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Abstract The purpose of this study was to develop

and validate a method for automated segmentation of

the carotid artery lumen from volumetric MR Angio-

graphic (MRA) images using a deformable tubular 3D

Non-Uniform Rational B-Splines (NURBS) model. A

flexible 3D tubular NURBS model was designed to

delineate the carotid arterial lumen. User interaction was

allowed to guide the model by placement of forbidden

areas. Contrast-enhanced MRA (CE-MRA) from 21

patients with carotid atherosclerotic disease were

included in this study. The validation was performed

against expert drawn contours on multi-planar refor-

matted image slices perpendicular to the artery. Excel-

lent linear correlations were found on cross-sectional

area measurement (r = 0.98, P \ 0.05) and on luminal

diameter (r = 0.98, P \ 0.05). Strong match in terms of

the Dice similarity indices were achieved: 0.95 ± 0.02

(common carotid artery), 0.90 ± 0.07 (internal carotid

artery), 0.87 ± 0.07 (external carotid artery), 0.88 ±

0.09 (carotid bifurcation) and 0.75 ± 0.20 (stenosed

segments). Slight overestimation of stenosis grading

by the automated method was observed. The mean

differences was 7.20% (SD = 21.00%) and 5.2%

(SD = 21.96%) when validated against two observers.

Reproducibility in stenosis grade calculation by the

automated method was high; the mean difference

between two repeated analyses was 1.9 ± 7.3%. In

conclusion, the automated method shows high potential

for clinical application in the analysis of CE-MRA of

carotid arteries.
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Introduction

MR Angiography (MRA) is a non-invasive imaging

modality which is routinely used for assessment of

carotid artery (CA) stenosis. Accurate quantification

of CA stenosis is clinically relevant as the decision for

the type of proper treatment for the patient is highly

dependent on the degree of stenosis. The current

clinical guidelines have been established based on the

results of clinical trials such as NASCET [1] and

ECST [2]. Although carotid MRA provides 3D

volumetric data, CA stenosis grading is generally
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evaluated on 2D Maximum Intensity Projections

(MIP) followed by visual caliper measurement. Such

measurements are highly subjective and potentially

inaccurate since MIP projections suffer from loss of

3D anatomical information, including vessel fore-

shortening over projection and loss of signal to noise.

However, 3D quantification of vessel dimensions

based on manual delineation of the vessel lumen is

a tedious task and prone to subjectivity due to the

complex vessel structures, narrowing segments, sig-

nificant intensity signal losses and irregularities. An

automated quantitative measurement is therefore

desirable to improve and to support CA assessment

from MRA images.

Different approaches have been proposed for

automated arterial lumen segmentation. A common

approach to segment a complete vasculature is by

applying a curve evolution method, better known as

the level set method or the active contour model.

Lorigo et al. [3] evolved a curve in 3D space, but the

calculations consumed a lot of time and the segmen-

tation results often included artifacts around the

vessel. Li and Yezzi [4] applied a 4D curve evolution

(the fourth dimension is the varying radii) to generate a

lumen surface, which resulted in a 3D sphere fitting

along a vessel. Consequently, the segmentation results

became too restricted for irregular vessel structures,

such as stenoses or aneurysms. Frangi et al. [5] used a

B-spline model to define a tubular geometry. A center

vessel axis was first determined after enhancing vessel

structures with the ‘vesselness’ filter and the fitting

was performed to the direction of full-width half or

10% maximum intensity between the surface and the

center vessel axis. The vesselness filter, however,

often produces false responses. A more extensive and

recent survey of other vessel segmentation techniques

is available in Lesage et al. [7].

We developed a deformable tubular model based on

Non-Uniform Rational B-Splines (NURBS) surface

modeling to segment vascular structures. To avoid

non-vessel artifacts and background noise, the tubular

model was initially positioned inside a lumen, cen-

tered at a pathline that was automatically detected by

using a front propagation method [6]. A gradient-

based energy minimization iteration scheme was

applied to deform the tubular model towards the

lumen. Since the surface was constructed with a

tubular shape model, the segmentation result was

constrained to the shape of a vessel. Several pilot

studies [8–10] have indicated promising results with

this approach. We also allowed a minimum but

intuitive user intervention particularly on difficult

cases by marking forbidden areas for selecting the

vessel of interest. We applied our method to delineate

carotid arteries from MRA images from patients

suffering severe atherosclerotic disease. Clinical find-

ings in terms of the degree of stenosis and correlation

analyses of cross-sectional areas and luminal diameter

validated with expert observers are presented.

