Skip to main content
Log in

Highly Selective Epoxidation of α-Pinene and Cinnamyl Chloride with Dry Air over Nanosized Metal Oxides

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Catalytic epoxidation of α-H-containing olefins with air over nanosized metal oxides under mild conditions has been first reported. Nanosized Co3O4 was considerably active for the epoxidation of α-pinene and cinnamyl chloride with air at atmospheric pressure. A substrate α-pinene conversion of 70.75 mol% with an epoxide selectivity of 87.68% was achieved at 363 K over Co3O4. Once Co3O4 was further modified with metal oxides or ammonium salts through a simple procedure consisting of ultrasonic agitation, drying and calcination, thus-prepared catalysts presented lower catalytic activity and higher epoxide selectivity than cobalt oxide itself. Over Co3O4 modified with surfactants, the conversion of α-pinene was somewhat reduced to 48.86–63.76 mol%, but the epoxide selectivity was increased to 92.12–94.83%. However, the composite oxide CoO x –SnO x (10:1) catalyzed 48.21 mol% of α-pinene conversion with 85.82% of epoxide selectivity. For the substrate cinnamyl chloride, the best result was 40.76 mol% of conversion and 87.17% of epoxide selectivity achieved by CoO x –ZnO (5:1). It is noteworthy that the use of TBHP in small amounts initiated the reaction efficiently, and the lack of TBHP would lead to a low conversion and selectivity.

Graphical Abstract

Catalytic epoxidation of α-H-containing olefins with dry air over nanosized metal oxides under mild conditions was first reported. Co3O4 and Co3O4 modified with surfactants could catalytically convert 48.86–70.75 mol% of α-pinene, with the epoxide selectivity high up to 87.68–94.83%. The best result of cinnamyl chloride catalyzed by 5:1 CoO x –ZnO was 40.76 mol% of conversion with 87.17% of selectivity to epoxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xia QH, Ge HQ, Ye CP, Liu ZM, Su KX (2005) Chem Rev 105:1603

