
Vol.:(0123456789)

https://doi.org/10.1007/s10584-022-03344-9

1 3

The role of human‑induced climate change in heavy rainfall 
events such as the one associated with Typhoon Hagibis

Sihan Li1   · Friederike E. L. Otto2

© The Author(s) 2022, corrected publication 2022

Abstract
Around October 12, 2019, torrential rainfall from Typhoon Hagibis caused large-scale 
flooding in a large area around the metropole region of Tokyo leading to large-scale 
destruction including losses of lives, livelihoods, and economic losses of well over $10 bn 
US dollars. In this paper we use a multi-method probabilistic event attribution framework 
to assess the role of human-induced climate change in the heavy rainfall event responsible 
for a large proportion of the damages. Combining different observational datasets and vari-
ous climate model simulations, we find an increase in the likelihood of such an event to 
occur of 15–150%. We use this assessment and the calculated fraction of attributable risk 
(FAR) to further estimate the economic costs attributable to anthropogenic climate change 
based on the insured economic losses. Our conservative estimate is that ~$4bn of the dam-
ages due to the extreme heavy rainfall associated with Typhoon Hagibis are due to human-
induced climate change.

Keywords  Extreme weather attribution · Heavy rainfall · Typhoon Hagibis ·  
Multi-method · Attributable economic costs

1  Introduction

In October 2019, Typhoon Hagibis hit eastern Japan, including the Metropolitan area 
around Tokyo and brought with it extremely heavy precipitation that led to large-scale 
flooding, affecting more than 390,000 livelihoods and causing 100 people to lose their lives 
(EM-DAT: The International Disaster Database https://​www.​emdat.​be/, accessed on Nov. 
6, 2020). Typhoon Hagibis was listed as one of the top 10 international weather events 
in 2019 (LeComte 2020) and estimated to have been the second costliest Western Pacific 
typhoon on record with $15 billion economic damage.
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Weather station data (Automated Meteorological Data Acquisition System, AMeDAS, 
see description below in Section 2) shows that precipitation on the day of October 12, 2019, 
over eastern Japan reached over 240mm in the region around Tokyo (shown in Fig. 1), the 
highest on record (1976–2020), statistically corresponding to a ~ 1 in 286 year event. The 
rainfall associated with Typhoon Hagibis was reported to be the highest daily amount in the 
60-year period for which reliable data exists (Prakoso 2019; Chie et al. 2019).

Previous studies (Takemi and Unuma 2020) have assessed the immediate meteorological 
factors causing the heavy precipitation during the passage of Typhoon Hagibis and found that a 
nearly moist-adiabatic lapse rate, moist absolute instability, abundant moisture content, and high 
relative humidity throughout the troposphere jointly contributed to generating the heavy pre-
cipitation. Kawase et al. (2021) took a step further and conducted an anatomy of the Typhoon 
(Hoerling et al. 2013) and found that the historical warming intensified the strength of Typhoon 
Hagibis as well as the extreme heavy precipitation associated with the passing of the typhoon 
and that the topography of the area also contributed to the enhancement in total precipitation.

Fig. 1   AMeDAS weather station (244 stations are used) observed rainfall in mm/day on the 12th of October 
2019
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However, this still leaves the question to what extent human-induced climate change has 
altered the likelihood of an extreme heavy precipitation event like the one associated with 
Hagibis from an impact perspective. In other words, can we quantify the role of anthropo-
genic climate change in the devastating rainfall event like the one associated with the pass-
ing of Typhoon Hagibis?

Research on hurricanes in the North Atlantic, using the methodology of probabilistic 
event attribution (Philip et  al. 2020), found that rainfall associated with tropical storm 
Imelda was made about twice as likely due to climate change whereas the likelihood of the 
rainfall associated with hurricane Harvey tripled (Van Oldenborgh et al. 2017). Harvey hit 
Houston, Texas, in 2017 and led to approx. $90 bn damages from the rainfall alone, $67 
bn of which were attributed to climate change by Frame et al. (2020). While other changes 
in tropical cyclone characteristics, like frequency or intensity that have been observed, are 
still difficult to attribute to human-induced climate change, the increase in associated rain-
fall is consistent across regions and methods and is consistent with our physical under-
standing (Knutson et al. 2019, 2020). However, studies outside the North Atlantic are rare, 
even though the water masses accompanying tropical cyclones are responsible for a large 
proportion of their damages and understanding how they change in a warmer world is thus 
crucial to building resilience (Bistricky et al. 2019).

This study takes an impact-oriented perspective, i.e., focusing on the level of heavy pre-
cipitation such as the one associated with Typhoon Hagibis, irrespective of the drivers of 
such heavy precipitation (whether it’s driven by Typhoon passing or other factors). Because 
irrespective of the drivers leading to such heavy precipitation, the impacts felt in the region 
would be just as disastrous with the same level of heavy precipitation.

In order to conduct a study offering an understanding of the role of anthropogenic cli-
mate change in the aspects of the extreme heavy precipitation event responsible for the 
damages, we first need to identify what the best definition of the event is, with respect to 
the closest correspondence to the impacts. There is always a trade-off between what hap-
pens on the ground and what can be simulated with confidence by state-of-the art climate 
models (Leach et al. 2020).