Methods

Pathline definition

The automated detection of a trajectory curve inside a

vessel was developed based on the fast level marching

set method [11]. A minimum of two seed points

(proximal and distal) are required to define the vessel

of interest. These seed points are manually placed on

one of the three orthogonal MIP images. A depth

buffer is created to track the position of a point in 3D

space.

Using image as a medium, a front propagation was

performed starting from the proximal point to all

directions. The method computes the arrival time ta of

the front at each image element, i.e.,

taðx1Þ ¼ taðx2Þ þ
dðx1; x2Þ
f ðx1; x2Þ

; ð1Þ

where x1; x2 2 <3 are two adjacent points, d : <3 �
<3 ! <þ is an Euclidean distance function and

f : <3 � <3 ! <$ is a speed function. For MRA, we

used a sigmoid speed function (see details in de

Koning et al. [6]), which depends on the maximum,

minimum and background intensities, calculated from

the histogram of the whole MRA data.

As soon as the front reaches the distal point, the

front propagation process is terminated. The result is a

set of accepted points, i.e. points that the front has

propagated through. The arrival times on each

accepted point are stored in an image (the T-surface

image). The pathline is then extracted by finding the

fastest route from the distal to the proximal points

using a backtracking algorithm. By using the steepest-

descent approach, the fastest route is given by a curve

C : < � ½0; 1� ! <3 that satisfies
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oC

ox
¼ �rT; x 2 ½0; 1� ð2Þ

where T is the T-surface image, C(0) is the distal point,

and C(1) is the proximal point. The computed pathline

does not follow the center of the vessel since it is a

minimal path. A vessel path refinement step is used to

move the pathline to the center of the vessel (see

details in de Koning et al. [6]). This refinement uses a

distance image created from the accepted points and

moves the points of the path along the gradient of the

distance image until the points reaches the maximum

distance.

Intermediate points and forbidden planes

The front propagation method has been previously

applied to the extraction of vessel pathlines in non-

carotid arteries, e.g., in coronary arteries [12, 13], in

peripheral arteries [6] and in cerebral arteries [14].

Although the front propagation method has shown

good consistent results irrespective of varied positions

of proximal and distal points, there are some draw-

backs when applying it in carotid arteries. The distance

between vessels in the neck area can be very small.

They can be intertwined and sometimes they seem to

touch each other due to the image resolution, which

can create an easy pass to jump from one vessel to the

other (Fig. 1a). To solve this problem, we introduced

optional intermediate points that are placed manually

by the user upon seeing this mistake; a similar approach

was introduced by Benmansour et al. [26] The front

should propagate through all intermediate points

before terminating at the distal point (Fig. 1b).

In the presence of a severe stenosis, adding inter-

mediate points does not always solve the problem

(Fig. 2b), because the lumen intensity values at the

stenosed segment drop significantly almost to the same

level as the background. In this case, we introduced

another type of user intervention to block the front

propagation. Initially, the user selects the best view-

ing angle of the stenosis in the maximum intensity

projection (MIP) image. Subsequently, a curve is

drawn on the MIP image to mark a forbidden pathway

(Fig. 2c in the right panel). The curve defines a curved

plane parallel to the viewing angle. The speed function

values on this curved plane are modified to a constant

zero, which consequently block the front passing

through the plane (see the left panel of the application

in Fig. 2c).

Vascular tube model

The initial tube model is constructed by using a Non-

Uniform Rational B-Spline (NURBS) model. A

NURBS surface is defined by

Sðu; vÞ ¼
Xn

i¼0

Xm

j¼0
Ri;jðu; vÞ Pi;j ð3Þ

where 0 B u, v [ R \ 1 and Pi,j [ R3 is a set of control

points. The function Ri,j (u, v) is the piecewise rational

basis function

Fig. 1 Failed pathline detection case (a) and the correct pathline through one intermediate point (green marker) (b)
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Ri;jðu; vÞ ¼
Ni;pðuÞ Nj;qðvÞ wi;jPn

k¼0

Pm
l¼0 Nk;pðuÞ Nl;qðvÞ wk;l

ð4Þ

where Ni,p (u) is the ith B-spline basis function of

p-degree and {wk,l} are the weights.

NURBS can model any type of 3D surfaces and

it has properties that are suitable for segmenting

vascular structures. The NURBS surface is smooth

and derivable, allowing non-rigid deformation of

the model that keeps the smoothness of the surface.

