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Abstract Current concepts conceive ‘‘breast cancer’’ as a

complex disease that comprises several very different types

of neoplasms. Nonetheless, breast cancer treatment has

considerably improved through early diagnosis, adjuvant

chemotherapy, and endocrine treatments. The limited

prognostic power of classical classifiers determines con-

siderable over-treatment of women who either do not

benefit from, or do not at all need, chemotherapy. Several

gene expression based molecular classifiers (signatures)

have been developed for a more reliable prognostication.

Gene expression profiling identifies profound differences in

breast cancers, most probably as a consequence of different

cellular origin and different driving mutations and can

therefore distinguish the intrinsic propensity to metastasize.

Existing signatures have been shown to be useful for

treatment decisions, although they have been developed

using relatively small sample numbers. Major improve-

ments are expected from the use of large datasets, subtype

specific signatures and from the re-introduction of func-

tional information. We show that molecular signatures

encounter clear limitations given by the intrinsic probabi-

listic nature of breast cancer metastasis. Already today,

signatures are, however, useful for clinical decisions in

specific cases, in particular if the personal inclination of the

patient towards different treatment strategies is taken into

account.
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Introduction

Gene expression of a tumor is a complex intermediate

phenotype that is determined by many different factors: (1)

the host genotype, (2) eventual somatic mutations and

genomic alterations, (3) the cell from which the tumor

originated, and (4) the specific microenvironment in terms of

stroma cells, infiltrating cells and cell signaling molecules. It

is reasonable to assume that any difference between two

tumors in their patho-physiological state should be repre-

sented by some difference in gene expression. This is true

despite the fact that while genes and the messenger RNAs

derived from them are not the executers of biological

function, they can nonetheless be used as markers of it. Even

events that are completely independent of gene transcription

such as protein modifications, as a part of the cellular pro-

gram, elicit a transcriptional response that can be detected by

expression profiling.

However, tumors are heterogeneous and the different

cell populations contained in different areas of the same

tumor might well differ for their potential to progress and

metastasize. The multistep carcinogenesis model predicts

that tumors evolve through the consecutive acquisition of

genetic and epigenetic alterations towards a more and more

aggressive phenotype inasmuch as they acquire the char-

acteristics needed for progression [proliferation, resistance

to apoptosis, scattering, migration and invasion, stimula-

tion of vessel growth, survival in the blood stream (anti-
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anoikis), adhesion to the vessel wall, extravasation, sur-

vival and growth in the target tissue] through random

mutation and epigenetic changes followed by selection of

the cells that carry a growth advantage in the specific

environment [1–5]. One of the predictions of the multistep

carcinogenesis model is that the ‘‘metastatic phenotype’’

might be a characteristic of only a very small subpopula-

tion of the cells within the primary tumor and that the

metastasizing cells could acquire additional mutations that

are not present in the primary tumor [2, 6]. These features

would escape from detection by expression profiling (or

any other genomic technique such as comparative genome

hybridization on arrays) unless one analyzes each poten-

tially unique cell population within a tumor, an impossible

enterprise. Another recent theory predicts that metastasis

arises from cancer ‘‘stem cells’’, better defined as ‘‘cancer

initiating cells’’ that might stay latent in the primary tumor

and escape to metastasis when local conditions, for

instance in hypoxia, induce their scattering. In retrospect,

the success of metastasis prediction by expression profiling

of the primary tumor was not so obvious and it is still not

very clear how this can be reconciled with the multistep

carcinogenesis model [7–10].

The current view of carcinogenesis considers the tumor

cells themselves as main actors in carcinogenesis. Muta-

tions of oncogenes and tumor suppressor genes initiate and

promote the development of the tumor, hence these

mutations determine its fate. From this point of view, the

analysis of the actual tumor cells instead of the whole

tumor that also contains many host fibroblasts, endothelial

cells, and blood cells, would be expected to yield the best

information on the molecular status of the tumor. The

presence of host cells was expected to dilute the signal

derived from the mutated tumor cell population [11].