Following Kawase et  al. (2021), we focus on precipitation, total column precipitable 
water (pwat) as a measure of moisture content throughout the atmospheric column, and 
sea level pressure (SLP)- to track minimum SLP as the central position of the typhoon. We 
use pwat and SLP to describe the environmental conditions during the passing of Typhoon 
Hagibis (shown in Fig.  2). The spatial extent of the event was identified as the region 
(34.5N-38N, 138E-141.5E) highlighted in Figure 1 (panel a, same as used by Kwase et al. 
2021). We use this spatial definition to identify the best temporal definition as well as the 
variable to focus our assessment on. In the Supplementary Information (SI, Fig. S2) we 
show the sensitivity of event definition to the choice of the spatial coverage, finding that 
our results are not sensitive to the precise spatial extent analyzed; hence, for the ease of 
comparison, we employ the same spatial definition as Kwase et al. (2021) .

The passing of Typhoon Hagibis caused the flash flooding mainly due to the single 
day of extreme heavy precipitation on Oct 12th (Fig. 1), although the precipitation on 
Oct 11th was also quite high (second highest ranking of Oct over the region of inter-
est). Similar to precipitation, the 1-day maximum pwat in Oct ranked the highest in the 
historical record. In Oct 2019, the 1-day maximum precipitation and 1-day maximum 
precipitation over the studied region both occurred on the 12th. Based on the fact that 
pwat behaves very similarly to precipitation itself (as seen in Fig. 2) and that precipi-
tation is available from the station data record and commonly available from climate 
model simulations, we focus the analysis on precipitation. As a common practice for 
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extreme event attribution, event selection is based on the severity of the impacts of the 
extreme event (Philip et al. 2020 and the references therein), the event is picked from 
an impact perspective, but focusing on the time window that the event had happened, in 
this case October, so that extreme heavy precipitation events brought by other systems, 
e.g., the Baiu front during the early summer season (Ohba et  al. 2015) does not get 
picked. Hence, October maximum 1-day precipitation over the studied region (34.5N-
38N, 138E-141.5E) is used for event definition.

In the remainder of this study, we use a range of weather station observed and rea-
nalysis products (Section 3), as well as a range of climate models (Section 5) to assess 
whether and to what extent anthropogenic climate change altered the likelihood of 
the extreme precipitation event as defined above to occur. The data and methods are 
described in section 2, while Section 4 is dedicated to evaluating the models. We syn-
thesize the results from the various data products in Section 6 and discuss in Section 7 
how these can be translated into an attribution of the economic losses.

Fig. 2   Depicting the passage of Typhoon Hagibis measured using three different metrics, precipitation 
(top row), precipitable water (middle row), and sea level pressure (bottom row) from JRA-55 (note that 
the colorbar for SLP maxes out at 1100 and all values above are are masked out). The region of interest for 
heavy precipitation impacts is shown as the red bounded box in the top row
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2 � Data and methods

2.1 � Observational data

2.1.1 � AMeDAS station data

October precipitation data were extracted from the Automated Meteorological Data Acqui-
sition System (AMeDAS), which is a collection of automatic weather stations run by the 
Japan Meteorology Agency (JMA) for automatic observation of precipitation (as well as 
wind direction and speed, temperature, and sunshine duration) to provide real-time moni-
toring of weather conditions with high temporal and spatial resolution, providing the best 
observation dataset to use to assess long-term local rainfall in Japan. Daily precipitation in 
Oct over 1976–2020 was used in this analysis (1974 and 1975 were discarded due to scar-
city of station records). For event definition, we use the Oct maximum 1-day of the average 
precipitation of all stations that fall within the studied region.

To account for observational uncertainty, we also use the following three gridded data-
sets for comparison.

2.1.2 � JRA‑55

The first gridded dataset is Japanese 55-year Reanalysis (JRA-55, Japanese 55-year Rea-
nalysis, Daily 3-Hourly and 6-Hourly Data) precipitation data over 1958-current (from 
Japan Meteorological Agency/Japan. 2013, updated monthly, accessed through Research 
Data Archive at the National Center for Atmospheric Research, Computational and Infor-
mation Systems Laboratory. https://​doi.​org/​10.​5065/​D6HH6​H41, last accessed on Nov 6th 
2020). This dataset has a maximum regional mean 1-day precipitation of 112.71 mm day-1 
in Oct 2019, averaged over the studied region (34.5N-38N, 138E-141.5E).

2.1.3 � CPC

We also use the CPC Unified Precipitation Analysis (1979-current), a gridded dataset 
based on rain gauges. This dataset has a maximum regional mean 1-day precipitation of 
96.48 mm day-1 in Oct 2019, averaged over the studied region (34.5N-38N, 138E-141.5E).

2.1.4 � ERA5

Daily precipitation from from the Fifth generation of European Centre for Medium-
Range Weather Forecasts (ECMWF) atmospheric reanalyses of the global climate - ERA5 
(1979–current, from https://​cds.​clima​te.​coper​nicus.​eu/, Copernicus Climate Change 
Service) is also used for comparison. ERA5 has a maximum regional mean1-day pre-
cipitation of 128.95 mm day-1 in Oct 2019, averaged over the studied region (34.5N-38N, 
138E-141.5E).

It’s worth highlighting that the gridded datasets underestimated the rainfall compared 
with station records. However, to account for observational uncertainty, we use the gridded 
data products for comparison, keeping the underestimation in mind.
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2.1.5 � Global mean surface temperature (GMST)

In order to calculate observational trends, a standard method is to fit the data to an extreme 
value distribution that varies with a covariate that describes global warming, such as the 
global mean surface temperature (interested readers are referred to Philip et al. 2020 for 
further details). As a common practice, we use the (low-pass filtered) global mean sur-
face temperature (GMST), where GMST is taken from the National Aeronautics and Space 
Administration (NASA) Goddard Institute for Space Science (GISS) surface temperature 
analysis (GISTEMP, Hansen et al. 2010).

