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Abstract Recent years have witnessed a rapid

development of multi-slice computed tomography

(MSCT) technology. The number of detector rows

has increased from 4-slices to the current availability

of 64-slice and even 320-slice systems. In addition,

images are acquired with thinner slices and faster

rotation times resulting in substantially improved

image quality and diagnostic accuracy. Simulta-

neously, effective dose reduction acquisition

techniques have been developed allowing consider-

able reduction of the radiation dose. Conceivably,

these advancements may allow further expansion of

the use of MSCT beyond the visual assessment of the

presence or absence of significant coronary artery

disease. Indeed, a particular advantage of the tech-

nique is that in addition to evaluation of the coronary

arteries it also allows assessment of cardiac structures

and function. The purpose of the current review is to

discuss several novel applications of cardiac MSCT,

including stenosis quantification, atherosclerotic pla-

que imaging and prognostification as well as imaging

of left ventricular function, aortic and mitral valve

anatomy using state-of-the-art technology.
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Introduction

Recent years have witnessed a rapid development of

multi-slice computed tomography (MSCT) technol-

ogy. The number of detector rows has increased from

4-slices to the current availability of 64-slice and

even 320-slice systems. In addition, images are

acquired with thinner slices and faster rotation times

resulting in substantially improved image quality and

diagnostic accuracy. Simultaneously, effective dose

reduction acquisition techniques have been developed

allowing considerable reduction of the radiation dose.

Conceivably, these advancements may allow further

expansion of the use of MSCT beyond the visual

assessment of the presence or absence of significant

coronary artery disease (CAD). Indeed, a particular

advantage of the technique is that in addition to

evaluation of the coronary arteries it also allows

assessment of cardiac structures and function. The

purpose of the current review is to discuss several

novel applications of cardiac MSCT, including ste-

nosis quantification, atherosclerotic plaque imaging

and prognostification as well as imaging of left

ventricular (LV) function, aortic and mitral valve

anatomy using state-of-the-art technology.

Developments in imaging of the coronary arteries

Quantification of the degree of stenosis on MSCT

High diagnostic accuracies to detect significant

coronary artery stenoses have been reported for

MSCT as compared to invasive coronary angiogra-

phy [1]. Of note, these data are based on visual

assessment of the degree of stenosis using in general

a cut-off of 50% luminal narrowing or more. In

contrast, no validated quantitative approach is cur-

rently available which is considered to be a major

limitation of the technique. Indeed, the opportunity to

obtain a more precise measure of the degree of

stenosis, similar to quantitative coronary angiography

(QCA), would be highly beneficial in terms of

diagnostic accuracy, reproducibility and subsequent

therapeutic management decisions. However, the

limited temporal and spatial resolution of MSCT as

compared to invasive coronary angiography may

pose substantial difficulties. Not surprisingly, previ-

ous attempts to quantify stenosis of coronary arteries

have been disappointing [2, 3]. Leber and colleagues

recently evaluated the diagnostic accuracy of stenosis

quantification in 59 patients who were underwent

both 64-MSCT and invasive coronary angiography

[2]. In 55 patients, all coronary artery segments (825

segments, based on a 15 segment model) could be

visualized and subsequently quantified on MSCT.

Overall, only a moderate correlation (n = 825,

r = 0.54) was observed for diameter stenosis

between measurements on MSCT and QCA. In

particular, poor diagnostic accuracy of MSCT was

observed for distal segments as compared to proximal

and mid segments of the coronary arteries. With

regard to plaque type, a tendency to overestimate the

degree of stenosis in the presence of calcium has been

identified. Finally, reproducibility appears to be

limited as well [2–4].

To some extent, better correlations may be

expected by comparing MSCT to true tomographic

atherosclerosis imaging techniques, such as intravas-

cular ultrasound (IVUS). Also, the development of

more automated algorithms with less manual inter-

ference may substantially improve accuracy and

reduce interobserver variability [5, 6]. An example

of analysis with automated quantification software

developed at our own center is provided in Fig. 1.

Recently, Bruining and coworkers reported their

observations using automated coronary plaque mea-

surements on MSCT angiography in comparison to

IVUS in 48 patients [5]. Interestingly, the authors

demonstrated that automated lumen detection on

MSCT angiographic examinations was superior to

manual assessment of vessel contours with good

reproducibility. Nevertheless, automated quantifica-

tion of MSCT systematically underestimated

coronary plaque, in line with previous investigations.

