Skip to main content

Advertisement

Log in

Dynamic Merge of the Global and Local Models for Sustainable Land Use Planning with Regard for Global Projections from GLOBIOM and Local Technical–Economic Feasibility and Resource Constraints*

  • SYSTEMS ANALYSIS
  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

In order to conduct research at required spatial resolution, we propose a model fusion involving interlinked calculations of regional projections by the global dynamic model GLOBIOM (Global Biosphere Management Model) and robust dynamic downscaling model, based on cross-entropy principle, for deriving spatially resolved projections. The proposed procedure allows incorporating data from satellite images, statistics, expert opinions, as well as data from global land use models. In numerous case studies in China and Ukraine, the approach allowed to estimate local land use and land use change projections corresponding to real trends and expectations. The disaggregated data and projections were used in national models for planning sustainable land use and agricultural development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Havlík, U. Schneider, E. Schmid, H. Bottcher, S. Fritz, R. Skalsky, K. Aoki, S. De Cara, G. Kindermann, F. Kraxner, S. Leduc, I. McCallum, A. Msonier, T. Sauer, and M. Obersteiner, “Global land-use implications of first and second generation biofuel targets,” Energy Policy, Vol. 39, 5690–5702 (2011).

    Article  Google Scholar 

  2. Y. M. Ermoliev, T. Y. Ermolieva, P. Havlík, A. Mosnier, D. Leclere, S. Fritz, M. Obersteiner, S. V. Kyryzyuk, and O. M. Borodina, “Robust downscaling approaches to disaggregation of data and projections under uncertainties: Case of land cover and land use change systems,” Cybern. Syst. Analysis, Vol. 53, No. 1, 26–33 (2017).

    Article  Google Scholar 

  3. R. Moss, J. Edmonds, K. Hibbard, M. Manning, S. Rose, D. van Vuuren, T. Carter, S. Emori, M. Kainuma, T. Kram, G. Meehl, J. Mitchell, N. Nakicenovic, K. Riahi, S. Smith, R. Stouffer, A. Thomson, J. Weyant, and T. Wilbanks, “The next generation of scenarios for climate change research and assessment,” Nature, Vol. 463, 747–756 (2010).

    Article  Google Scholar 

  4. X. Zhang, T. Ermolieva, J. Balkovic, A. Mosnier, F. Kraxner, and J. Liu, “Recursive cross-entropy model for spatially explicit future land uses: A case study of the Heihe river basin,” J. of Physics and Chemistry of the Earth, Vol. 89, 56–64 (2015).

    Article  Google Scholar 

  5. R. C. Izaurralde, J. R. Williams, W. B. McGill, N. J. Rosenberg, and M. C. Q. Jakas, “Simulating soil C dynamics with EPIC: Model description and testing against long-term data,” Ecological Modeling, Vol. 192, 362–384 (2006).

    Article  Google Scholar 

  6. G. Fischer, H. T. van Velthuizen, M. M. Shah, and F. O. Nachtergaele, “Global agro-ecological assessment for agriculture in the 21st century: Methodology and results,” Research Report RR-02-02, International Institute for Applied Systems Analysis, Laxenburg, Austria (2002).

  7. J. Kullback, Information Theory and Statistics, John Wiley and Sons, New York (1959).

    MATH  Google Scholar 

  8. R. Skalský, Z. Tarasovičová, J. Balkovič, E. Schmid, M. Fuchs, E. Moltchanova, G. Kindermann, and P. Scholtz, Geo-Bene Global Database for Bio-Physical Modeling, v.1.0. Concepts, Methodologies and Data, Technical Report, IIASA, Laxenburg (2008).

  9. C. Monfreda, N. Ramankutty, and J. Foley, “Farming the planet: Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000,” Global Biogeochemical Cycles, Vol. 22, DOI:10.1029/2007GB002947 (2008).

  10. G. E. Kindermann, I. McCallum, S. Fritz, and M. Obersteiner, “A global forest growing stock, biomass and carbon map based on FAO statistics,” Silva Fennica, Vol. 42, 387–396 (2008).

