Skip to main content
Log in

Development of Diethanolamine Selective Production Process Using Shape-Selective Zeolite Catalyst

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Ethanolamines are conventionally produced on an industrial scale exclusively by the reaction of ethylene oxide (EO) with an aqueous solution of ammonia. The reaction is a typical consecutive reaction with three steps [NH3 → NH2(CH2OH) → NH(CH2OH)2 → N(CH2OH)3]; therefore, it is difficult to produce diethanolamine with high selectivity. We developed a catalytic process for selective diethanolamine production from EO and anhydrous ammonia using a ZSM-5 zeolite catalyst modified with rare earth elements. This highly active catalyst was able to recognize the difference at molecular level between diethanolamine and triethanolamine. We also succeeded in producing a binderless molded zeolite catalyst having a shape suitable for a fixed-bed reactor. This catalyst does not give problematic impurities due to undesirable reactions over binders. The catalyst deterioration was overcome by developing a regeneration process using high temperature and high-density ammonia gas as a rinse medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Edens MR, Lochary JF (1991) Kirk-Othmer encyclopedia of chemical technology, vol 2. Wiley, New York, p 8

    Google Scholar 

  2. Potter C, McLaughln RR (1947) Can J Res B 25:405

    CAS  Google Scholar 

  3. Natta G, Mantian E (1952) J Am Chem Soc 74:3152

    Article  CAS  Google Scholar 

  4. Ferrero P, Berbe F, Flamme L (1947) Bull Soc Chim Belg 56:349

    CAS  Google Scholar 

  5. Lowe A, Buttler D, Meade E (1956) Brit 760:215

    Google Scholar 

  6. Miki M, Ito T, Hatta M, Okabe T (1966) Yukagaku 15:215

    CAS  Google Scholar 

  7. Weibull BJG (1957) Swedish Patent 158,167

  8. Weibull BJG, Folke LUF, Lindstrom SO (1972) US Patent 3,697,598

  9. Johnson FL Jr (1984) US Patent 4,438,281

  10. Grice JN, Knifton JF (1990) US Patent 4,939,301

  11. Moriya A, Suneki HT, Jpn. Kokai Tokkyo Koho (1995) H07-126,228, European Patent, 1998, 652,207

  12. Moriya A, Tsuneki H, Jpn. Kokai Tokkyo Koho (1995) H07-173,114

  13. Moriya A, Tsuneki H (1996) Shokubai 38:91

    Google Scholar 

  14. Tsuneki H (1998) Shokubai 40:304

    CAS  Google Scholar 

  15. Tsuneki H, Moriya A, Baba H, Jpn. Kokai Tokkyo Koho (1999) H11-122,681, US Patent, 2001, 6,169,207

  16. Tsuneki H, Kirishiki M, Oku T, Shindo H, Hashimoto Y, Yokonuki H (2004) Shokubai 43:84

    Google Scholar 

  17. Tsuneki H (2004) In: Tatsumi T, Nishimura Y (eds) Recent development of zeolite catalysts. CMC Publishing, Tokyo, p 173

  18. Tsuneki H (2005) Shokubai 47:196

    CAS  Google Scholar 

  19. Vamlig L, Cider L (1986) Ind Eng Chem Prod Res Dev 25:424

    Article  Google Scholar 

  20. Zumi YI, Onaka A (1985) Shokubai 27:27

    Google Scholar 

  21. Jia C, Beaunier P, Massiani P (1998) Microporous Mater 24:69

    Article  CAS  Google Scholar 

  22. Rauscher M, Kesore K, Mönnig R, Schwieger W, Tißler A, Turek T (1999) Appl Catal A 184:249

    Article  CAS  Google Scholar 

  23. Kirishiki M, Tsuneki H, Morishita F, Urano M, Jpn. Kokai Tokkyo Koho (2002) 2002-028,492

  24. Saito N (2004) Spring8 report, A0788-RI-TU BL19B2

  25. Rao PRHP, Matsukata M (1996) Chem Commun 1441

  26. Matsukata M, Nishiyama N, Ueyama K (1996) Microporous Mater 7:109

    Article  CAS  Google Scholar 

  27. Shimizu S, Kiyozumi Y, Mizukami F, Mihayli RM, Beyer HK (1996) Adv Mater 8:759

    Article  CAS  Google Scholar 

  28. Shimizu S, Kiyozumi Y, Mizukami F (1996) Chem Lett 25:403

    Article  Google Scholar 

  29. Oku T, Tsuneki H (2000) In: 86th CATSJ meeting, 4E19

  30. Oku T, Tsuneki H, Jpn. Kokai Tokkyo Koho (2001) 2001-58,817

  31. Tsuneki H, Moriya A, Jpn. Kokai Tokkyo Koho (1997) H09-52,869

  32. Tsuneki H, Moriya A (2009) Chem Eng J 149:363

    Article  CAS  Google Scholar 

  33. Tsuneki H (2008) Kakoronbunshu 34:119

    CAS  Google Scholar 

  34. Tsuneki H, Oku T, Urano M, Morishita F, Jpn. Kokai Tokkyo Koho (2001) 2001-314,771, US Patent, 2003, 6,521,207

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Tsuneki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuneki, H. Development of Diethanolamine Selective Production Process Using Shape-Selective Zeolite Catalyst. Catal Surv Asia 14, 116–123 (2010). https://doi.org/10.1007/s10563-010-9100-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-010-9100-x

Keywords

Navigation