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Abstract We study the influence of mutual planetary perturbations on the process of eccen-
tricity excitation by jet acceleration suggested by Namouni (Astron. J. 130, 280–294). Model-
ing the jet’s action by a constant-direction acceleration, we solve the linear secular equations
of the combined planetary perturbations and the jet acceleration of the host star for a two-
planet system. The effects of the acceleration’s strength, relative mass ratio and the relative
distance of the two planets are investigated. The model is applied to the extrasolar planetary
systems of HD 108874, 47 Uma, and HD 12661.

Keywords Extrasolar planets · Stellar jets · Eccentricity excitation

1 Introduction

Ten years after the discovery of the first Jupiter-like planet around 51 Pegasi, the num-
ber of extrasolar planets is steadily on the rise. As of this writing, we know of 173 plan-
ets and 18 multiplanet systems (see the extrasolar planetary encyclopaedia at http://www.
obspm.fr/planets). Half of these planets have orbital eccentricities in excess of 0.28. Such
large eccentricities are surprising as it is thought that planets form in a protoplanetary cloud
on nearly circular orbits much like the planets of the solar system. In effect, these obser-
vations seem to have moved the paradigm of planetary formation away from the solar sys-
tem. Possible explanations for the large eccentricities include the perturbations that follow
planet–planet scattering (Marzari and Weidenschilling 2002; Ford et al. 2003), the tidal
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interaction between the gas disk and the planets (Goldreich and Tremaine 1981), Kozai’s
secular eccentricity cycles (Holman et al. 1997; Terquem and Papaloizou 2002; Takeda and
Rasio 2005), the eccentricity’s pumping during planetary pair migration in mean motion
resonance (Chiang et al. 2002; Lee and Peale 2002), the perturbations by stellar encounters
(Zakamska and Tremaine 2004) and the outcome of a stellar-like relaxation that occurred
if planets formed by gravitational instability (Papaloizou and Terquem 2001). The merits
and drawbacks of most of these mechanisms are well documented (Tremaine and Zakamska
2004). A main recurring criticism is that when these mechanisms work they do so for specific
systems. This lack of generality suggests that in reality various combinations of these mech-
anisms are at work in all systems. While satisfactory, such a conclusion does not explain
(1) why the solar system is such an outlier, (2) what gives rise to apsidal alignment in non-
resonant systems, and (3) what the origin of the similarity of the eccentricity distributions of
extrasolar planets and spectroscopic binary stars is (Stepinski and Black 2001).

Looking for possible mechanisms that can explain the states of both solar and extraso-
lar planets, Namouni (2005) (hereafter N05) reasoned that the similarity in the eccentricity
distribution of extrasolar planets and spectroscopic binary stars may be a hint at a common
excitation mechanism. If this were true then such a mechanism must depend weakly on the
local dynamics of the companion. The description of the corresponding physical process
would therefore, depend weakly on the companion’s position and velocity. The simplest pos-
sible process satisfying this condition is a constant acceleration. To complete the description
of the physical process, the direction of its acceleration too has to be independent of the
planetary plane. A possible choice is the star’s rotation axis, which naturally hints at stellar
jets and star-disk mass loss as natural mechanisms for such an acceleration.

Typical stellar jet accelerations of magnitudes A ∼ 10−11 to 10−13 km s−2 are capable of
exciting planetary eccentricities. The acceleration’s parameters are best known for multiple
systems because mutual gravitational perturbations cause the planetary orbits to precess. If
the secular frequencies associated with these precessions are larger than the jet accelera-
tion’s excitation frequency, the efficiency of eccentricity excitation is hampered. To verify
the validity of the eccentricity excitation by jet acceleration, it is necessary to quantify its
relative importance with respect to planetary perturbations in specific multiple systems. Such
an approach has been applied in N05 to the Jupiter–Saturn and υ Andromedae binary system
using direct numerical integration of the equations of motion. It was shown that the excitation
by jet acceleration was able to explain the observed states of these systems.