2.2 � Model and experiment descriptions

We use ten different sets of climate model simulations with various model resolutions 
(high, medium and low), to estimate changes in extreme heavy precipitation such as the 
one associated with Typhoon Hagibis. We present the attribution results for each resolu-
tion category separately and combined, to investigate the effect of model resolution on the 
attribution results.

2.2.1 � CMIP6 HighResMIP

Eight sets of coupled model simulations (1950–2050) from the High Resolution Model 
Intercomparison Project (HighResMIP) for Coupled Model Intercomparison Project Phase 
6 (CMIP6, Eyring et al. 2016) with daily precipitation outputs are used (available from the 
Centre for Environmental Data Analysis archive at the time of the analysis).These simula-
tions are restricted to 1950–2050 due to the computational resources required by model 
resolution (Haarsma et al. 2020). Due to the computational resources restraint, instead of 
a long spin-up to equilibrium, an alternative spin-up approach is taken, where a spin-up 
of 50 years is run with constant 1950s forcing to reduce the large initial drift (Haarsma 
et al. 2020). The initial state for the historical simulation (1950–2014) is obtained from 
the spin-up simulation, and the historically evolving forcing was imposed. For the future 
period (2015–2050), the forcing fields are based on the Coupled Model Intercomparison 
Project Phase 6 (CMIP6) Shared socio-economic pathway (SSP) 5-8.5 scenario, a forc-
ing scenario as close to CMIP5 representative concentration pathway 8.5 (RCP8.5) as 
possible.

The eight HighResMIP models are (1) CMCC-CM2-VHR4, 1 simulation is used, run 
by the Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC); (2) 
CMCC-CM2-HR4, 1 simulation is used, also run by CMCC; (3) CNRM-CM6-1-HR, 1 
simulation is used, run by the CNRM (Centre National de Recherches Meteorologiques), 
CERFACS (Centre Europeen de Recherche et de Formation Avancee en Calcul Scienti-
fique) (CNRM-CERFACS); (4) CNRM-CM6-1, run by CNRM-CERFACS; (5) EC-
Earth3P-HR, 3 simulations are used, run by EC-Earth-Consortium; (6) EC-Earth3P 
(EC-Earth 3.2), 3 simulations are used, run by EC-Earth-Consortium; (7) HadGEM3-
GC31-HM(HadGEM3-GC3.1-N512ORCA025), 1 simulation is used, run by the Met 
Office Hadley Centre; and 8) HadGEM3-GC31-HM (HadGEM3-GC3.1-N216ORCA025), 
1 simulation is used, run by the Met Office Hadley Centre. Further details of each model’s 
setup are shown in Table S1.

Climatic Change (2022) 172: 77   Page 6 of 19



1 3

2.2.2 � d4PDF

Time-slice ensemble simulations from the Database for Policy Decision-Making for Future 
Climate Change (d4PDF; Mizuta et al. 2017), which makes use of global (60-km horizon-
tal mesh) atmospheric models, are used in our analysis, specifically the historical climate 
simulations and the non-warming climate simulations over 1951–2010. We assess the like-
lihood of occurrence for heavy precipitation on par with that brought by Typhoon Hagibis, 
under historical (transient forcing) vs. non-warming (fixed forcing as described in Mizuta 
et al. 2017) scenarios. One hundred ensemble members from each scenario are used in the 
analysis. The atmospheric models have been shown to satisfactorily simulate the historical 
climate in natural variations,and extreme events such as heavy precipitation and tropical 
cyclones (Ishii and Mori 2020).

2.2.3 � CMIP5 EC‑Earth2.3

Daily precipitation from a 16-member EC-Earth2.3 (EC-Earth, Hazeleger et al. 2010) cou-
pled GCM simulations (1860–2100, 150km horizontal resolution) were also used. This 
set of simulations uses historical greenhouse gas and aerosol forcings up until 2005 and 
RCP8.5 forcings from 2005 onwards.

These ten sets of model simulations are separated into three high-, medium-, and low-
resolution groups based on the horizontal spatial grids of the model outputs as shown in 
Table 1.

2.3 � Statistical methods

In this analysis, we analyze the time series of Oct maximum 1-day precipitation from the 
region identified above, in the observation-based datasets as well as the model simulations. 
The methods used for observational and model analysis and for model validation and syn-
thesis follow the best-practice approach as detailed in Philip et al. (2020), which is briefly 
summarized in the following steps: (i) trend calculation from observations; (ii) model 
validation; (iii) multi-method multi-model attribution; and (iv) synthesis of the attribution 
statement.

Table 1   Horizontal spatial grids of the climate model outputs in high-, medium-, and low-resolution groups 
used in this study