However, the importance of the tumor stroma and of

its interactions with the neoplastic cells are increasingly

recognized as important, if not determining, factors in the

evolution of a tumor [12–17]. This is also supported by

evidence that gene expression profiling of the entire tumor

yields reliable signatures. We have recently shown that

many of the genes contained in the metastasis signature

developed by comparing many tumors of different tissues

and metastases of unmatched tumors [18] are expressed

by stromal fibroblast or endothelial cells. Genes encoding

proteins of the extracellular space, which are produced at

least in part by stromal cells, can be used to construct a

prognostic signature [19]. Stroma cells, long believed to

be passive by-standers, can undergo mutations that drive

them to contribute to tumor progression: p53 mutations,

for instance, have been detected in stromal fibroblasts in

40% of the tumors analyzed, prevalent even in the

absence of p53 mutations in the tumor epithelial cells,

and these mutations predicted lymphnode metastasis [20].

For the purpose of prognosis, it appears therefore useful

or even necessary to screen all the tumor compartments

for potential markers and not only the tumor cell itself.

For breast cancer, prognostic signatures are expected to

reduce the tendency to apply what has been seen as over-

treatment. Following the existing guidelines, adjuvant

chemotherapy is offered to most breast cancer patients.

Many of these patients have tumors that have a low risk of

developing metastases or that do not respond to existing

chemotherapies. A more precise prognosis of the risk of

relapse and a response prediction are needed.

Technical issues

Microarray technology has developed to considerable

maturity. State of the art platforms and protocols guar-

antee high reproducibility and a low intrinsic variability.

It has been shown that most of the variability in micro-

array experiments derives from the biological sample

itself, even when conducted under apparently identical

conditions. The second most important source of vari-

ability is introduced by the operator whereas the intrinsic

oscillation of present microarrays is negligible [21]. Also,

in our experience, the correlation between gene expres-

sion data generated by microarray and those obtained by

more classical approaches such as real time PCR is

excellent. Most differences can eventually be attributed to

differences in the region of selection of probes and

primers (U. Pfeffer, unpublished observation) since

alternative splicing appears to be more the rule than the

exception. The same applies for cross-platform variation

of microarray data [22]. The latest addition to the tech-

nological battery are arrays that contain several probes for

each single exon of each single gene of the human gen-

ome and are expected to yield additional information on

alternative splicing and variant expression as well as more

robust data [23]. So far, no large breast cancer studies

using these arrays have published.

The sensitivity of microarrays has grown continuously

and the amount of tissue needed to perform the analysis has

been greatly reduced. Latest generation microarray analy-

ses start with 100 ng total RNA that can be isolated from

very small amounts of tissue. Analysis of material obtained

from fine needle biopsies is therefore possible, potentially

allowing for pre-operative diagnostic approaches [24–26].

However, the smaller the sample, the higher the risk for

sampling non-representative areas of a typically heteroge-

neous tumor. The ratio between tumor epithelial cells and

stroma cells sampled also varies in fine needle aspirates.

For this reason, whenever possible, larger pieces that have

accurately been selected by the pathologist should be used.

Sample conservation remains critical for the success of
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expression profiling applications. Yet the laborious and

logistically demanding procedure of liquid nitrogen freez-

ing of intra-operative samples can be substituted by

conservation in RNA inhibiting pre-fixation solution such

as RNAlater [27] or HOPE [28] that also facilitate long-

term storage thereby reducing the costs and eventually

increasing stability of biological molecules. Data on the

involvement of microRNAs in breast cancer are growing

and therefore sample conservation and RNA extraction

should also consider the need to isolate small RNAs, since

not all miRNA screening procedures accept total RNA as a

starting material.

A major concern has been the virtually absent overlap of

signatures produced using different platforms. Unfortu-

nately, not a single study to date has hybridized a large

number of samples to two different platforms. It is there-

fore difficult to conclude to which degree the different

platforms actually reveal the same gene expression events.

The lack of overlap can probably be attributed mainly to

different patient populations analyzed, which greatly

determines the genes selected for the signatures, as dis-

cussed below.