Accordingly, although the potential of automated

quantification of stenosis is evident, further develop-

ments remain needed before these algorithms can be

used in daily clinical practice. In addition, one needs

to realize that although assessment of significant

stenosis as compared to invasive coronary angiogra-

phy may improve by the availability of quantitative

algorithms, prediction of ischemia will remain lim-

ited. Indeed, several studies comparing MSCT

coronary angiography with functional testing

revealed a large discrepancy between techniques

[7, 8]. In line with previous comparisons with

invasive coronary angiography, many significant
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stenoses on MSCT did not result in ischemia on

functional testing. Moreover, Meijboom et al.

recently demonstrated that even quantitative assess-

ment resulted in poor correlation with intracoronary

fractional flow reserve, confirming that anatomical

assessment cannot predict the hemodynamic signif-

icance of a coronary stenosis [9]. Accordingly,

further evaluation with functional testing remains

essential for angiographically intermediate lesions

prior to referral for invasive coronary angiography

and revascularization.

Plaque imaging with MSCT

An emerging feature of MSCT that receives increasing

interest is its capability to non-invasively visualize

atherosclerosis, as illustrated in Fig. 2. Despite the

development of dedicated risk assessment tools, a

large number of patients without any prior symptoms

experience acute myocardial infarction or even sudden

death [10]. These unexpected adverse cardiac events

emphasize the significance of detection of underlying

coronary atherosclerosis. Moreover, it appears that not

only plaque severity in terms of percentage stenosis but

also plaque composition is an important determinant of

acute coronary events. Plaques with a large necrotic

core and thin fibrous cap (identified by histology)

appear to be more vulnerable to rupture and can be a

substrate for atherothrombotic events [11]. Until

recently, evaluation of potentially vulnerable lesions

was only possible by using invasive modalities such as

IVUS, elastography and optical coherence tomogra-

phy. However, recent studies have demonstrated the

potential of MSCT to evaluate differences in athero-

sclerotic plaque burden and composition non-

invasively [12–14]. Indeed, an important advantage

of the technique, as compared to invasive coronary

angiography, is that it visualizes not only luminal

narrowing but also atherosclerotic plaque content.

Consequently, extensive effort is currently undertaken

to determine in more detail what observed differences

in plaque morphology on MSCT represent.

Fig. 1 Example of

automated quantification of

the degree of stenosis using

dedicated software

(QAngio� CT, Medis,

Leiden, the Netherlands).

Initially, segment definition

is performed using proximal

and distal markers as

illustrated in a. Automated

contour detection is

performed in longitudinal

(b) and transversal

(c) views as previously

described [6]. Finally, as

shown in d, quantification

of stenosis is based on

differences between the

reference line (red line) and

contour diameter (yellow
line), similar to traditional

QCA
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Briefly, three different plaques types can be

distinguished by MSCT; non-calcified plaque, mixed

plaque and calcified plaque. Calcified lesions appear

as bright white dense structures, mixed plaques

consist of non-calcified and calcified elements within

the same plaque and non-calcified plaques have lower

density compared with the contrast-enhanced vessel

lumen but without any visible calcification. Compar-

isons with IVUS have shown that using differences in

attenuation values MSCT may indeed reliably differ-

entiate plaque configurations [14]. In a recent study,

mean MSCT density of calcified plaque was

516 ± 198 Hounsfield Units (HU), while the mean

density measured within non-calcified plaques and

mixed plaques was 11 ± 12 and 78 ± 21 HU,

respectively [15]. Further differentiation of non-

calcified plaque however may be difficult. Pohle

and colleagues demonstrated significant differences

between ‘‘lipid rich’’ (mean density of 58 ± 43 HU)

and ‘‘fibrous’’ plaque (mean of 121 ± 34 HU),

although the overlap of attenuation values between

individual lesions was substantial [16]. Additionally,

external factors such as the amount of contrast, body

mass index and cardiac output also highly influence

attenuation values. As a result, detailed characteriza-

tion of non-calcified plaque as stable or vulnerable is

currently not feasible based on MSCT density

measurements alone. Pundziute and colleagues

recently compared plaque composition to virtual

histology IVUS (VH IVUS) and reported a good

correlation between plaque characteristics on MSCT

and relative plaque component on VH IVUS [17].