Model High Medium Low Dataset DOI

CMCC-CM2-VHR4 1152*768 https://​doi.​org/​10.​22033/​ESGF/​CMIP6.​1367
CMCC-CM2-HR4 288*192 https://​doi.​org/​10.​22033/​ESGF/​CMIP6.​3817
CNRM-CM6-1-HR 720*360 https://​doi.​org/​10.​22033/​ESGF/​CMIP6.​1387
CNRM-CM6-1 256*128 https://​doi.​org/​10.​22033/​ESGF/​CMIP6.​1375
EC-Earth3P-HR 1024*512 https://​doi.​org/​10.​22033/​ESGF/​CMIP6.​2323
EC-Earth3P 512*256 https://​doi.​org/​10.​22033/​ESGF/​CMIP6.​2322
HadGEM3-GC31-HM 1024*768 https://​doi.​org/​10.​22033/​ESGF/​CMIP6.​446
HadGEM3-GC31-MM 432*324 https://​doi.​org/​10.​22033/​ESGF/​CMIP6.​1902
d4PDF 640*320 http://​search.​diasjp.​net/​en/​datas​et/​d4PDF_​GCM
EC-Earth 320*160
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We apply this method to identify how the likelihood of occurrence of the event as 
defined above has changed due to anthropogenic climate change. For the event under study, 
we use a generalized extreme value (GEV) distribution that scales with GMST (i.e., using 
GMST as covariate, Philip et al. 2020 and Van Oldenborgh et al. 2021). The resulting prob-
ability ratio (PR) for the event under study is calculated for the comparison between the cli-
mates of 2019 and an earlier time with much less anthropogenic warming. PR is calculated 
as the probability of occurrence (P1) under the current climate, divided by the probability 
of occurrence (P0) under the climate of the earlier time (with much less anthropogenic 
warming). It is worth noting that in the GEV analysis, the confidence intervals are esti-
mated using a non-parametric bootstrap, so the GEV fit is done many times using samples 
of covariate-data pairs drawn from the original series with replacement. Besides PR, we 
also investigate the fraction of attributable risk (FAR), i.e. the fraction of the current risk 
that is attributable to the past greenhouse gas emissions (Hegerl et al. 2007), calculated as 
1-( P0/ P1). In this study, 1951 is used to represent the earlier time with much less anthro-
pogenic warming compared with the current climate. 1951 is used instead of 1900, a year 
commonly used to represent pre-industrial climate in event attribution studies (Philip et al. 
2020), because the HighResMIP simulations only start from 1950 (with a GMST covariate 
starting from 1951), and to avoid too much extrapolation since the station data records used 
in this study goes back to 1974. In a final step, we synthesize results from observations and 
models that pass the validation tests into a single attribution statement (section 5 below).

Given that the d4PDF non-warming simulations are undertaken using timeslices with 
fixed forcings rather than transient simulations, and that these simulations have a large 
ensemble size (100 ensemble members per scenario), we instead calculate the probabil-
ity ratio by separately calculating the probability of occurrence from the historical forcing 
experiments and the non-warming experiments, using non-parametric methods (counting 
the probability of occurrence above the threshold corresponding to the event return time in 
the d4PDF modelled world).

3 � Observational analysis: return time and trend

A GEV fit that scales with smoothed GMST gives a significant trend in the Oct maximum 
1-day precipitation averaged over the AMeDAS station data over the studied region (as 
shown in Fig. 3). The fit gives a return period time for the Oct 2019 heavy precipitation 
associated with the passing of Typhoon Hagibis of ~286 years (61–12,761 yrs) in the cur-
rent 2019 climate, and a return period time of ~2313 years (92-infinite) when extrapolated 
to the 1951 climate, resulting in a PR of 7.97, with a lower bound of 0.23 and an infinite 
upper bound. For the following climate model simulation analysis, we use the return period 
time of 268 years to get the event thresholds in each individual model.

The same analysis is repeated with the gridded datasets, which give a PR of 1.83(95% 
confidence interval of 0.17-unbounded, referred to as CI from hereon) for JRA-55, 35.67 
(CI, 0.07-unbounded) for ERA5, and 5.82 (CI, 0.20-21306) for CPC. As mentioned in the 
previous section, the gridded datasets underestimated the rainfall compared with station 
records, but we investigate these datasets for comparison, and results for all the observa-
tional-based dataset are very similar in terms of both the best estimate and uncertainty 
bound, and indicate an increase in the likelihood of the event to occur (with a best estimate 
of PR greater than 1). When considering all the observational-based datasets, the synthe-
sized observational result shows an increase in the likelihood of the event to occur, with a 
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best estimate PR of 7.42 (CI, 0.128-0.737E+05), shown as the bright blue bar in Figure 4. 
The best estimates and the bounds of each observation set are directly averaged to get the 
best estimates and extent of the bright blue bar.

4 � Model evaluation

Following the best-practice approach set out in Philip et al. (2020), we assess whether a 
certain model can be confidently used in our attribution study, which requires that the GEV 
fit parameters (trend, scale, and shape parameter) of the model agree with the GEV fit 
parameters of the observation (AMeDAS station data), which ensures that reliability of the 
model is good in terms of the statistical description of extremes, as the natural variability 
is completely uncorrelated between the observations and the models. The reliability check 
results (presented in Table S2) show that the majority of the models passed the fit param-
eter check, whereas the CMCC-CM2-VHR4 and EC-Earth3P-HR models failed the test, 
and are excluded from the rest of the attribution analysis.

5 � Multi‑method multi‑model attribution

Using the models that did pass the evaluation test, we calculate PRs for the models calcu-
lated using the same approach as for the observations but using the models’ own smoothed 
GMST instead.