    Article  CAS  Google Scholar 

  2. Neumann R, Dahan M (1997) Nature 388:353

    Article  CAS  Google Scholar 

  3. Hill CL (1999) Nature 401:436

    Article  CAS  Google Scholar 

  4. Qi JY, Qiu LQ, Lam KH, Yip CW, Zhou ZY, Chan ASC (2003) Chem Commun:1058

  5. Punniyamurthy T, Velusamy S, Iqbal J (2005) Chem Rev 105:2329

    Article  CAS  Google Scholar 

  6. Joergensen KA (1989) Chem Rev 89:431

    Article  CAS  Google Scholar 

  7. Mizuno N, Hirose T, Tateishi M, Iwamoto M (1993) Chem Lett 39:1985

    Article  Google Scholar 

  8. Hamamoto M, Nakayama K, Nishiyama Y, Ishii Y (1993) J Org Chem 58:6421

    Article  CAS  Google Scholar 

  9. Murahashi S, Oda Y, Naota T, Komiya N (1993) J Chem Soc Chem Commun:139

  10. Mastrorilli P, Nobile CF, Surana GP, Lopez L (1995) Tetrahedron 51:7943

    Article  CAS  Google Scholar 

  11. Laszlo P, Levart M (1993) Tetrahedron Lett 34:1127

    Article  CAS  Google Scholar 

  12. Bouhlel E, Laszlo P, Levart M, Montaufier MT, Singh GP (1993) Tetrahedron Lett 34:1123

    Article  CAS  Google Scholar 

  13. Vos DED, Sels BF, Jacobs PA (2003) Adv Synth Catal 345:457

    Article  Google Scholar 

  14. Dutenhefner PR, Silva MJ, Sales LS, Sousa EMB, Gusevskaya EV (2004) J Mol Catal A Chem 217:139

    Article  Google Scholar 

  15. Lu WY, Bartoli JF, Battioni P, Mansuy D (1992) New J Chem 16:621

    CAS  Google Scholar 

  16. Guo CC, Yang WJ, Mao YL (2005) J Mol Catal A Chem 226:279

    Article  CAS  Google Scholar 

  17. Patil MV, Yadav MK, Jasra RV (2007) J Mol Catal A Chem 277:72

    Article  CAS  Google Scholar 

  18. Qi JY, Li YM, Zhou ZY, Che CM, Yeung CH, Chan ASC (2005) Adv Synth Catal 347:45

    Article  CAS  Google Scholar 

  19. Reddy JS, Kumar R, Sciscery SM (1991) J Catal 145:73

    Article  Google Scholar 

  20. Laha SC, Kumar R (2002) J Catal 208:339

    Article  CAS  Google Scholar 

  21. Wang TJ, Yan YY, Huang Y, Jiang YY (1996) React Funct Polym 29:145

    Article  CAS  Google Scholar 

  22. Raja R, Sankar G, Thomas JM (1999) Chem Commun:829

  23. Sebastian J, Jinka KM, Jasra RV (2006) J Catal 244:208

    Article  CAS  Google Scholar 

  24. Pruss T, Macquarrie DJ, Clark JH (2004) Appl Catal A Gen 276:29

    Article  CAS  Google Scholar 

  25. Tang Q, Zhang Q, Wan H, Wang Y (2005) J Catal 230:384

    Article  CAS  Google Scholar 

  26. Thomas JM, Johnson BFG, Raja R, Sankar G, Midgley PA (2003) Acc Chem Res 36:20

    Article  CAS  Google Scholar 

  27. Kesavan V, Sivanand PS, Chandersekaran S, Kltypin Y, Gedanken A (1999) Angew Chem Int Ed 38:3521

    Article  CAS  Google Scholar 

  28. Perkas N, Koltypin Y, Palchik O, Gedanken A, Chandersekaran S (2001) Appl Catal A Gen 209:125

    Article  CAS  Google Scholar 

  29. Zhan HJ, Xia QH, Lu XH, Xu G (2007) Catal Commun 8:1472

    Article  CAS  Google Scholar 

  30. Xu G, Xia QH, Lu XH, Zhan HJ (2007) J Mol Catal A Chem 266:180

    Article  CAS  Google Scholar 

  31. Pejova B, Isahi A, Najdoski M, Grozdanov I (2001) Mater Res Bull 36:161

    Article  CAS  Google Scholar 

  32. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Chem Rev 104:3893

    Article  CAS  Google Scholar 

  33. Kum DK, Mikhailova M, Zhang Y, Muhammed M (2003) Chem Mater 15:1617

    Article  Google Scholar 

  34. Bu J, Judeh ZMA, Ching CB, Kawi S (2003) Catal Lett 85:183

    Article  CAS  Google Scholar 

  35. Khassin AA, Yurieva TM, Kustova GN, Plyasova LM, Itenberg IS, Demeshkina MP, Chermashentseva GK, Anufrienko VF, Zaikovskii VI, Larina TV, Molina IY, Parmon VN (2001) J Mol Catal A Chem 168:209

    Article  CAS  Google Scholar 

  36. Rao SN, Munshi KN, Rao NN (2000) J Mol Catal A Chem 156:205

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding supports provided by National Natural Science Foundation of China (No. 20673035), by the 2007 excellent mid-youth innovative project of Hubei Provincial Education Department of China (no.T200701), by the project-sponsored by SRF for ROCS, SEM of China (no. [2007]24), by the key project of Hubei Provincial Science & Technology Department of China (2008CDA030), and by MOE Key Laboratory of Hubei University, China (no. 2006-KL-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q.-H. Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, XH., Xia, QH., Fang, SY. et al. Highly Selective Epoxidation of α-Pinene and Cinnamyl Chloride with Dry Air over Nanosized Metal Oxides. Catal Lett 131, 517–525 (2009). https://doi.org/10.1007/s10562-009-9943-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-9943-9

Keywords

Navigation