Another important property is the local support of

the model in which Ri,j (u, v) is non-zero only

within [ui, ui?p-1] and [v, vj?q-1] interval. This

means that changing the position of one control

point Pi,j only affects the local surface S(u, v) on

that particular interval. Consequently, it allows local

adjustment of the surface to fit onto an irregular

vasculature.

To construct a tube model, a sweep surface

technique is performed. A number of circular rings

are positioned along the pathline. The u and v compo-

nents in Eq. 3 are directions along ring circumferential

and centerline longitudinal, respectively. The initial

diameter of the tube can be set as a constant (Fig. 3a)

or automatically estimated from the front propagation

method (Fig. 3b). For the automated estimation, the

skeletonization process is applied on the accepted

points. By using the estimated diameter, the initial

tube surface is already in the proximity of the lumen,

allowing faster convergence of the fitting iteration

process.

Tube fitting

The surface fitting process is a deformation of the

NURBS surface Sðu; vÞ : <2 ! <3 by a set of forces

Fig. 2 Failed pathline

detection in a stenotic case

(a) and even after an

intermediate point (green
marker) was added to help

the pathline detection (b).

Allowing user to draw a

freehand curve on the

projection image (the red
curve in the right panel at

figure c), a forbidden plane

(white dots) does not allow

the front propagation to pass

through, resulting in the

correct pathline inside the

stenosis
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acting on the control points to reach the dynamic

force equilibrium. The energy function to deform the

NURBS surface is defined as

Eðu; vÞ ¼
Z

FðSðu; vÞÞdudv; ð5Þ

where the potential surface F : <3 ! < is given by

Fðx; y; zÞ ¼ � rIðx; y; zÞj j: ð6Þ
An intuitive way is to imagine the NURBS surface

living on the potential surface F(x, y, z) determined by

the opposite direction of the gradient of the image

function I(x, y, z).

Let pðtÞ 2 <3 be a vector on a control point that

depends on the time t. Minimizing the energy function

E(u, v) along time is performed by applying the

following Euler–Lagrange differential equation

c
dp

dt
þ oE

op
¼ c

dp

dt
þ
XL

i¼0

oF

ox

oSx

op
þ oF

oy

oSy

op
þ oF

oz

oSz

op

� �

¼ 0 ð7Þ

where L is the number of surface tessellations, c is a

weighting factor and Sx, Sy and Sz are the derivatives of

Eq. 3 with respect to x, y and z. Note that qE/qp is the

image force that applies to the surface nodes. Solving

Eq. 7 will define a set of vectors (image force vectors)

that act on each control point.

Image acquisition

All MR images were acquired by a 1.5T MRI scanner

equipped with a gradient overdrive (Magnetom Vision,

Siemens Medical System, Erlangen, Germany). Spoiled

3D FLASH (fast low-angle shot) MR angiography was

performed using a 4 9 2 circularly polarized phased-

array neck coil. The sequence was performed with

32–36 coronal partitions. The typical image slice param-

eters were 1.94–2.5 mm thickness, 2.84–3.15 ms repe-

tition time, 1.03–1.11 ms echo time, 35–40� flip angle,

70 9 140 9 280 mm3 field of view and a scan time

of 9–9.5 s. The typical image slice resolution was

256 9 256 pixels with 1.09 9 1.09 mm pixel spacing.

Four consecutive 3D images were taken, starting at

approximately 3 s after the administration of 0.1

mmoL/kg gadolinium (Omniscan, Hafslun Nycomed,

Oslo, Norway). Digital subtraction MR images were

generated in several cases to improve vessel-to-back-

ground contrast.

Patient study

Contrast-enhanced MRA studies from 21 patients

suffering carotid atherosclerotic disease were included

for this study. Vessel segments of interest were defined

from proximal common artery to the distal either

internal or external arteries, depending on the stenosis

location. For assessing the reproducibility of the

automated method, two groups of pathlines were

generated: (1) starting from the common artery

proximal to the main bifurcation to both internal and

external arteries, and (2) using a reversed direction

from internal/external artery to the common carotid.

Although the two groups of pathlines were similar,

they were different in terms of the estimated initial

radius.

Fig. 3 Two examples of initial tube models prior fitting: a constant radii, and b waveprop estimated radii

Int J Cardiovasc Imaging (2012) 28:1513–1524 1517
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Image analysis

The detected pathline was used to create curved

multiplanar reformatted (CMPR) images for manual

luminal contour tracing by an independent expert.