We synthesize the results from observations and climate models that have passed the 
evaluation (Table S2) in order to assess the overall magnitude of change in likelihood of the 
event occurring and whether the observed change is attributable to anthropogenic climate 

Fig. 3   Fit of the Oct maximum 1-day precipitation averaged over the AMeDAS station data over the stud-
ied region. A GEV distribution is used that scales with the smoothed global mean surface temperature 
(GMST). The distribution is evaluated for the climates of 1951 and 2019. (a) Oct maximum 1-day precipi-
tation against the change in GMST. Observations are shown as blue signs and the magenta square shows the 
2019 value, which was not included in the fit. The thick line denotes the time-vary location parameter and 
the thin lines are 1 and 2 above, respectively; the two vertical red lines show the 95% confidence interval of 
for the climates of 1951 (extrapolated) and 2019. (b) Return times plots with fits for the 2019 climate (black 
lines) and the 1951 climate (blue lines with 95% CI), and the magenta line denotes the 2019 event. Obser-
vations are shown twice, once shifted down to 1951 (blue signs), and once shifted to the climate of 2019 
(black signs) using the fitted dependence on smoothed GMST
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change. The detailed steps to perform the synthesis from observations and climate models 
have been described by Philip et al. (2020) and again in Ciavarella et al. (2021). Here we 
summarize these steps to provide some clarity (interested readers are referred to the afore-
mentioned studies for further details). The synthesis is presented in the form of a horizon-
tal bar plot (as shown in Figure 4), in which the blue bars show the confidence intervals of 
the PR results from observations and the red bars show PR results from models.

First of all, for each individual observation (pale blue bars) and model (pale red bars), 
the best fit values (i.e., best estimates) are shown as the vertical black lines within the 
bars, and the confidence intervals are calculated from the GEV fitting (as described in sec-
tion 2.3 Statistical methods), arising from natural variability of each dataset.

First the observational results are synthesised. For observations, the total uncertainties 
for each dataset ( �total−i ) come from two sources: natural variability �i (the extend of each 
blue bar in Fig. 4) and “representation uncertaintyˮ �obs (i.e., how well the observational 
dataset is representative of the extreme under study here). We make the assumption that the 

Fig. 4   Synthesis of the probability ratios (PR) for Oct maximum 1-day precipitation (mm/day). The blue 
bars show the confidence intervals of the PR results from observations and the red bars show PR results 
from models, and the weighted average is shown in magenta. The models with more than one ensemble 
member going into the calculation of confidence interval and best estimate are indicated by showing the 
number of members used after the model name, and all the other models only used one ensemble member
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uncertainty due to natural variability is correlated between the multiple observational esti-
mates (Ciavarella et al. 2021), as different observational datasets are different records of the 
same reality. The mean best estimate of all observational datasets ( �obs ) is directly averaged 
(as shown in Equation 1) from all the best estimates of each observational dataset ( �i ); sim-
ilarly the mean natural variability �obs of all observational datasets is directly averaged (as 
shown in Equation 2) from all the natural variabilities of each observational dataset ( �i ). 
As mentioned previously, P0 and P1 each has confidence intervals (from the GEV analysis), 
which are estimated using a non-parametric bootstrap (so the GEV fit is done many times), 
bootstrap is also used to calculate uncertainty estimates ( �i ) of PR, using samples of P0 and 
P1 pairs drawn from GEV analysis. Another assumption we make here is that the represen-
tation uncertainty is the same for all observational datasets and that it is equal to the spread 
of the observational best estimates, i.e., differences between observational best estimates 
are assumed to be due to representation uncertainty. Therefore, the representation uncer-
tainty (Equation  3) is calculated as the averaged deviations of the best estimate of each 
observational dataset ( �i ) from the mean best estimate of all observational datasets ( �obs ). 
As shown in Equation 4, the representation uncertainty is then added (in quadrature) to the 
natural variability of each observational dataset individually and the increase in uncertainty 
from this representation uncertainty is shown in the figure as a white extension to each pale 
blue bar, the full extent of which represents the total uncertainties for each dataset �total−i . 
The bright blue bar represents the combined observational result—a direct average of the 
best estimates and the uncertainty bounds of all the observational datasets, respectively.

in which i represents each observation and Nobs the number of observations.
As mentioned previously, sigma is an estimate of the uncertainty in PR, which comes 

from the confidence interval from bootstrapping (as explained above); therefore it is 
dependent on the length of the data sample. Hence, it is not the natural variability in the 
traditional sense but rather variability due to sampling uncertainty. In the observations, this 
variability is treated as due to the natural variability of the climate system recorded in the 
data, hence referred to as such, but this is not the case in the models, especially for models 
with multiple ensemble members. But to keep the terms consistent between observations 
and models, in the model section, we also refer to sigma as natural variability.

Second, the model results are synthesized. For models, the total uncertainty for each 
model ( �total−j ) comes from natural variability ( �j ) and a common intermodel spread term 
( �mod ). It is worth pointing out that the reason we chose to include intermodel spread in 
the weight is to account for the systematic uncertainty from using models, each with their 
own imperfect representation of the climate system. For models, in contrast to observa-
tions, natural variability is assumed to be uncorrelated, assuming each model simulation 
represents an independent realization of the climate system. The combined model best esti-
mate ( �mod as shown in Equation 5) is the weighted mean of all the individual model best 

(1)�obs =
∑

i
�i∕Nobs

(2)�obs =
∑

i
�i∕Nobs

(3)�
2

obs
=
∑
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(

�i − �obs

)2
∕(Nobs − 1)