Nevertheless, still small percentages of calcium were

observed in lesions deemed to be non-calcified on

MSCT. Conversely, in plaques appearing as com-

pletely calcified, fibrotic or fibro-fatty tissue is

frequently identified on VH IVUS as well. Possibly,

initial differentiation into calcified or non-calcified

may therefore be more reliable. Based on their

appearance, lesions containing calcium may then be

further differentiated into large calcification or spotty

calcifications, as recently suggested [18]. Interest-

ingly, features of thin capped fibroatheroma

(suggesting vulnerability) were most frequently

observed in lesions classified as mixed on MSCT.

Additionally, Lin and colleagues investigated the

relationship of anatomical MSCT variables including

plaque composition and extent with functional ische-

mia on SPECT [19]. The authors observed that mixed

plaques were an independent predictor of severely

abnormal SPECT studies. These observations suggest

that the observation of multiple mixed plaques may

possibly confer a higher risk of adverse cardiac

events. Moreover, also in retrospective studies com-

paring plaque morphology on MSCT between

patients presenting with acute coronary syndromes

Fig. 2 Evaluation of

atherosclerotic plaque with

MSCT. a A curved

multiplanar reconstruction

of the right coronary artery

(RCA), obtained by 320-

slice MSCT without

evidence of atherosclerosis.

In contrast, the curved

multiplanar reconstruction

(320-slice MSCT) of the

RCA in b shows the

presence of diffuse

atherosclerosis (arrows).

Note that both non-calcified

and calcified tissue can be

identified
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and stable CAD, relative more non-calcified and

mixed plaques have been identified in the former

patients [20–23]. However, no robust prospective

data are currently available to support this thesis.

At present, it is important to realize that the inferior

resolution of MSCT as compared to invasive plaque

imaging techniques remains an important limitation.

Nevertheless, novel approaches are currently under

investigation including dual-energy source MSCT and

dedicated contrast agents for improvement in plaque

characterization [24, 25]. In addition, sophisticated

algorithms to accurately determine plaque volume are

under development. Potentially, these algorithms in

combination with assessment of plaque component

may allow MSCT to play a role in the monitoring of the

efficacy of anti-atherosclerotic interventions [26, 27].

Accordingly, although plaque imaging with MSCT

represents an intriguing aspect of the technique,

available data are scarce and limited to small single-

center studies. Prospective trials are highly needed to

determine whether detailed evaluation of atheroscle-

rosis by MSCT may indeed provide clinically relevant

information.

Evaluation of prognosis with MSCT

Since non-invasive coronary angiography with

MSCT is a relatively new technique, only limited

data are available concerning its potential prognostic

value. In contrast, evaluation of the presence and

extent of atherosclerosis by means of coronary

calcium scoring (CS) has been possible for a longer

period and a considerable amount of evidence is

currently available with this technique [28]. In a large

study by Shaw et al. CS was obtained in 10,377

asymptomatic individuals who were subsequently

followed for a median of 5 years [29]. The authors

demonstrated that CS was able to predict all-cause

mortality, independent of baseline cardiac risk fac-

tors. Recently, the 2007 ACCF/AHA expert

consensus document on CS has been published in

which a systematic review of the available literature

(n = 27,622 patients) was performed [28]. Based on

these data, the presence of any coronary artery

calcium was shown to confer a fourfold increased

risk of cardiac death or myocardial infarction

(P \ 0.0001) as compared to the absence of coronary

artery calcifications [28]. In contrast, an event rate as

low as 0.4% was observed in patients without any

coronary artery calcium. Similar observations were

recently reported in a large registry of patients

(n = 25,253 patients), confirming that an increase

in the extent of coronary artery calcium corresponds

with an elevated risk for all-cause mortality [30].

Accordingly, knowledge of CS may refine traditional

risk stratification and thus guide therapeutic decisions

by shifting patients to either a higher or lower risk

category. As a consequence, particularly patients

deemed at intermediate risk based on traditional risk

assessment may benefit from this technique.

Preliminary investigations using MSCT coronary

angiography have suggested that this technique may

also provide prognostic information [31, 32]. Pun-

dziute et al. assessed the prognostic value of 16- or

64-slice MSCT in a cohort of 100 patients with

known or suspected CAD [31]. During a follow-up

period of 1 year MSCT was shown to predict the

occurrence of events independent of baseline risk

factors. In a larger study by Min et al., 1,127 patients

undergoing 16-slice MSCT were evaluated during a

follow-up period of 2 years [32]. As illustrated in

Fig. 3, event rates for all-cause mortality ranged

between 0.3% for patients with none or mild athero-

sclerosis (stenosis \50%) on MSCT to 15% in

patients with mild to moderate left main disease.

