, pp. 1-5, (2012)

  140. Shribman, A., Hudzia, B., Pre-copy and post-copy VM live migration for memory intensive applications, in Proc. Eur. Conf. Parallel Process., pp. 539–547, (2012)

  141. Deshpande, U., Keahey, K.: Traffic-sensitive live migration of virtual machines. Future Gener. Comput. Syst. 72, 118–128 (2016)

    Google Scholar 

  142. Umesh, D., Chan, D., Guh, T.-H., Edouard, J., Gopalan, K., Bila, N.: Agile live migration of virtual machines. In 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 1061-1070. IEEE, (2016)

  143. Diallo, M.H., August, M., Hallman, R., Kline, M., Slayback, S.M., Graves, C.: AutoMigrate: a framework for developing intelligent, self-managing cloud services with maximum availability. Cluster Comput. 20(3), 1995–2012 (2017)

    Google Scholar 

  144. Liu, H., Jin, H., Cheng-Zhong, X., Liao, X.: Performance and energy modeling for live migration of virtual machines. Cluster comput. 16(2), 249–264 (2013)

    Google Scholar 

  145. Wood, T., Ramakrishnan, K.K., Shenoy, P., Van der Merwe, J., Hwang, J., Liu, G., Chaufournier, L.: CloudNet: dynamic pooling of cloud resources by live WAN migration of virtual machines. IEEE/ACM Transact. Netw. 23(5), 1568–1583 (2014)

    Google Scholar 

  146. Forsman, M., Glad, A., Lundberg, L., Ilie, D.: Algorithms for automated live migration of virtual machines. J. Syst. Softw. 101, 110–126 (2015)

    Google Scholar 

  147. Samer, A.K., Subhraveti, D., Sarkar, P., Ripeanu M.: VMFlock: virtual machine co-migration for the cloud." In Proceedings of the 20th international symposium on High performance distributed computing, pp. 159-170. (2011)

  148. Yin, L., Luo, J., Zhang, S., Yang, Z.: Virtual machine migration scheme based on score matrix in data centers. In 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC), pp. 737–743 (2017)

  149. Patel, M., Chaudhary, S., Garg, S.: Performance modeling and optimization of live migration of virtual machines in cloud infrastructure. In Research Advances in Cloud Computing, pp. 327–350. Springer, New York, (2017)

  150. Babu, K.R.R., Samuel, P.: Interference aware prediction mechanism for auto scaling in cloud. Comput. Electr. Eng. 69, 351–363 (2018)

    Google Scholar 

  151. Shukla, R., Gupta, R.K., Kashyap, R.: A multiphase pre-copy strategy for the virtual machine migration in cloud. In Smart Intelligent Computing and Applications, pp. 437-446. Springer, New York, (2019)

  152. Wang, Z., Sun, D., Xue, G., Qian, S., Li, G., Li, M.: Ada-things: an adaptive virtual machine monitoring and migration strategy for internet of things applications. J. Parallel Distrib. Comput. 132, 164–176 (2018)

    Google Scholar 

  153. Shaw, S. B., Kumar, C., Singh, A.K.: Use of time-series based forecasting technique for balancing load and reducing consumption of energy in a cloud data center. In 2017 International Conference on Intelligent Computing and Control (I2C2), pp. 1–6, (2017)

  154. Sun, G., Liao, D., Anand, V., Zhao, D., Yu, H.: A new technique for efficient live migration of multiple virtual machines. Future Gener. Comput. Syst. 55, 74–86 (2016)

    Google Scholar 

  155. Duggan, M., Shaw, R., Duggan, J., Howley, E., Barrett, E.: A multitime-steps-ahead prediction approach for scheduling live migration in cloud data centers. Softw: Practice Exp 49, 617–639 (2018)

    Google Scholar 

  156. Garg, S.K., Toosi, A.N., Gopalaiyengar, S.K., Buyya, R.: SLA-based virtual machine management for heterogeneous workloads in a cloud datacenter. J. Netw. Comput. Appl. 45, 108–120 (2014)

    Google Scholar 

  157. Mason, K., Duggan, M., Barrett, E., Duggan, J., Howley, E.: Predicting host CPU utilization in the cloud using evolutionary neural networks. Future Generat. Comput. Syst. 86, 162–173 (2018)

    Google Scholar 

  158. Paulraj, G.J.L., Francis, S.A.J., Peter, J.D., Jebadurai, I.J.: A combined forecast-based virtual machine migration in cloud data centers. Comput. Electr. Eng. 69, 287–300 (2018)

    Google Scholar 

  159. Barna, C., Fokaefs, M., Litoiu, M., Shtern, M., Wiggleswort, J.: Cloud adaptation with control theory in industrial clouds. In IEEE International Conference on Cloud Engineering Workshop (IC2EW), pp. 231-238. IEEE, (2016)

  160. Imdoukh, M., Ahmad, I., Alfailakawi, M.G.: Machine learning-based auto-scaling for containerized applications. Neural Comp. Appl. (2019). https://doi.org/10.1007/s00521-019-04507-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shveta Verma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Bala, A. Auto-scaling techniques for IoT-based cloud applications: a review. Cluster Comput 24, 2425–2459 (2021). https://doi.org/10.1007/s10586-021-03265-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03265-9

Keywords

Navigation