(4)�
2

total−i
= �

2

i
+ �

2

obs
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estimates ( �j ), and the weighting is the inverse of the sum of the squared natural variability 
uncertainties plus the squared intermodel spread, to account for systematic model errors 
(Ciavarella et al. 2021) as explained above. The common model spread term �mod can be 
estimated numerically (following Equation  6). It is worth pointing out that models with 
larger ensemble members will get a bigger weighting due to the fact that they have more 
data in the GEV fitting, leading to a smaller natural variability uncertainty (as explained in 
the paragraph above). The same weighting is also applied to combine the uncertainty due 
to natural variability (as shown in Equation 7), referred to as the combined model natu-
ral variability ( �mod ). Then the intermodel spread term is added in quadrature to the com-
bined natural variability (as shown in Equation 8), which forms the total uncertainty of the 
combined model results ( �mod−total) , denoted as the extent of the bright red bar in Fig. 4. 
Here we acknowledge that the full model uncertainty can be larger than model spread, due 
to model structural biases, missing physical processes, and inefficiently represented pro-
cesses in the models due to parameterizations, etc.. As shown in Equation 9, the intermodel 
spread term is also added (in quadrature) to the natural variability of each model individu-
ally and the increase in uncertainty from this intermodel spread term is shown in the figure 
as a white extension to each pale red bar, the full extent of which represents the total uncer-
tainties for each model �total−j.

in which j represents each model, Nmod the number of models, �mod the intermodel spread 
term, and dof  degree of freedom, i.e., Nmod − 1 . �2∕dof  compares the ratio of the model 
spread to the natural variability. If >1, then the spread of the models is greater than 
expected due to natural variability. A intermodel spread uncertainty term is added in quad-
rature to the natural variability such that �2∕dof  = 1. The value for �mod is determined 
numerically. Initialised at zero, it only needs to be determined if �2∕dof  >1 when �mod = 0 , 
i.e., 𝜒

2(𝜇j,𝜎j;0)
dof

> 1 . Two limits for the value of �mod are first found, one which gives a �2∕dof  
>1, and another which gives �2∕dof  <1. These two limits straddle unity, and Brentʼs 
method (Brent 1973) is then used to find the root of �mod between these two limits, and then 
�mod and �mod are recalculated for the new value of �mod , then �2 is recalculated for the new 
value of �mod , and then returns �2∕dof  . If 𝜒

2(𝜇j,𝜎j;0)
dof

< 1 , the spread in �j can be explained 
by natural variability alone and the model spread is neglected, i.e., �mod=0.
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Finally, observations and models are combined into a single result. If the observational 
and model results are clearly incompatible (determined by Equation 10), then we conclude 
that the model biases are too large for these to be combined. Otherwise, they are combined 
in two ways if they seem to be compatible (in the case of this study, they are). Follow-
ing the approach taken by previous studies (Philip et al. 2020 and Ciavarella et al. 2021), 
first we ignore model uncertainty beyond common model spread (i.e., ignore uncertainties 
due to model structural biases, missing physical processes, and inefficiently represented 
processes in the models due to parameterizations etc.), in which case the synthesis result 
of observations and models is calculated as the weighted average of the combined obser-
vation result (bright blue bar) and the combined model result (bright red bar), with the 
weights being the inverse square of the total variances (Equations 11 and 12 for observa-
tion and model respectively) for both the best estimate ( �synthesis−weighted , Equation 13) and 
the uncertainty bounds (Equations 14 and 15 for lower and upper bound respectively). In 
essence, the model and observational results are combined based on the squared of the 
deviations from their respective means, and the squares are proportional to a measure of 
variance since the deviations are proportional to a measure of standard error (similarly for 
Equations 17 and 18). Second, because the full model uncertainty can be larger than the 
common model spread (as explained above), for the uncertainty bounds, we also show the 
more conservative estimate of an unweighted average of the combined observations result 
(bright blue bar) and the combined models result (bright red bar), for both the mean (Equa-
tion 16) and uncertainty bounds (Equations 17 and 18 for lower and upper bounds respec-
tively), indicated by the white box around the magenta bar in the synthesis Fig. 4, resulting 
in a larger confidence interval than the weighted results.

In the following equations, Wobs represents the weight applied on the obs (bright blue 
bar), OBSlower represents the lower end of the uncertainty bound for obs (left end of the 
bright blue bar), OBSupper represents the upper end of the uncertainty bound for obs (right 
end of the bright blue bar), and we use Wmod , MODlower , and MODupper to represent the cor-
responding terms for the model results (bright red bar). We use �synthesis−weighted to represent 
the weighted mean and SYNweighted−lower and SYNweighted−upper to represent the lower and 
upper bound of the uncertainty for the weighted results (i.e., the extent of the purple bar). 
Finally, we use �synthesis−unweighted to represent the unweighted mean and SYNunweighted−lower 
and SYNweighted−upper to represent the lower and upper bound of the uncertainty for the 
unweighted results (i.e., the extent of the white box around the magenta bar in the synthesis 
Fig. 4).

(10)(𝜇mod − 𝜇obs)
2
≫ 𝜎

2

mod
+ 𝜎

2

obs

(11)Wobs =
1

/

(OBSupper−OBSlower)
2

(12)Wmod =
1

/

(MODupper−MODlower)
2

(13)�synthesis−weighted =
Wobs × �obs +Wmod × �mod

Wobs +Wmod
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The observation and model attribution results are summarized in Table 2. The obser-
vation results are very consistent and indicate an increase in the likelihood of the event 
to occur, with a best estimate PR of 7.42. The model results are not as consistent as the 
observations. The high-resolution model HadGEM3-GC31-HM shows a slight increased 
likelihood of occurrence of 1.09 (CI, 0.06–18.01). The medium-resolution group of 
models shows a smaller increased likelihood of occurrence with a best estimate RR of 

(14)

SYNweighted−lower = �synthesis−weighted −

√

Wobs × (�obs − OBSlower)
2 +Wmod × (�mod −MODlower)

2

Wobs +Wmod

(15)