Several studies have addressed the incremental

prognostic value of anatomic imaging when used in

addition to myocardial perfusion imaging (MPI). In the

studies by Ramakrishna et al. and Anand et al.,

respectively 835 and 510 patients were enrolled who

underwent both CS and MPI [33, 34]. The combination

of these techniques resulted in a synergistic prediction

of cardiovascular events. Rozanski and colleagues

assessed the combined use of CS and MPI in a large

cohort of 1,153 asymptomatic patients [35]. Interest-

ingly, in patients with normal myocardial perfusion on

MPI (n = 1,089), the observation of a high CS was not

associated with an increased risk for cardiac death and

myocardial infarction during a mean follow-up of

32 ± 16 months. In contrast, Schenker et al. recently

observed in symptomatic patients that the risk of all-

cause mortality and myocardial infarction increased

with increasing CS, both in patients with normal and in

patients with abnormal perfusion on MPI [36]. Simi-

larly, van Werkhoven et al. recently demonstrated that

the information on plaque burden and composition

obtained by MSCT coronary angiography had incre-

mental prognostic value over MPI [37]. Accordingly,
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the precise relative prognostic values of anatomical

and functional techniques remain not fully defined at

present and may highly depend on the patient popu-

lation that is studied. Although their combination may

enhance risk stratification, one should realize that it is

at the cost of increased radiation burden. Further

research is required to identify those patients that may

substantially benefit from comprehensive anatomical

and functional assessment. However, recent innova-

tions in MSCT technology and acquisition protocols,

such as prospective ECG-triggering, have resulted in

substantial dose reduction without loss of image

quality [38]. Moreover, Herzog et al. recently demon-

strated that also the high diagnostic accuracy and high

negative predictive value of the technique in particular,

were maintained at an average radiation dose as low as

2.1 ± 0.7 mSv (range: 1.0–3.3) [39]. Importantly

these recent developments are currently also being

implemented in hybrid systems and recent data have

confirmed the feasibility of low dose (B10 mSv)

hybrid PET/CT and even SPECT/CT [40, 41].

Developments in imaging of cardiac structures

and function

LV function assessment using MSCT

LV function serves as a valuable prognostic and

diagnostic marker in patients with CAD [42, 43] and

can be evaluated with MSCT. Depending on the

MSCT acquisition technique, retrospective recon-

struction of cardiac images in any tomographic plane

throughout the cardiac cycle is possible. To assess

global LV function, 10 or 20 cine-loops are in general

obtained by reconstructing thick slices (2 mm) in the

short-axis orientation throughout the R–R interval (in

steps of 5 or 10%). Subsequently, end-systolic and -

diastolic phases are determined by selecting the

smallest and largest cross-sectional LV cavity areas.

Specialized software is used for semi-manual or since

more recently fully automatic delineation of the

endocardial borders of the appropriate phases [44].

Based on the Simpson method, end-diastolic and -

systolic volumes are subsequently derived and the LV

ejection fraction (LVEF) is calculated. More recently

also dedicated volumetric algorithms have become

available. These algorithms use the high contrast

between the LV cavity and myocardium to derive LV

volumes following manual or automated definition of

the mitral valve plane and LV axis.

The feasibility of LV function evaluation with

MSCT has been investigated extensively. Numerous

studies have shown good agreement for the assess-

ment of global LV function between MSCT and 2D-

echocardiography [45, 46]. Good agreement was

demonstrated for LVEF by Wu et al., as determined

by 64-slice MSCT and 2D-echocardiography in 63

patients (r = 0.87, P \ 0.001) [47]. In addition,

excellent correlations have also been observed

between measurements obtained by MSCT and

magnetic resonance imaging (MRI), which is

regarded as the gold standard for non-invasive

quantification of LV function [48–50]. Moreover,

Yamamuro et al. showed that measurements between

MSCT and MRI were more closely related than

Fig. 3 Prognostic value of

MSCT. Cumulative survival

curves in relation to the

extent of atherosclerosis

plaque (as assessed based

on the Duke Prognostic

Coronary Artery Disease

Index). Reprinted with

permission from reference

[32]

246 Int J Cardiovasc Imaging (2009) 25:241–254

123



measurements between 2D-echocardiography and

MRI, suggesting that MSCT may be even more

accurate than 2D-echocardiography in the evaluation

of LV function [51]. This may be explained by the

fact that, while echocardiography relies on a geo-

metrical assumption of two-dimensional images,

MSCT uses true three-dimensional endocardial bor-

der definition.