In this paper, we develop a fast semi-analytic approach to study the effect of mutual grav-
itational perturbations in a two-planet system whose host star is subject to an acceleration by
a material jet. We assume that the jet’s intrinsic precession frequency is small compared to
its excitation frequency nA = 3|A|/na where n and a are the mean motion and semi-major
axis of the planet, respectively. This puts the jet resonance studied in N05 much closer to
the star than the location of the planetary region allowing us to ignore the complex issues
of eccentricity damping interior to the resonance and resonant eccentricity driving. We also
assume that the two-planets are not in mean motion resonance.

The paper is organized as follows: in Sect. 2, we lay down the analytical model based on
secular perturbation theory applied to a system consisting of two planets and a star accelerated
by a jet. In Sect. 3, we compare the secular semi-analytical model to the direct integration of
the equations of motion. The effects of the acceleration’s strength, the planetary mass ratio,
and relative distance are discussed in Sects. 4–6, respectively. The secular model is applied
to the planets of HD 108874, 47 Uma, and HD 12661 in Sect. 7, where we derive the ampli-
tudes of the secular eigenmodes and determine the minimum acceleration strength required
for efficient excitation by a slowly-precessing acceleration. Section 8 contains a summary.
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2 Linear perturbations

We consider the system made up of two planets orbiting a host star that is accelerated by an
asymmetric jet. It has been shown in N05 that the jet’s acceleration perturbs a planetary orbit
through the potential:

〈R〉jet = − 3
2 a A · e = − 3

2 A ae sin(� − �) sin I, (1)

where e = v × h/G(m + M) − x/|x| is the eccentricity vector of magnitude e, which is a
constant of the Keplerian motion and can be expressed in terms of the position x, the velocity
v, the angular momentum h, the gravitational constant G, and the masses of the star M and
that of its planetary companion m. The potential also depends on the orbital semi-major
axis of the planet, a. The last expression is obtained by choosing the z-axis along A; in this
case, � , �, and I are the longitude of pericenter, the longitude of ascending node, and the
inclination of the orbit with respect to A.

The two planets are assumed not to be in mean motion resonance. This allows us to use
the classical secular perturbation potential of first-order in the masses and second-order in
eccentricity and inclination to describe the long-term motion of the two planets. Its expression
is given as (see, e.g. Murray and Dermott 1999):
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where α is the ratio of the inner planet’s semi-major axis to that of the outer planet a1/a2,
∂ is the partial derivative with respect to α, and b(0)

1/2 , b(1)
1/2 and b(1)

3/2 are the usual Laplace
coefficients.

The evolution equations for the eccentricity and inclination of the two planets are obtained
from the Laplace–Lagrange equations for the the eccentricity and inclination vectors (hi =
ei sin �i , ki = ei cos �i , pi = Ii sin �i , qi = Ii cos �i , i = 1 or 2) as:
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where 〈R〉(i)jet is the jet acceleration’s potential at the location of planet (i). For consistency
with the validity domain of the second-order planetary perturbation potential, we substitute
I for sin I in the expression (1).
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Introducing the vector E = (h1, h2, k1, k2, p1, p2, q1, q2), the equations of motion (3)
take the simple form:

Ė = L · E, (4)

where the matrix L is given as:

L =
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with:
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To find the eccentricity and inclination expressions, we have to diagonalize the system
(5) and use the initial orbital state of the two planets in terms of the vector E to identify
its projections on the eigenvectors. As we are interested primarily in planetary systems on
initially circular coplanar orbits, the acceleration’s inclination I0 with the planetary orbital
plane implies:

E(t = 0) = I0 (0, 0, 0, 0, 0, 0, 1, 1). (9)

Before using the solution of the secular system, we remark that: first, the addition of the
acceleration term in the form of the new terms ν