Breast cancer subtypes

Microarray gene expression profiling reliably yields the

complex intermediate phenotype of gene expression of a

sample. The gene expression phenotype of a tumor

reflects its past history in terms of cell origin, its present

in terms of exposure to oxygen and nutrients, growth

factors and hormones, inflammation and tumor infiltrate

which in turn are believed to determine its future potential

to develop metastases. The first indication of the power of

gene expression profiling with microarray came from the

analysis of tumors sampled before and after chemotherapy

and, in two cases, of matched lymphnode metastases [29].

This work showed the existence of molecularly defined

subgroups. Gene expression patterns in two tumors from

the same individual were almost always more similar to

each other than to any other sample. Additional studies

have confirmed that primary tumors and their metastases

share similar expression profiles [30, 31] although several

genes that are differently expressed have been identified

[32, 33].

Sorlie et al. [34] showed that breast cancer cases fall into

two large molecular classes that correspond almost per-

fectly to the status of estrogen receptor expression as

analyzed by ligand binding assays or immunohistochem-

istry. A bioinformatic analysis of the two classes revealed

that they correspond to profoundly different tumors. Even

after the stepwise removal of several hundreds of the genes

that best discriminate between the two classes, almost all

cases were still correctly assigned to the estrogen receptor

a positive or negative classes of tumors [35]. The differ-

ence between these two classes is consistent with the

hypothesis that the two different tumor types derive from

different progenitor cells. For this reason, the two classes

are also defined as luminal and basal type. However, gene

expression profiling reveals additional subtypes that are

reproducibly formed after hierarchical clustering of breast

cancer datasets containing more than hundred cases (hence

containing a sufficient number of cases for each subtype

class) [34, 36]. The estrogen receptor a positive type is

subdivided into luminal A, luminal B and eventually C

clusters and the estrogen receptor a negative type contains

the basal-like, her2-like, and a ‘‘normal like’’ cluster. A

similar classification has independently been obtained by

Sotiriou et al. [36]. A more recent elaboration of breast

cancer microarray expression profiles has confirmed the

subtypes identified before [37]. The main determinant of

subtypes remain HER2 and estrogen receptor status [38,

39]. The analysis by Hu et al. [37] tentatively names one of

the estrogen receptor a negative subtypes ‘‘IFN-like’’ since

STAT1 and several interferon induced genes are among the

master discriminators of this cluster. Analyses of this type

point to the identification of genes or pathways whose

differential expression characterizes single clusters. This is

particularly evident for the HER2 subtype. Tumors that

cluster in this subtype show over-expression of HER2/neu/

ERBB2, the EGF receptor family member whose amplifi-

cations determine responsiveness to the humanized

antibody trastuzumab, which is directed against the HER2

encoded protein [40, 41]. Similarly, more defined subcl-

usters have been identified as being formed by tumors

harboring BRCA1 and BRCA2 mutations, and a closely

related subcluster shows alterations downstream of the two

hereditary breast cancer genes without having the genes

themselves mutated [42, 43]. It is most likely that, step by

step, information on the molecular nature of the tumors

clustering together will be obtained for most of the subcl-

usters. Intriguingly, not all tumors belonging to a

subcluster must necessarily express the master discrimi-

nator gene(s) nor is expression of these genes sufficient for

assigning a single case to a specific subcluster. In fact,

HER2 expressing tumors are found among nearly all the

subtypes [34]. This indicates that tumors of any subtype

can over-express HER2 without loosing their identity, but

in this case, HER2 over-expression most probably has only

a minor role in the etiology of the specific tumor and hence

a lower potential as a response marker.

Molecular subtypes have a clinical relevance inasmuch

as they have different propensities to metastasize. The

genes that characterize the different subtypes form the

intrinsic subtype signature that can prognosticate clinical

behavior [34, 36, 37, 44]. Its development as a real time

PCR based test has been reported [45].
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The major classes of estrogen receptor a positive and

negative breast cancers most probably are derived from

different tumor progenitor cells. Weinberg et al. [46] have

recently shown that the cell of origin is a major determinant

of the propensity to metastasize. It cannot be excluded, at

present, that the molecular subtypes identified correspond to

different progenitor cells downstream to ERa? (luminal) or

ERa- (basal) progenitor cells. More likely, subtypes cor-

respond to tumors sharing the same driving mutation or at

least the same affected pathway, as it is evident for the HER2

and BRCA1 and 2 cases. Further studies on molecular

characteristics will eventually identify pathway mutations

and lead to a more profound understanding of etiological

events in breast cancer carcinogenesis.