In addition to global LV function assessment,

MSCT allows evaluation of regional wall motion by

displaying the images in cine-loop. Previously,

Henneman et al. showed excellent agreement for

regional wall motion between 64-slice MSCT and

2D-echocardiography, with 96% of segments scored

identically on both modalities (kappa = 0.73) [52].

Mahnken et al. assessed regional wall motion using

16-slice MSCT in comparison to cardiac MRI. In line

with other investigations, the investigators observed a

good agreement between the two modalities, with

86% of segments scored identically (k = 0.79) [53].

It is important to realize that with previous standard

MSCT acquisition protocols, LV function measure-

ments could be obtained retrospectively from the same

data set acquired for coronary angiography. Thus, LV

function could be assessed without the need for

additional acquisitions. Recently, prospective ECG

gating protocols have been introduced. With these

protocols, data are acquired during a small part of the

cardiac cycle. As a result, radiation dose is substan-

tially reduced but assessment of LV function is no

longer possible. Of note, when ECG pulsing or dose-

modulation is applied, LV function can still be reliably

assessed despite the increased noise during systole.

Nevertheless, the radiation dose associated with this

approach remains higher as compared to when data are

acquired prospectively only during diastole. There-

fore, the necessity for LV function analysis should be

carefully considered for each individual patient.

Imaging of pulmonary vein anatomy with MSCT

In addition to assessment of CAD, the role of MSCT

within catheter ablation procedures has increased

substantially. An increasing number of patients

presents with atrial fibrillation and is subsequently

referred for treatment by means of catheter ablation.

Since the aim of this procedure is to electronically

isolate the pulmonary veins, detailed knowledge of

left atrial and pulmonary vein anatomy both prior and

during the procedure is important. Previous studies

have demonstrated that among patients with atrial

fibrillation, a considerable variation in pulmonary

vein anatomy, including the presence of a common

ostium of the pulmonary veins or the presence of

additional pulmonary veins, exists [54]. These ana-

tomical variations can be easily recognized on MSCT

with higher accuracy as compared to other techniques

[55]. In addition, knowledge of variations in anatomy

and size of related structures such as atrial append-

age, roof and septum is important and may facilitate

the catheter ablation procedure [56]. Moreover, close

proximity of surrounding structures such as the

esophagus and the coronary arteries can be identified

with MSCT beforehand. Based on this information,

the individual ablation strategy may be adapted to

avoid complications such as atrioesophageal fistula

and coronary artery injury.

Extensive effort is currently invested in the

integration of the MSCT images with the electro-

physiological data in order to have accurate electro-

anatomical images available on-line during the cath-

eter ablation procedure. Several studies have

indicated that fusion of these data is indeed feasible

with only minor registration errors (ranging from 1.6

to 2.1 mm on average) [57]. Moreover, preliminary

data indicate that integrated use of MSCT during the

catheter ablation procedure may substantial reduce

procedural and importantly also fluoroscopy times

[58]. In a recent study, Kistler et al. observed a

significant reduction in average fluoroscopy time

from 62 ± 26 min using only the electrophysiolog-

ical images to 49 ± 27 min when integrated electro-

anatomical images were available [58]. Also, an

improvement in procedural success was observed.

Thus, detailed anatomical information obtained by

MSCT may be helpful to facilitate catheter ablation

procedures and may have the potential to improve

procedural success as well reducing complications.

However, thus far only small studies are available

and larger, randomized trials are needed to confirm

that integrated use of MSCT will eventually improve

outcome after catheter ablation.

Imaging of mitral and aortic valve anatomy

with MSCT

Although echocardiography remains the cornerstone

in the evaluation of valvular heart disease, recent data
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have demonstrated the feasibility of MSCT to

accurately study mitral and aortic valve anatomy

and function [59–64]. By using multiphase data sets

obtained during ECG gating, the leaflet or cusp

motion can be evaluated in cine loop. For this

purpose, ten image data sets are usually reconstructed

at each 10% of the R–R interval similar as described

for the assessment of LV function. For mitral valve

evaluation, perpendicular planes images of the valve

are preferred, whereas for aortic valve study the

cross-sectional image plane perpendicular to the

valve cusps illustrates precisely the morphology of

the valve (Fig. 4).