(i)
A , lifts the degeneracy of the secular two-

body problem. Indeed if ν
(i)
A = 0 (i.e. there is no external acceleration), the matrix (5) can

be split up into two separate blocs for the eccentricity and inclination leading, respectively,
to two eigenmodes for the eccentricity and one eigenmode for the inclination. The latter is
simply related to the arbitrary choice of a reference plane for the inclination. In contrast,
the jet acceleration, the eccentricity and inclination variations are mixed. The second remark
concerns the scaling of the eccentricity and inclination solution. Since the differential system
representing the planets’ eccentricities and inclinations is linear and since the initial state is
proportional to I0, the solutions for e and I will be proportional to I0. This tells us that the
solution is valid for any inclination provided that it is covered by the second-order approxima-
tion. As we shall see in the next section, the integration of the full equations of motion for an
acceleration with I0 = 30◦ shows that the agreement with the secular solution is reasonable.
That is why we will not pay much attention to the actual amplitude of I0 and quote mostly
e/I0 and I/I0. This is consistent with the main goal of the paper as it was shown in N05 that a
conservative constant-direction acceleration yields periodic oscillations of maximum ampli-
tude sin I0 (I0 in the second-order approximation). Mutual perturbations cause the orbits to
precess and tend to reduce the maximum eccentricity, it is therefore, natural to ascertain the
effect of mutual planetary perturbations by scaling the eccentricity and inclination to I0.
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3 Comparison with the integration of the full equations of motion

To illustrate the competition between mutual planetary perturbations and the eccentricity
excitation by jet acceleration, N05 used a direct integration of the full equations of motion of
the Jupiter–Saturn system. The set up was such that Jupiter and Saturn had circular coplanar
orbits with their current semi-major axes. The inclination of the perturbing acceleration was
30◦ and two different acceleration strengths, A = 2 × 10−12 and 2 × 10−14 km s−2 corre-
sponding to the locations of the Keplerian boundary akplr at 103 and 104 AU, respectively. The
Keplerian boundary corresponds to the location where the jet’s acceleration balances the grav-
itational acceleration by the host star. For a stationary jet, objects with orbital semi-major axes
beyond akplr are lost to the interstellar medium. In terms of akplr, the acceleration is given as:

|A0| � 2 × 10−12
(

M + m

M�

) (
103 AU

akplr

)2

km s−2 (10)

and the corresponding excitation period, TA = 2π/nA, is given as:

TA � 106
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)1/2 ( akplr

103 AU

)2
(

1 AU

a

)1/2

years. (11)

In Fig. 1, we compare the results of the numerical integrations using the full equations of mo-
tion with the solution of the secular systems (4)–(9) for an acceleration of Keplerian boundary
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Fig. 1 The ratio of the eccentricity to the inclination as a function of time for Jupiter (upper panels) and Saturn
(lower panels). The solid lines are obtained from the solution of the linear systems (4)–(9). The dotted lines are
obtained from the direct integration of the full equations of motion, where Jupiter and Saturn have zero initial
eccentricities. The two columns correspond to the two jet angles 10 and 30◦. In all cases, the acceleration
is A = 2 × 10−12 km s−2 corresponding to akplr = 1000 AU. Note that the dotted lines, we divided the
eccentricity by sin I0 instead of I0 for consistency with the full (non-linear) solution derived in N05
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akplr = 1000 AU. As explained in the previous section, the ratio of the eccentricity e to the
jet inclination I0 in the case of the secular system and to sin I0 for the numerical integrations
is the relevant measure of excitation. We note three features: (1) the linear solution is a good
approximation for relatively high eccentricities, ∼0.3, and for relatively large inclinations,
∼30◦. (2) The excitation period is somewhat overestimated for both small and large incli-
nations while (3) the amplitudes are somewhat underestimated for both inclinations. The
agreement is only slightly better for smaller inclinations.

A stronger acceleration with a Keplerian boundary at akplr = 500 AU reveals similar fea-
tures as seen in Fig. 2. Only in this case, the amplitudes of Jupiter are better reproduced than
those with a weaker acceleration. However, this good fit is lost for larger times as it can be
seen on Saturn’s amplitudes.