Signatures

The identification of molecular subtypes with clinical rel-

evance indicated that it should be possible to develop

prognostic signatures with an elevated accuracy in classi-

fying tumors into risk groups that deserve differential

treatment or eventually no treatment at all. This endeavor

has been undertaken by several groups. The general

approach is a retrospective analysis of deep frozen breast

cancer specimens with known follow-up, selection of dis-

criminator genes by a variety of bioinformatics and

statistical methods, and the construction of a predictive

multigene classifier on the base of the follow-up informa-

tion available. The statistical aspects of this approach have

been the argument of a survey of these kinds of studies

where many flaws in the experimental design were

revealed [47]. Essentially, two datasets are needed: one to

develop the classifier (training set) and another to test the

classifier (test or validation set). These two sets can be

obtained by a random split if the original dataset is large

enough. In this case, a validation on a third, completely

independent set is desirable. In alternative, signatures can

be developed by the cross-validation method where single

cases are left out from the training set in an iterative

manner. The cases left out are then classified in order to

validate the method.

A major problem with existing sample collections is that

most of the women with breast cancer have received

adjuvant chemotherapy. Therefore, a tumor that later

developed a metastasis is of certain metastatic potential,

whereas a tumor that did not metastazie could be a tumor

without metastatic potential, a tumor that has not yet

yielded a metastasis but will eventually do so, or a

potentially metastatic tumor that has responded to adjuvant

chemotherapy. A further complication is that breast cancers

can give metastases even numerous years after removal of

the primary tumor. This is best taken into account by

working with cases with a very long follow-up. The

metastasis-free cases that represent response to chemo-

therapy are most probably limited to a relatively small

group of cases. However, these cases will participate in

determining the signature. In the theoretical case of a

cohort entirely composed of tumors with metastatic

potential but with half of these being responsive to che-

motherapy, these latter would be classified as ‘‘low risk’’.

This aspect could be dealt with by using cases that have not

received adjuvant chemotherapy. However, with current

standards of care such cases are rare and are becoming

progressively rarer.

A variety of signatures have been developed and have

been recently exhaustively reviewed [48–55]. Two of these

signatures have already been developed for commerciali-

zation as centralized laboratory tests and are presently

being tested in large prospective trials. The Oncotype DX�

recurrence score has been developed as real time PCR

assay that can be performed on formalin fixed paraffin

embedded (FFPE) tissues [56]. The selection of genes that

form the classifier was based on three preliminary studies

using real time PCR on FFPE samples. The most robust

and informative genes were incorporated into a 16 gene

classifier and analyzed in comparison to five housekeeping

genes. The test is directed towards estrogen receptor a
positive lymphnode negative cancers and yields a contin-

uous prognostic score and predicts benefit from tamoxifen

(in the low and intermediate risk group) and from adjuvant

chemotherapy (in the high risk group). The test has

recently been included in the recommendations of the

American Society of Clinical Oncology. A prospective trial

(Trial Assigning Individualized Options for Treatment—

TAILORx) with a planned accrual of at least 10,000

patients intends to answer the question of whether inter-

mediate risk patients benefit from chemotherapy [57]. The

genes tested mainly monitor ER and HER2 status and

proliferation.

Laura van’t Veer et al. [58, 59] from the Netherlands

Cancer Institute in Amsterdam developed a 70-gene clas-

sifier (commercialized as MammaPrint�) based on two-

color microarray technology (initially using Rosetta

Inpharmatics inkjet microarray technology and subse-

quently Agilent’s microarray platform). The signature was

built using the cross validation leave-one-out procedure on

78 informative lymph node negative cases and was sub-

sequently validated on a partially overlapping cohort of

295 lymph node negative and positive cases. The classifier

assigns cases to poor and good prognosis groups. The

comparison of the 70 gene classifier with the NIH and St.