    Article  Google Scholar 

  11. S. Leduc, D. Schwab, E. Dotzauer, E. Schmid, and M. Obersteiner, “Optimal location of wood gasification plants for methanol production with heat recovery,” Intern. J. of Energy Research, Vol. 32, 1080–1091 (2008).

    Article  Google Scholar 

  12. O. Fricko, P. Havlik, J. Rogelj, Z. Klimont, M. Gusti, N. Johnson, P. Kolp, M. Strubegger, H. Valin, M. Amann, T. Ermolieva, N. Forsell, M. Herrero, C. Heyes, G. Kindermann, V. Krey, D. McCollum, M. Obersteiner, S. Pachauri, S. Rao, E. Schmid, W. Schopp, and K. Riahi, The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century. Global Environmental Change (2016). DOI: 10.1016/j.gloenvcha.2016.06.004.

    Google Scholar 

  13. Y. Chen, D. Zhang, Y. Sun, X. Liu, N. Wang, and H.H.G. Savenije, “Water demand management: A case study of the Heihe river basin in China,” Phys. Chem. Earth, Pt. A/B/C 30, 408–419 (2005).

  14. S. L. Neitsch, J. G. Arnold, J. R. Kiniry, J. R. Williams, and K. W. King, “Soil and water assessment tool,” Theoretical Documentation (2002).

  15. G. M. Foody, “Status of land cover accuracy assessment,” Remote Sens. Environ., Vol. 80, 185–201 (2002).

    Article  Google Scholar 

  16. A. G. Zagorodny, Y. M. Ermoliev, and V. L. Bogdanov, “Integrated management, security and robustness,” Publ. by Committee for Systems Analysis and Presidium of the National Academy of Sciences of Ukraine, National Member Organization of the International Institute for Applied Systems Analysis (IIASA), Kyiv (2014).

  17. A. N. Golodnikov, Y. M. Ermoliev, T. Y. Ermolieva, P. S. Knopov, and V. A. Pepelyaev, “Integrated modeling of food security management in Ukraine. Models for structural optimization of agricultural production under risk,” Cybern. Syst. Analysis, Vol. 49, No. 2, 217–228 (2013).

    Article  MathSciNet  Google Scholar 

  18. O. Borodina, E. Borodina, T. Ermolieva, Y. Ermoliev, G. Fischer, M. Makowski, and H. T. van Velthuizen, Sustainable Agriculture, Food Security, and Socio-Economic Risks in Ukraine, Springer-Verlag, Heidelberg (2012), pp. 169–185.

    Google Scholar 

  19. Y. Ermoliev, T. Ermolieva, P. Havlík, A. Mosnier, D. Leclere, M. Obersteiner, and Y. Kostyuchenko, “Estimating local-global dependencies of land use systems by downscaling from GLOBIOM model,” Publ. by Committee for Systems Analysis and Presidium of the National Academy of Sciences of Ukraine, National Member Organization of the International Institute for Applied Systems Analysis (IIASA), Kyiv (2014), pp. 228–240.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Y. Ermolieva.

Additional information

*The studies are carried out within the framework of the projects ECONADAPT (603906), TRANSMANGO (613532), SIGMA (603719), and AGRICISTRADE (612755) EU FP7, as well as the scientific project on the development of innovative methodologies and applications that investigate robust solutions for long-term concerted planning of food security and energy and water supply conducted jointly by the International Institute for Applied Systems Analysis (Laxenburg, Austria) and National Academy of Sciences of Ukraine.

Translated from Kibernetika i Sistemnyi Analiz, No. 2, March–April, 2017, pp. 16–29.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermolieva, T.Y., Ermoliev, Y.M., Havlík, P. et al. Dynamic Merge of the Global and Local Models for Sustainable Land Use Planning with Regard for Global Projections from GLOBIOM and Local Technical–Economic Feasibility and Resource Constraints* . Cybern Syst Anal 53, 176–185 (2017). https://doi.org/10.1007/s10559-017-9917-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-017-9917-7

Keywords

Navigation