The better agreement for Jupiter and the loss of accuracy with time suggest that the
Jupiter–Saturn interaction combined to the jet acceleration is not purely secular in time,
when observed over longer excitation cycles. This in turn suggests that mean motion reso-
nances, which are neglected in the secular approach affect the eccentricity evolution over a
time longer than the excitation time scale. In order to confirm this hypothesis, we study the
previous Jupiter–Saturn configuration but use smaller masses for the two planets.
Figure 3 shows the eccentricity excitation in such cases. The better agreement of the two
approaches is already visible if we reduce Saturn’s mass. An almost perfect agreement can
be obtained if both planets—Jupiter and Saturn—have smaller masses and the jet angle is
small too.

We conclude that our method yields good results over the first excitation cycles when
non-secular long-period perturbations do not have a pronounced effect on the eccentricity
excitation. Such an agreement is sufficient for our purposes because as it has been shown in
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Fig. 2 Same as Fig. 1, but for a stronger acceleration A = 8×10−12 km s−2 corresponding to akplr = 500 AU.
The upper panels correspond to Jupiter and the lower panels to Saturn
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Fig. 3 The ratio of the eccentricity to the inclination as a function of time for two configurations. In the first
configuration (left column), Saturn (lower plot) has a tenth of its actual mass; Jupiter’s mass is set to its current
value (upper plot). The jet angle is 30◦ and the Keplerian boundary is at akplr = 1000 AU. In the second
configuration (right columns), both Jupiter (upper plot) and Saturn (lower plot) have a tenth of their actual
masses. The jet angle is chosen as 5◦ to enhance the agreement with the direct numerical integrations; the
Keplerian boundary is at akplr = 1000 AU

N05 (1) the modeling of a realistic time dependent jet amounts to a simple convolution of
the secular oscillations that we have described and the time window of the jet episode, and
(2) typical action times for stellar jets are usually smaller than half the excitation time. The
linear secular method is therefore, satisfactory to assess the influence of mutual planetary
perturbations that are mainly secular over a single oscillation cycle.

4 Effect of the acceleration’s strength

To characterize the relative importance of mutual gravitational perturbations and jet eccen-
tricity excitation, we examine the dependence of the fundamental secular eigenmodes and
the corresponding amplitudes as a function of the accelerations strength. For the acceler-
ation strength, we take the more physical parameter akplr that shows for instance where a
putative disk is truncated by the jet’s action. We also note that henceforth we shall not refer
to the jet inclination because we normalize the eccentricity of both planets to I0 (see Sect.
2). In Fig. 4, we illustrate the variation of the secular eigenperiods with akplr. There are
four eigenperiods, three of which tend to the free eigenmodes of the Jupiter–Saturn System:
T1 = 375, 000 years, T2 = 60, 000 years, and T3 = 51, 000 years (N05, Murray and Dermott
1999). The last frequency T4 is that of the jet excitation; it varies by two orders of magnitude
as akplr varies from ∼102 to 103 AU as roughly expected from expression (11). Writing the
eccentricity vectors of the two planets as:
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Fig. 4 Fundamental secular eigenperiods of the Jupiter–Saturn system as a function of the acceleration’s
strength represented by akplr (AU). The eigenperiods tend to the well known free periods as the acceleration
gets weaker

ei = I0

4∑

k=1

eik, (12)

where i = 1 for the inner planet (Jupiter) and 2 for the outer planet (Saturn) and the sum runs
over the four eigenmodes, we show the amplitudes of the eccentricity vectors eik for Jupiter
in Fig. 5 and Saturn in Fig. 6. We note that the dominant eccentricity modes for Jupiter are
1 and 4 while all modes contribute to the eccentricity of Saturn.