CMPR image slices were generated every 1.0 mm

(non-stenosed segments) and 0.5 mm (stenosed seg-

ments) with the typical size of 64 9 64 pixels of

0.5 9 0.5 mm pixel spacing. An expert drew luminal

contours on these images to define the reference by

using a dedicated quantitative Vessel Wall MR

Analytical Software (VesselMASS, Leiden University

Medical Center, the Netherlands) [15].

To maintain the objectiveness and consistency of

manual contouring, full-width half-maximum criteria

was applied to improve the vessel boundary visuali-

zation [16]. Let Imax and Iout be the maximum intensity

response at the center of the lumen and the background

intensity, respectively. The 50% threshold value was

set as follows

T ¼ 1

2
Imax � Ioutð Þ: ð8Þ

The thresholded binary image was used as a soft

guideline to delineate the lumen. Comparisons were

made with the adjacent slice planes if there were some

doubts about the shape of the lumen boundary.

Stenosis grading

Stenoses were graded based on NASCET criteria [1]:

G ¼ 1� dr

ds

� �
� 100% ð9Þ

where dr is the narrowest diameter of the residual

lumen and ds is the luminal diameter of the distal

vessel, i.e., the segment of the same artery that is

located well beyond the stenosed bulb [17]. The

luminal diameter was defined as the minimum diam-

eter of a circle that can still be fitted inside the lumen

cross-section.

Statistical analys

Statistical analysis was performed by using R statis-

tical computing environment [18]. Linear regression

was applied to analyze correlation of cross-sectional

area and luminal diameter measurements derived from

the automated method and the expert. Pearson corre-

lation coefficient (r) was used to indicate the degree of

linear relationship between the two methods. The

statistical significance level was set at P \ 0.05 with

confidence interval of 95%. The correlation analysis

was performed on different vessel segment categories:

common carotid arteries (CCA), internal carotid

arteries (ICA), external carotid arteries (ECA), bifur-

cation slices (BA) and stenosed slices (SA).

To measure the degree of similarity between two

contours, Dice similarity index was applied [19], i.e.,

DðC1;C2Þ ¼
2 AðC1 [ C2Þ

AðC1Þ þ AðC2Þ
ð10Þ

where C1, C2 are two different contours and A(C) is the

area defined by contour C. The same vessel group

division was applied for this measurement.

Bland–Altman analysis was performed to study the

agreement of stenosis grading between the automated

method and the observer [20]. The same analysis was

also applied for measuring reproducibility of the

method for two repeated trials. Only SA group was

included in both analyses.

Results

The automated method was performed on a PC Intel

Quad Core Q6600 2.40 GHz 2.00 GB RAM worksta-

tion running Microsoft Windows XP in a single thread

mode. The maximum number of iterations was set to

200 and the iteration was terminated earlier when the

average size of image forces was less than or equal to

10-5. The distance between control point rings was

fixed to 3 mm with 7 control points per ring and 5

mesh patches between rings.

The average iteration time was 15.0 ± 7.0 s or

0.14 ± 0.05 s/mm with the average pathline length of

100.8 ± 21.7 mm. Four cases reached the maximum

number of iteration. Examples of four segmentation

results on CA stenoses are shown in Fig. 4.

Correlation analysis

The automated method demonstrated excellent linear

correlation with expert contours for both cross-sectional

area and luminal diameter measurements (Fig. 5).

Pearson correlation coefficients for measuring the

1518 Int J Cardiovasc Imaging (2012) 28:1513–1524
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cross-sectional area and the luminal diameter, which

were calculated from the automated and expert-drawn

contours, were both r = 0.98 (P \ 0.05).

Excellent linear correlation was also achieved in

each vessel type. Table 1 shows correlation coeffi-

cients for each vessel type. Strong correlations for both

cross-sectional area and luminal diameter measure-

ments were found for CCA, ICA, ECA and BA. For

stenosed areas (SA), moderate correlation was found.

The correlation coefficient to measure area and luminal

diameter for SA were r = 0.70 (P \ 0.05) and

r = 0.58 (P \ 0.05), respectively. The mean luminal

diameter for SA slices was 8.8 mm (range: 0.75 mm

to 23.3 mm) compared to expert mean diameter of

9.05 mm (range: 2.34 mm to 23.23 mm). Figure 6

shows the comparison of measuring area and luminal

diameter between the automated method and the expert

in a graphical form of standard error bars.