Gallen criteria shows that the genomic approach clearly

outperforms both. One study claimed, however, that this

classifier works comparably to the Nottingham Prognostic

Index (NPI) [60]. An additional validation study revealed a

more than 90% chance of being free of disease after
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5 years for patients classified in the low risk group. This

signature is being prospectively validated in the Microarray

in Node-Negative Disease May Avoid Chemotherapy

(MINDACT) trial where the enrollment of 6,000 patients is

planned [61]. Patients discordantly scored by the classical

Adjuvant! Online (www.adjuvantonline.com) and the

genomic MammaPrint� assay will be randomized to

receive or not receive chemotherapy. This trial will yield

microarray data from a very large cohort that will also

contain many cases that, according to the genomic classi-

fier, did not receive chemotherapy. The use of these data

will certainly allow major improvements of existing

molecular signatures.

Other genomic prognostic classifiers such as the 76-gene

classifier (Rotterdam signature) [62], the wound healing

signature [63] and the invasive gene signature [64] have

been developed. In a more straightforward approach the

group of Sotiriou and colleagues has given the long sought

answer to the question whether grade 2 cancers are an

independent entity or whether they incorporate features of

grade 1 and 3 cancers. A 97-gene (128 probe sets) dis-

criminator was built on Affymetrix HU133A arrays using

cancers of pathological grade 1 and 3. This discriminator

was then applied to grade 2 cancers that showed either a

grade 1 or 3 profile rather than an intermediate expression

phenotype [65]. These signatures are also being developed

towards commercialization [66].

The overlap of genes contained in these signatures is

very low. However, the main determinants of all the sig-

natures are proliferation, ER-status, HER2-status and, less

prominently, angiogenesis, invasiveness and apoptosis.

Most probably these signatures detect the same biological

processes and pathways involved in metastasis. Depending

on the actual patient cohort, the assay platform and the

analytic algorithms used, different genes are selected for

the signature. This is also supported by a bioinformatics

analysis that shows the possibility to select other equally

informative 70 gene classifier sets from the data set used by

Van’t Veer and Bernards [67]. This most probably indi-

cates that many genes, probably several hundred or even

more than one thousand, are actually related to disease free

survival, and that the genes selected for any one classifier

heavily depend on the patient cohort. In an additional

study, the same authors calculated that for the development

of a stable, cohort-independent classifier, several thousands

of patients are needed [68].

A validation of several signatures (intrinsic subtype, 70-

gene classifier, wound healing signature, recurrence score

and two gene classifier) revealed that with the exception of

the latter, all signatures have a similar discriminating

power showing 77 to 80% agreement in outcome scoring.

Importantly, the combination of the signatures did not

perform better, again indicating that the different

signatures actually identify the same molecular character-

istics by using different marker genes [44].

This, however, also means that a considerable part of

cases is misclassified by any and all of the signatures. This

raises the question of whether the existing signatures can

be improved to yield a more reliable prediction of outcome.

This is of particular importance if one keeps in mind that

the classifier is to be used to withhold patients from che-

motherapy. In this context, misclassification means not to

treat a woman who might have benefited from chemo-

therapy. This is also important since this aspect determines

the major skepticism among the oncologists who must

decide whether or not to base the treatment decision they

offer to the patients on molecular signatures.

Limits of molecular signatures

In order to explore the possibility of compiling the ulti-

mate signature we have performed a simple simulation

based on a publicly available breast cancer dataset (Gene

Expression Omnibus, GEO1456) of 159 consecutive

breast cancer cases from Stockholm with follow-up

information of at least 8 years [69]. Forty of the 159 cases

developed distant metastases. We have clustered these 159

cases using several gene lists that were obtained by

selecting genes contained in specific Gene Ontology cat-

egories [70] that were associated with the parameter

‘‘relapse’’ with a P value below 0.001. The Gene Ontol-

ogy terms ‘‘cell cell signaling’’, ‘‘cell death’’, ‘‘cell

growth’’, ‘‘cell proliferation’’, ‘‘kinase’’, ‘‘metabolism’’,

‘‘signal transduction’’, ‘‘transcription regulator activity’’