5 Effect of the planets’ mass ratio

We ascertain the effect of the planets’ mass ratio by varying the mass of the Jupiter–
Saturn system. We consider two cases: first, Saturn is left unchanged while Jupiter’s mass
is varied between 0.1 and 1 MJ; the semi-majors axes are unchanged. The acceleration
strength corresponds to a Keplerian boundary at akplr = 500 AU. The eigenmode ampli-
tudes are shown in Fig. (7) for both the inner planet (e1) and Saturn (e2) as a function
of their mass ratio. We observe the expected trend that the smaller the inner planet, the
larger the excited eigenmodes. Fixing Jupiter’s mass and varying Saturn’s leads to the eigen-
mode amplitudes shown in Fig. 8. We note the degeneracy of the eigenmodes as the outer
planet’s mass decreases (mass ratio of inner to outer ∼35). We remark however, that these
eigenmodes should be used to obtain an estimate of the maximum eccentricity and do not
exactly reproduce the eccentricity evolution beyond the first excitation cycle. This has al-
ready been encountered in Sect. 3, where we explained that the effect of mean motion reso-
nances may cause departures from the purely secular evolution of the linear system (see also
Fig. 2).
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Fig. 5 Amplitudes of the secular eigenmodes of Jupiter as a function of the acceleration’s strength represented
by akplr (AU). Note that the amplitudes have been divided by I0 (see Sect. 2)
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Fig. 6 Amplitudes of the secular eigenmodes of Saturn as a function of the acceleration’s strength represented
by akplr (AU). Note that the amplitudes have been divided by I0 (see Sect. 2)
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Fig. 7 Amplitudes of the secular eigenmodes of Saturn (right panel) interacting with an inner planet (left
panel) at Jupiter’s semi-major axis whose mass varies from 0.1 to 1 MJ. The horizontal axis shows the mass
ratio of the inner planet to the outer planet. The amplitudes correspond to the eigenmodes 1 (solid), 2 (short-
dashed), 3 (medium-dashed) and 4 (long-dashed)

5 10 15 20 25 30 35
mass ratio

0.1

0.3

0.5

0.7

e1

5 10 15 20 25 30 35
mass ratio

0.1

0.3

0.5

0.7
e2

Fig. 8 Amplitudes of the secular eigenmodes of Jupiter (left panel) interacting with an outer planet (right
panel) at Saturn’s semi-major axis whose mass varies from 0.1 to 1 MS. The horizontal axis shows the mass
ratio of the inner planet to the outer planet. The amplitudes correspond to the eigenmodes 1 (solid), 2 (short-
dashed), 3 (medium-dashed), and 4 (long-dashed)

6 Effect of the planets’ relative distance

The effect of mutual interactions is diminished by an increasing distance between the two
planets. Equivalently, one can choose a weaker acceleration that has a smaller Keplerian
boundary radius, akplr. This is recovered in the linear model as it is shown in Fig. 9 for an
acceleration with a Keplerian boundary at 500 AU. In this example, Saturn’s semi-major axis
was kept at its current value while Jupiter’s semi-major axis was varied in the range set by
the 2:1 and the 4:1 resonances. We note a curious mode amplitude exchange for Saturn at
α = 0.475. An important conclusion that we can draw from the previous two sections is that
an acceleration with a Keplerian boundary at 500 AU while displaying the correct trends as
the mass ratio or the semi-major axis vary, is relatively strong so as to excite the two planets’
eccentricities. Excitation does actually occur only if the direction of acceleration represented
by the factor I0 (or more precisely sin I0), that appears in the eccentricity expression (12),
is not too small.

7 Application to HD 108874, 47 Uma, and HD 12661

To illustrate the use of the secular method in the case of extrasolar planets, we determine the
eigenmode amplitudes as a function of the acceleration’s strength represented by the radius
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Fig. 9 Amplitudes of the secular eigenmodes of Jupiter (left panel) and Saturn (right panel) as a function of
the semi-major axis ratio. Saturn’s semi-major axis is set at its current value 9.2525 and Jupiter’s varies. The
amplitudes correspond to the eigenmodes 1 (solid), 2 (short-dashed), 3 (medium-dashed), and 4 (long-dashed)

of the Keplerian boundary for the two-planet systems of HD108874 (Vogt et al. 2005), 47
Uma (Fischer et al. 2002a) and HD 12661 (Fischer et al. 2002b). The corresponding orbital
data are given in Table 1 (Appendix) and the amplitudes in Fig. 10.