Fig. 4 Some segmentation results. Left: volume rendering, middle: maximum intensity projection, right: the segmentation mesh result

(blue surface)
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Fig. 5 Linear regression analysis for cross-sectional areas (a) and luminal diameter calculations (b) comparing automatically derived

with manually traced contours

Table 1 Pearson correlation coefficients for individual cate-

gorical slices measuring cross-sectional areas and luminal

diameter between the automated method and the expert

Cross-sectional Area luminal [r(P)] Diameter [r(P)]

CCA 0.99 (\0.05) 0.98 (\0.05)

ICA 0.96 (\0.05) 0.93 (\0.05)

ECA 0.92 (\0.05) 0.89 (\0.05)

BA 0.91 (\0.05) 0.97 (\0.05)

SA 0.70 (\0.05) 0.58 (\0.05)

CCA common carotid artery, ICA internal carotid artery, ECA
external carotid artery, BA bifurcartion, SA stenosed slices
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Degree of similarity

Dice similarity coefficients were excellent for CCA

and ICA, i.e., the mean values were 0.95 ± 0.02 and

0.90 ± 0.07, respectively. The lumen similarities

were still very high for branching arteries; the mean

Dice coefficient for BA was 0.88 ± 0.09 and for ECA

was 0.87 ± 0.07. The similarity was however the

lowest for the stenosed vessel and had a wider variance

(see Fig. 6). The mean Dice coefficient for SA was

0.75 ± 0.2.

Agreement in stenosis grading

Table 2 shows the agreement results between the

automated method and two observers for measuring

stenosis grades. The presented method achieved

good agreements with the observers, i.e., the mean

difference was 7.20% (SD = 21.00%) and 5.19%

(SD = 21.96%) with Observer 1 and Observer 2,

respectively. The large spread in the statistical results

in both validations was mainly caused by one case (see

Fig. 7a and b). In this particular case, the loss of signal

intensity was so apparent that it caused unreliable

lumen contour assessment both by the observers and

the automated method. However, the differences

between the automated method with both observers

were uniformly distributed as shown in Fig. 7a and b.

To measure the ground truth reliability, we

also measured intra observer variability. When both

observers were compared, the inter-observer variation

was relatively small. The mean difference was 4.52%

(SD = 7.60%). Figure 7d also confirms this finding.

Reproducibility of the automated method was

measured by switching the position of proximal and

distal points. The pathline for the first trial ran from

common carotid to either external or internal artery.

The second trial used internal/external to common
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artery pathlines. Given different seed point positions,

the automated method generated consistent results.

The mean difference was 1.89% (SD = 7.34%). There

was no systematic error found as shown in Fig. 7c.

Discussion

We have presented an automated lumen segmentation

method for carotid arteries based on a deformable

NURBS model. The method showed good agreement

with the expert in terms of lumen diameter, cross-

sectional area measurement and stenosis grading. This

result suggests high potential for clinical applicability

of the automated method in the analysis of CE-MRA

of carotid arteries. To apply the automated lumen

detection method, limited user-interaction is required

for indicating the start and end position of the vessel

segment of interest. In particular complex cases, such

as cases with highly curved vessel segments or cases

where different vessels run very close to each other,

some additional interaction was needed to obtain a

valid lumen pathline. The high reproducibility of the

method indicates that these manual initialization steps

have negligible influence on the obtained diameter

measurements.

We compared our method with a similar study

performed by Guzman et al. [21], which segmented

Table 2 Stenosis grading

assessment results between

the automated method and

two observers

Mean

difference (%)

Min

difference (%)

Max

difference (%)

SD (%)

Auto versus Obs1 7.20 -14.44 60.52 21.00

Auto versus Obs2 5.19 -21.91 59.24 21.96

Obs1 versus Obs2 -4.52 -21.34 4.36 7.60

Auto1 versus Auto2 -1.89 -22.51 10.13 7.34

30 40 50 60 70

−
40

−
20

Auto 1 vs Observer 1

Average of stenosis grading (%)

mean=7.2%

+2SD

−2SD

(a)

30 40 50 60

−
40

−
20

Auto 1 vs Observer 2

Average of stenosis grading (%)

mean=5.19%

+2SD

−2SD

(b)

30 40 50 60 70 80

−
40

−
20

0
20

40
0

20
40

Auto 1 vs Auto 2

Average stenosis grading (%)

mean=−1.89%

+2SD

−2SD

(c)