SYNweighted−upper = �synthesis−weighted +

√

Wobs × (OBSupper − �
obs

)2 +Wmod × (MODupper − �
mod

)2

Wobs +Wmod

(16)�synthesis−unweighted =
�obs + �mod

2

(17)

SYNunweighted−lower = �synthesis−unweighted −

√

(�obs − OBSlower)
2 + (�mod −MODlower)

2

2

(18)

SYNunweighted−upper = �synthesis−unweighted +

√

(OBSupper − �
obs

)2 + (MODupper − �
mod

)2

2

Table 2   Probability ratios 
(PR) for Oct maximum 1-day 
precipitation (mm/day) in each 
dataset, as well as synthesized 
results of observations and 
models respectively, and the 
overall PR and fraction of 
attributable risk (FAR) synthesis 
results combining observations 
and models. The best estimate as 
well as 95% confidence interval 
(CI) are shown

Obs/model Best esti-
mate of PR

CI

AMeDAS 7.97 0.23, unbounded
JRA-55 1.83 0.17, unbounded
ERA-5 35.67 0.73E-01, unbounded
CPC 5.82 0.20, 21306
Observations 7.42 0.128, 0.737E+05
HadGEM3-GC31-HM (high-

resolution model)
1.09 0.64E-01, 18.01

CNRM-CM6-1-HR 0.84 0.11E-01, 12.99
EC-Earth3P 0.55 0.16, 1.69
HadGEM3-GC31-MM 0.63 0.22E-01, 29.19
d4PDF 1.24 0.74, 2.3
Medium resolution models 1.05 0.653, 1.78
CMCC-CM2-HR4 0.46 0.56E-03, 41.80
CNRM-CM6-1 2.86 0.14, 0.81E+07
EC-Earth 2.14 1.57, 3.10
Low-resolution models 2.13 1.56, 3.08
All models 1.67 1.15, 2.49
Observation+model Synthesis 1.67 1.15, 2.51
FAR (from synthesis) 0.40 0.13,0.60
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1.05 (CI, 0.653–1.78), in which three models (CNRM-CM6-1-HR, EC-Earth3P, and 
HadGEM3-GC31-MM) show decreased PR, whereas d4PDF show increased PR. The 
low-resolution group of models show increased likelihood of occurrence with a best esti-
mate RR of 2.13 (CI, 1.56–3.08), in which two models (CNRM-CM6-1 and EC-Earth) 
show increased PR, whereas CMCC-CM2-HR4 show decreased PR. Taking all models 
into consideration, irrespective of the resolution, results in a best estimate PR of 1.67 (CI, 
1.15–2.49). The ranges of the models are not compatible with each other (Table  2 and 
Fig. 4), suggesting that model uncertainty plays a role over the natural variability. Irrespec-
tive of resolution, when looking at each group as a whole, all three present an increase in 
the likelihood of the event to occur, with a best estimate PR >1. It is important to point out 
that, due to the way weighting is applied (models with larger ensemble members will get a 
bigger weighting due to a smaller natural variability uncertainty), the confidence intervals 
for the synthesized model results are effectively based on those of d4PDF and EC-Earth 
because they have more simulations and consequently much smaller confidence intervals. 
Hence the multi-model synthesized results are to a first approximation based on a combina-
tion of EC-Earth and d4PDF, with the other models shown in Fig. 4 effectively contribut-
ing little to the synthesized model results.

6 � Hazard synthesis

As mentioned in the previous section, to reach an overarching attribution statement we first 
synthesize the observations and models separately following the methodology described in 
Philip et al., (2020) and in Ciavarella et al. (2021), in a second step we combine the model 
results with the observations to give an overarching attribution statement.

The results for the observations are all very similar and clearly indicate an increase in 
the likelihood of the event to occur, with a best estimate of 7.42. However, due to the rela-
tively short time scale and high natural variability, the lower bounds in all products do not 
exclude a decrease in likelihood. Similarly, the upper bound is large, indicating that from 
observations alone, an increase in the occurrence probability of several orders of magni-
tude (statistically unbounded, see Table 2) also cannot be excluded. Four of the medium-/
low-resolution models (CNRM-CM6-1-HR, HadGEM3-GC31-MM, CMCC-CM2-HR4, 
and CNRM-CM6-1) used also show large uncertainty ranges however the probability ratios 
in these cases are smaller than one for the best estimate for three of them (indicating a 
decrease in likelihood). The high-resolution HadGEM3-GC31-HM also has large uncer-
tainties due to a comparable small ensemble size but indicates an increase in likelihood 
together with the two large ensembles (EC-Earth and d4PDF). Synthesizing these model 
results leads to a probability ratio of 1.67 (CI, 1.15–2.49) which is almost identical to the 
weighted synthesized result of models and observations (the magenta bar in Fig. 4).

7 � Impacts and losses

While this study focuses on the rainfall hazard, the primary impact was flooding. We did 
choose the definition of the event to be closely linked to the impacts, but heavy rainfall is 
not equivalent to losses from flooding. Drivers that exacerbate or reduce impacts in storms 
of this scale are a complex combination of an extreme natural hazard, long-term planning 
decisions and short term disaster preparedness and response decisions. Despite the very 
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well prepared Japanese population the exceptionally high rainfall amounts in a very short 
time resulted in rapid increase of river water leading to many floods eventually  (Susilo 
et  al. 2020). According to the Japanese Government (https://​relie​fweb.​int/​report/​japan/​
japan-​typho​on-​hagib​is-​infor​mation-​bulle​tin), due to the passage of Typhoon Hagibis, 66 
embankments in 47 major rivers collapsed and 203 rivers overflowed. Many communities 
were reportedly isolated by the floods and/or the landslides. Due to the isolation, 49 people 
were reported dead and another 15 were reported missing days after the event. Ninety-nine 
people died in the disaster, and this number was reported in the disaster database.