Assuming a reference inclination of I0 = 20◦ (sin I0 = 0.34), our excitation criterion
for these systems is that the maximum value of all eigenmode amplitudes be larger than the
observed eccentricity values. Such a criterion is not the most conservative nor is it the most
relaxed one. The latter comes from the fact that the eccentricity of each planet is the sum
(with the corresponding phases) of the various modes and is always likely to be larger than
the largest mode amplitude.

For the chosen criterion, the HD 108874 planets are different, while the inner planet
requires only a small eccentricity and therefore satisfies the criterion quite well, HD 108874c
with an eccentricity of 0.25 barely meets the criterion for a strong acceleration of Keplerian
boundary akplr = 150 AU. The planets of 47 Uma require stronger accelerations because of
their larger masses (and hence stronger gravitational interaction), while those of HD 12661
with their low-eccentricity values satisfy the criterion for akplr ≤350 AU. In view of this anal-
ysis, it is important to bear in mind that we have assumed a constant-direction acceleration
throughout this paper, which in reality represents slowly-precessing jets only. The fact that
the planets of 47 Uma, for instance, do not meet the excitation criterion does not imply that
the jet acceleration model is not able to explain the planets’ orbital configuration. It has been
shown in N05 that the resonance between the jet’s precession frequency and the excitation
frequency nA is able to excite the eccentricities to unity even for nearly perpendicular jets.
In this instance, it is interesting to note that HD 108874b has a small eccentricity indicating
the possibility of eccentricity damping that is characteristic of the orbital region inside the
resonance radius. This suggests that the jet resonance is located outside 1 AU and that the
more eccentric outer planet lies in the resonance region.

8 Summary

We have presented a simple and fast method to determine the effect of a jet induced accel-
eration on a two-planet system by applying linear secular perturbation theory. We combined
the Laplace–Lagrange theory of first-order in the masses and second-order in the eccentric-
ities secular potential with the secular potential of a jet acceleration derived in N05. This
has enabled us (1) to verify the general excitation trends as the acceleration’s strength, the
planetary mass ratio and the relative semi-major axes vary and (2) to estimate of the accelera-
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Fig. 10 Amplitudes of the secular eigenmodes of the companions to HD 108874, 47 Uma, and HD 12661 as
a function of the radius of the Keplerian boundary. The amplitudes correspond to the eigenmodes 1 (solid),
2 (short-dashed), 3 (medium-dashed), and 4 (long-dashed)

tion strengths required in the extrasolar systems of HD 108874, 47 Uma, and HD 12661. We
found that the first two systems were likely excited by the resonance of the jet’s precession
frequency with its natural excitation frequency that is known to yield maximum eccentricity
values near unity regardless of the jet inclination angle. The eccentricities of the planets
around HD 12661 can be explained by the acceleration of a slowly precessing jet modeled
with the linear theory. Extensions of this work include generalizing the linear secular analysis
to any number of planets, and also the coupling of the secular dynamics to specific mean
motion resonances. The treatment of the jet resonance however, can not be dealt with in the
linear regime and requires the Kozai potential instead of that in Eq. (2).
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Appendix

Table 1 Orbital elements and masses of the companions to HD 108874, 47 Uma, and HD 12661 (Fischer
et al. 2002a, b; Vogt et al. 2005)

Companion m/MJ sin i a e M∗/M�

HD 108874b 1.36 1.051 0.07 1
HD 108874c 1.018 2.68 0.25 1
47 Uma b 2.54 2.09 0.35 1.03
47 Uma c 0.76 3.73 0.2 1.03
HD 12661b 2.3 0.83 0.06 1.07
HD 12661c 1.57 2.56 0.1 1.07
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