20 30 40 50 60

−
40

−
20

0
20

40
0

20
40

Observer 1 vs Observer 2

Average stenosis grading (%)

mean=−4.52%

+2SD

−2SD

(d)

D
iff

er
en

ce
 o

f s
te

no
si

s 
gr

ad
in

g 
(A

ut
o1

 −
 O

bs
1)

D
iff

. o
f s

te
no

si
s 

gr
ad

in
g 

(A
ut

o1
 −

 A
ut

o2
)

D
iff

er
en

ce
 o

f s
te

no
si

s 
gr

ad
in

g 
(A

ut
o1

 −
 O

bs
2)

D
iff

. t
w

o 
ob

se
rv

er
s 

(O
bs

1 
−

 O
bs

2)

Fig. 7 Stenosis grading

assessments: a automated

method (Auto1) versus

Observer 1, b automated

method (Auto1) versus

Observer 2, c between two

repeated automated methods

with different pathlines

(Auto1 vs. Auto2), and

d Observer 1 versus

Observer 2
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carotid arteries by applying the 2D cross-sectional

threshold mechanism during the fitting process [6].

Guzman study measured the diameter of common

carotid artery (CCA) and internal carotid artery (ICA)

with two measurements: caliper and digital subtracted

angiography (DSA). Table 3 compares the cross

correlation coefficient of the luminal diameter

between our method, the Guzman study with caliper

and the Guzman study with DSA measurement. In

both cases, our method shows better correlation

coefficients compared to the Guzman study.

In terms of the stenosis grading, the method

achieved good reproducibility. There was one partic-

ular case that both observers disagreed with the

automated method (one of which the segmentation

result is shown in Fig. 4d). The tube model shrank

substantially because of significant intensity drop-out

in the signal intensity at the stenosed area. The

presence of signal intensity drop-out at the stenosis

and distal intensity reduction have been associated

with severe (C70%) stenosis [22]. This caused an

overestimation of the stenosis grading compared to the

observers. This limits the automated method, because

the fitting process relies heavily on the image gradient.

When the contrast between lumen and the background

becomes so low, the image forces cannot stop the

iteration process at the correct edge and subsequently

the mesh keeps shrinking (Fig. 8).

Similarly due to the low tissue contrast, it is difficult

to delineate the lumen at the stenosed area, because

the lumen is hardly visible (Fig. 9). The only objective

guidance for the manual contouring is by taking the

full-width half-maximum criteria into account. Accu-

rate stenosis grading therefore highly depends on the

quality and spatial resolution of the imaging technique.

The use of high-field and parallel imaging MR systems

might solve this problem in the future [23–25].

Underestimation of luminal area segmentations

was present mostly at the bifurcation areas (circle

marks in Fig. 5a). Bifurcations are still problematic in

the current implementation, because the tube model is

still designed to fit onto a single vessel segment. The

tube model followed straight to one artery branch

inside the main bifurcation, while the observer drew

luminal contours of the whole main bifurcation area

(see an illustration in Fig. 8). For assessing the degree

of stenosis, this limitation might become a problem if

the stenosis occurs in the bifurcation area. In this case,

the deformable mesh model should be extended to fit

onto bifurcation area.

Conclusions

An automated method for quantification of carotid

artery stenosis from MRA data based on a deformable

mesh model has been presented. The method achieved

excellent correlation on area and luminal diameter

measurements. The processing time was reasonably

fast to segment the vessel of interest. Prior to

segmentation, some user interventions were needed

in the presence of stenosis but the interaction mech-

anism was designed to be as easy and as intuitive

as possible. When image quality is fairly good, the

Table 3 Luminal diameter measurement comparisons

This

study

(r)

Guzman et al. [19]

with caliper

measurement (r)

Guzman et al. [19]

with DSA

measurement (r)

CCA

diameter

0.98 0.75 0.81

ICA

diameter

0.93 0.81 0.78

Fig. 8 An example of vessel segmentation on carotid bifurca-

tion area showing disagreement (pointed by black arrows)

between the automated method with expert drawn contours. The

left Figure shows the expert drawn contours (green curves),

while the right Figure shows the contours generated by the

automated method (cyan curves). Volumetric rendering of the

vessel structure is shown in the background
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presented automated MRA analysis method provides

very accurate and reproducible quantitative assess-

ment of vessel dimensions and the degree of stenosis.
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