Recent flood events resulting from storms such as Typhoon Jebi in 2018 had led to very 
high economic losses and led reinsurer RenaissanceRe (https://​www.​artem​is.​bm/​news/​
faxai-​loss-​to-​near-​10bn-​hagib​is-​15bn-​clima​te-​change-​a-​factor-​renre-​ceo/) to predict the 
insured economic losses around $15 bn shortly after Hagibis. Longer after the event how-
ever MunichRe estimated the insured losses much lower (https://​www.​artem​is.​bm/​news/​
munich-​re-​estim​ates-​typho​on-​hagib​is-​loss-​at-​10bn-​faxai-​at-​7bn/), around $10 bn, with $17 
bn overall losses. They also noted that in contrast to, e.g., Typhoon Faxai that hit Japan fur-
ther South also in October 2019 damages from Hagibis were largely due to the enormous 
amounts of rainfall while Faxai primarily caused wind damage. The damages estimated by 
MunichRe are the same ones that entered the disaster database EM-DAT.

The $10bn insured losses are therefore a conservative estimate of the losses caused by the 
rainfall associated with Typhoon Hagibis. Given that these numbers only include the insured 
losses, with no consideration of incurred cost due to life years lost and other more indirect 
economic impacts (Frame et al. 2020). In this study we only account for the immediate dam-
ages and neither the short-term indirect losses from consequences of the immediate dam-
ages http://​docum​ents1.​world​bank.​org/​curat​ed/​en/​18663​14679​98501​319/​pdf/​WPS73​57.​pdf 
nor long-term losses due to the effects of well-being (Noy and duPont 2016). These insured 
costs are thus indeed a conservative estimate even though they do include some costs due 
to wind rather than flood damage, as it has been shown (e.g., by reinsurer Munich-Re) that 
Hagibis “showed much lower intensity wind gusts than Jebi, produced an extraordinary 
amount of rainfall with some areas accumulating more than 1m of precipitation in 24h” 
http://​thoug​htlea​dersh​ip.​aon.​com/​Docum​ents/​20200​122-​if-​natca​t2020.​pdf . Using this con-
servative estimate means that in fact we are using the lower bound of the economic costs 
as this, in the insured costs is what can be assessed well, whereas the upper bound is so 
uncertain that a numerical estimate is not possible (Frame et al. 2020). We therefore use this 
estimate and follow the same methodology introduced by Frame et al. (2020) to combine the 
change in likelihood of the damage inducing rainfall due to climate change as assessed in 
the preceding sections of this paper and estimate the economic losses due to anthropogenic 
climate change. Using the best estimate of the fraction of attributable risk (FAR) of 0.40 
derived above, as well as the conservative assessment of the losses of $10bn we estimate an 
attributable economic loss of $4 bn.

We do acknowledge that the economic loss due to large flooding in Japan is impacted 
by many factors, however, the heavy precipitation associated with passage of the 
Typhoon served as an ultimate trigger, without which the large flooding and the fol-
lowing economic loss wouldnʼt have occurred. The question we are trying to answer 
with this study is: everything else being equal, what is the role of anthropogenic climate 
in the devastating rainfall event like the one associated with the passage of Typhoon 
Hagibis? With everything else being equal, we mean that in a counterfactual world 
without anthropogenic climate change, all the other factors (except the difference in 
precipitation) including the trajectory of the typhoon, the distribution of the precipita-
tion as a result of the typhoon, the river flows, the land surface conditions, the local 
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preparedness and responses etc., are held exactly the same as what had happened in 
real life, what is the economic loss due to anthropogenic climate change’s impact on the 
heavy precipitation.

8 � Conclusion

The impacts of anthropogenic climate change on tropical cyclones are complex and we 
are far from having a complete picture, not least due to the fact that data availability and 
model fitness for purpose are a challenge and the full picture will take time to emerge. 
However, a consistently model simulated and projected impact of climate change on 
tropical cyclones is that when they do occur they bring more rain than they would in a 
world without human-induced climate change (Harvey,Irma etc. Liu et  al. 2018), thus 
increasing the destruction the heavy precipitation causes. Estimating economic damages 
of extreme weather events is even more difficult and uncertainty assessments are much 
larger than for the hazards and changes in the hazards. Taking only the insured losses 
and the lower estimates of the hazard attribution is however possible to assess a lower 
bound of economic losses due to the extreme heavy precipitation (associated with the 
passing of tropical cyclones in this case), as for the first time done for Hurricane Harvey.

Applying the same method for Hagibis leads to an estimated attributable cost of 
approx. $4 bn. Compared to Harvey these numbers are a lot lower which is primarily 
due to the fact that the damages are much lower. In the case of Harvey the assessed 
change in hazard was also more consistent between observation based attribution and 
model based, whereas for Hagibis, the models show much smaller changes indicating 
that the results shown here are likely an underestimation.

Nevertheless this study highlights that climate change has clearly led to increased 
precipitation during heavy rainfall events in the Tokyo area. Coupled with sea level rise, 
climate change poses new challenges to adaptation and mitigation of flooding events 
and disaster management in this area. This needs to be seen in the context of a large 
urban population in the coastal area, highlighting that climate change has resulted in an 
increase in the number of people and value of property at risk of being flooded.
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