were selected since they stand for different functional

aspects that are involved in the process of metastasis. We

then used the genes selected from each category sepa-

rately for hierarchical clustering of the samples. This

procedure necessarily produces highly discriminating gene

lists since the classifier is developed on the same dataset

to which it is applied. For the development of a molecular

signature, these classifiers must be tested on an indepen-

dent test or validation set. Here we ask instead, how well

the classifiers developed can distinguish between cases

with and without relapse in the optimal situation. In all

cases, two main clusters are formed, one is enriched in

cases with metastases and the other contains only very few

of the metastatic cancer samples (Fig. 1). The bar under

each clustergram indicates the follow-up information for

each case (pink = relapse, brown = no relapse). As

expected, the classifiers thus work on the dataset on which

they have been developed and all eight gene lists yield a

similar discrimination. Yet for each classifier, several

cases with relapse cluster together with most of the cases

without relapse. This could be simply due to a limitation

of the single classifier with each misclassifying a different
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Fig. 1 Raw data from 159

consecutive breast cancer cases

were obtained from Gene

Expression Omnibus

(GSE1954). Data were

preprocessed by the GCRMA

algorithm implemented in

Bioconductor. Genes that were

significantly associated with the

parameter ‘‘relapse’’

(P \ 0.001) were selected

among the genes listed in the

Gene Ontology categories

indicated. Hierarchical cluster

analysis (Pearson correlation,

average linkage) was performed

using the genes selected. Cases

with relapse are indicated in

pink, cases without relapse in

brown in the bar beneath each

clustergram. The eight

annotation categories yield a

distinction in two major

clusters. Most of the cases with

metastases cluster together

whereas the other cluster

contains only few metastatic

cases (the yellow bar indicates

the separation between the two

major clusters)
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subset of cases. This would be the case if, for instance, a

group of metastatic cancers are similar to the non-meta-

static samples as far as proliferation is concerned but not

when metabolism is considered. However, when we

looked at the samples actually misclassified by the dif-

ferent classifier gene lists we noticed that several cases

were misclassified by many or even by all of the eight

classifiers (Table 1). Three of forty cases with metastases

clustered together with the more benign samples for all of

the eight lists and five cases were misclassified by seven

out of eight lists. We also tested combinations of the lists

using either all of the genes contained in the eight lists

(combined lists), only those genes of the eight lists that

are associated with relapse with a P \ 10-6 or using the

five most strongly associated genes of each list. Again, a

similar picture is obtained (Fig. 2): two clusters with a

clearly different content of metastatic cases are obtained

and the ‘‘good prognosis’’ cluster contains six misclassi-

fied cases, among which the five samples that are most

frequently misclassified by the single lists. Misclassifi-

cation could have been expected more easily for cases that

showed metastases at very long times after diagnosis, but

this is not the case (Table 1).

We then compiled a list of genes that are significantly

differently expressed between correctly classified cases

with metastases and the five most frequently misclassi-

fied cases using a permutation test (Significance Analysis

of Microarrays [71]). The genes selected are expressed at

similar levels in misclassified cases and in cases without

metastases. When we tried to identify genes that are

Table 1 Misclassification of breast cancer cases by Gene Ontology based functional clustering
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The sample numbers are indicated for cases that were misclassified by the Gene Ontology based gene lists or by combined lists. The gray scale

indicates the frequency of misclassifications (dark gray = 8 of 8, mid gray = 7 of 8, light gray = 2 of 8). The disease free survival is indicated

for each case on the right most column. Note that 3 cases are misclassified by clustering with any list and 5 cases are misclassified by 7 of 8 gene

lists. Combined list do not perform better. There is no obvious relation between misclassification and time of disease free survival

Fig. 2 Hierarchical clustering of 159 breast cancer samples using a

gene list containing genes selected from the combination of all eight

gene lists used in Fig. 1 containing 1,085 genes. Genes that are

associated with the parameter ‘‘relapse’’ with P value below 10-6

were selected. The combination of all gene lists equally misclassifies

a number of cases, among which those misclassified by all the single

gene lists

Clin Exp Metastasis (2009) 26:547–558 553

123



expressed at significantly different levels in misclassified

cases with metastases and cases without metastasis no

gene passed the threshold. The misclassified cases are

evidently very similar to tumors that do not metastasize,

hence molecular classifiers fail to classify them correctly.

The problem of misclassification

Intrinsic misclassification could come about through var-

ious reasons: (1) annotation errors (erroneously annotated

metastases), (2) metastases derived from different clini-

cally non overt primary breast cancers (second primaries),

(3) acquisition of the metastatic phenotype by only a very

small subpopulation of cells in the primary tumor which

would not leave a trace on the expression profile, (4)

metastasis of non-metastatic cancers. Although annotation

errors can never be totally excluded we believe that they

would not occur in as many as 15% of the cases. Simi-

larly, while non overt second primaries cannot be

completely excluded they are expected to account for less

than the proportion detected. Acquisition of the metastatic

phenotype by only a small subpopulation of the primary

tumor cells, or even after the cells have left the primary

tumor, is exactly what the multistep carcinogenesis model

predicts. The fact that gene expression profiling of the

bulk of the primary tumor allows to prognosticate

metastasis is a violation of the multistep carcinogenesis

theory as Bernards and Weinberg [8] pointed out. These

authors proposed that the fate of the tumor is determined

right from the initiating event, the transforming mutation,

and it might also depend on the cell of origin [46]. These

two features, cellular origin and driving mutations, are

what microarray profiling is best at detecting. Hence most

if not all of the prognostic power of the approach might

reside in the correct and exhaustive identification of these

two crucial aspects of tumor biology. Yet this does not

exclude that, at least in some case, the metastatic phe-

notype is acquired by an additional mutation by a single

cell in the primary tumor or by a cell that, although

devoid of metastatic growth characteristics, acquires this

potential through mutations. A potential scenario could

involve an invasive, anoikis resistant and extravasation

competent cell that is able to survive but not to proliferate

in a target tissue until a mutation in a receptor gene

confers growth factor independent growth. Such a muta-

tion would be rare, since it must occur in the limited

number of cells that have formed micrometastases, thus as

a consequence the primary tumor would be classified as a

‘‘non metastatic’’ one.

The multistep carcinogenesis model therefore meets a

model of probabilistic metastasis that predicts that any

invasive cancer can yield metastases but it does so with

varying probabilities (being in no case equal to zero). This

probability relies on the cell of origin and the driving

mutation as well as on the genetic background of the host

and the tumor microenvironment, including the host’s

immune response, inflammation and tumor infiltrate [19].

The acquisition of additional mutations that confer an

increased metastatic propensity accounts for the residual

metastasis risk that is not derived from the above features

and cannot not be predicted. Microarray expression pro-

filing measures, to different extents, all of the above risk

modulating factors, with cellular origin and driving

mutation probably being the master discriminators that

correspond to the main clusters formed by unsupervised

hierarchical clustering. Differences in the tumor micro-

environment, inflammation, host factors and the like, if

they have an influence on the tumor, will leave a trace in

the expression profile. The mutation in a subpopulation or,

worse, in an already disseminated cell, escapes expression

profiling and therefore yields a subfraction of tumors that

are ‘‘misclassified’’. This suggests that a relatively acute

multistep carcinogenesis model occurs in a set percentage

of cases, in the cohort used here approximately 10%, that

are likely responsible for metastasis from a primary tumor

with a ‘‘non-metastatic’’ phenotype. This would also

suggest that the same misclassification would be made by

more traditional grading approaches, as the cells with true

metastatic potential are quite rare within the primary

tumor, thus the histopathological grade would also miss-

classifly these same tumors.

Improvement of molecular signatures

This interpretation postulates a theoretical limit to any

prognostic procedure that relies on the primary tumor. With

a relatively high degree of accurate relapse prognostica-

tion, present signatures might already be close to this

theoretical limit. But how can we drive them further to

actually reach the limit?

In our opinion, three approaches will permit to improve

the existing signatures:

• Large sets of samples on which to build and test

signatures

• Subtype specific signatures

• Re-introduction of functional information into the

signatures

The need for large datasets has been highlighted by the

analyses of Ein-Dor and colleagues: in very large datasets

the effect of the actual composition of the sample types

will be diluted and any possible tumor type will actually be

present. Hence, the signatures are expected to become

more robust and more generally applicable [67, 68].
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Subtype specific signatures are expected to have an

improved prognostic power since tumors of different sub-

types are profoundly different and therefore most likely

follow different routes to metastasis. Such signatures

become possible if very large datasets are analyzed.

The re-introduction of functional information is

expected to yield more robust signatures inasmuch as the

genes contained in the signature are mechanistically

linked to the process of metastasis. The matrix metallo-

proteinase 1 (MMP1), for example, has been shown to be

functionally linked to metastasis and is contained in the

general metastasis signature developed by Ramaswamy

et al. [18] and in the metastasis signature obtained from

highly metastatic MDA-MB231 mammary breast cancer

cells [72]. MMP1 expression shows a very clear expres-

sion difference in breast cancer samples [19]. If over-

expression of this proteinase could be shown to be nec-

essary for metastasis in a specific subtype of breast

cancers, it could become a particularly robust, causally

involved marker. The wound healing signature [63] and

the invasive gene signature [64] have exploited this

functionally oriented approach and were able to show that

it is possible to derive valuable prognostic signatures from

it. Figure 1 also illustrates that the simple use of func-

tional information already contained in Gene Ontology

allows for compiling molecular classifiers. Similarly,

Achyrya and colleagues used pathway information to

refine the estimation of relapse-free survival and sensi-

tivity to chemotherapy [73]. In addition to an improved

prognostication, information on response to chemotherapy

can be obtained.

Most probably, a complex functionally defined signature

would consist in a meta-signature that has been built by

taking into account several functional aspects of metastasis.

The use of annotations like Gene Ontology is, however, not

sufficient for this approach because the functional infor-

mation for genes is still relatively limited and mainly

depends on the context in which the genes have been

analyzed. Experimental evidence of gene function should

therefore be collected in a context specific manner before

building signatures.

An additional improvement of signatures could be

expected from the application of latest generation micro-

array platforms with more exhaustive (exon rather than

transcript coverage) and more robust sets of gene specific

probes [23].

MicroRNAs

Concurrently, new actors in the cellular regulation plot are

being investigated. Small non coding RNAs, such as 21–

23-mer microRNAs that regulate mRNA stability and

translatability show important functions in tumor initiation

and progression [74, 75]. Apparently, their expression can

be taken as a surrogate of breast cancer subtypes [76]

although differences in miRNA expression within the sin-

gle subtypes cannot be excluded. Integration of miRNA

with mRNA expression profiles could eventually further

improve molecular signatures. New technologies reveal

many more transcripts than previously estimated [77],

hence new entries of transcripts or even transcript classes

with functional and/or prognostic significance may soon be

detected.

Clinical application

Oncologists are debating over the need or the possibility

to integrate information obtained from genomic signa-

tures into the process of treatment decisions. This is

already useful in situations where a reasonable doubt on

the best treatment persists after classical prognostication,

as it could be the case for small, ER-positive, HER2-

negative, lymphnode negative, low proliferation index

(KI67) cases of grade 2 cancers. Since the application of

molecular signatures aims at reducing over-treatment,

thereby invariably increasing the risk of under-treatment

(in the case of misclassification), much will depend on

the individual orientation of the patient. Molecular pro-

filing can be offered as an additional source of

information if the patient would prefer to avoid chemo-

therapy, if possible.

Molecular profiling, as a relatively recent technology,

still has elevated costs, partly determined by the fact that

existing protocols are offered as centralized services. It can

be foreseen that with the growing introduction of genomic

approaches into the clinical routine, de-centralized devices

will become available and lead to cost reductions.

Genomics also has the potential to substitute several clas-

sical analyses since the correlation between gene

expression data and classical analytical methods for prog-

nostic breast cancer markers (estrogen and progesterone

receptor and KI67 expression) is excellent (U. Pfeffer,

unpublished observations). Hence, it is conceivable that

future pathologists will obtain most of their information on

a breast cancer sample from a single complex highly

standardized genomic assay.

It is important that the screening of breast cancer sam-

ples using whole genome platforms continues in order to

design better prognostic signatures. This should not be

compromised by the application of existing classifiers.

Data obtained from validation studies of molecular classi-

fiers (if publicly funded and published on peer reviewed

journals) must be made available to the scientific

community.
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