The opportunity to non-invasively visualize val-

vular anatomy and surrounding structures may be of

particular interest in the setting of percutaneous valve

repair or replacement (PVR) techniques. These

techniques have been recently introduced as an

alternative therapy for those patients ineligible for

surgery due to high perioperative risk, elderly age or

comorbidity [65–67]. Although transesophageal

echocardiography along with fluoroscopy will remain

the most important imaging techniques to guide PVR

procedures, several technical aspects related to these

procedures require an exact, detailed depiction of the

valvular anatomy and morphology to reach the

highest procedural success. In this new clinical field,

three-dimensional high-resolution imaging with

MSCT may be of great value.

Particularly, before performing a coronary sinus

annuloplasty, one of the current percutaneous

approaches for mitral valve repair, an exact study

of the anatomical relation between the mitral

annulus and the coronary sinus is required. The

feasibility of this percutaneous procedure depends

on the distance between the coronary sinus and the

mitral annulus, but also, on the anatomical relation

of these two structures with the course of the left

circumflex coronary artery (LCx). The left atrial

enlargement and the mitral annular dilatation usually

observed in patients with severe mitral regurgitation

result in an abnormal separation between the

coronary sinus and the mitral annulus. In those

clinical scenarios, the implantation of the device

through the coronary sinus results in inefficient

remodeling of the mitral annulus and unsuccessful

procedure. So far, two studies have investigated the

anatomical relation between the coronary sinus, the

mitral annulus and the LCx using MSCT. Choudre

et al. studied 14 patients with mitral valve prolapse

Fig. 4 Assessment of the

anatomy of cardiac valves

with MSCT. a A sagittal

plane of the left-side valves

with severe calcification of

both the aortic and mitral

annulus (arrows). The

cross-sectional plane of the

mitral annulus

(b) demonstrates the extent

of calcification spreading

towards the left ventricular

outflow tract (LVOT).

Mixomatous mitral valve

can be also imaged by

MSCT, showing thickened

mitral leaflets (c, arrows).

The cross-sectional plane of

the aortic valve

demonstrates the anatomy

of the valve (tricuspid/

bicuspid) and the extent of

calcification (d)
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who were scanned with 16- or 40-MSCT, and

observed that the distance between the coronary

sinus and the mitral annulus increased proportionally

with the mitral annular dilatation in the posterolat-

eral location [68]. Furthermore, in 80% of the

patients the LCx crossed between the coronary sinus

and the mitral annulus, indicating the risk of

impingement of the epicardial artery and the

subsequent myocardial infarction. These findings

were confirmed by Tops and coworkers, who

compared observations with 64-slice MSCT in15

patients with severe mitral regurgitation to 90

patients without [69]. The authors observed a course

of the coronary sinus located superiorly to the mitral

annulus in the majority of the patients (95%), with

an increasing distance in patients with severe mitral

regurgitation as compared to patients without. In

addition, the LCx was located between the coronary

sinus and the mitral annulus in 68% of the patients.

Accordingly, MSCT may become an important

imaging technique to select potential candidates

for percutaneous mitral valve repair.

Similarly, percutaneous aortic valve replacement

has emerged as a potential alternative approach in the

treatment of patients with severe symptomatic aortic

stenosis [70–73]. To assure a high procedural

success-rate, an optimal selection of the potential

candidates is necessary. For this purpose, an exact

aortic annulus sizing and a detailed anatomical

description of the aortic root and the surrounding

structures, including the coronary ostia, are crucial to

avoid complications such as the presence of signif-

icant paravalvular aortic regurgitation or coronary

occlusion by a bulky leaflet after device deployment.

In addition, knowledge of the amount of calcification

and the morphology of the aortic valve (tricuspid or

bicuspid) is also highly relevant. Indeed, excessive

calcification of the valve or a bicuspid morphology

may result in misdeployment of the device and

higher risk of complications (paravalvular leakage or

Fig. 5 Assessment of the

aortic valve prior to and

after PVR with MSCT.

Before percutaneous aortic

valve replacement, the

distance between the aortic

annulus and the left and

right coronary ostia may be

of great value in order to

estimate the risk of

coronary ostium occlusion

by a bulky leaflet (a and b).

After prosthesis

implantation, the optimal

deployment of the device

and the patency of the

coronary ostia can be

assessed by MSCT (c and

d)
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prosthesis embolization) [74, 75]. Accordingly pre-

operative knowledge of these aspects obtained by

MSCT may influence the choice of valvular prosthe-

sis type as well as valve replacement strategy. The

feasibility of MSCT in this regard was recently

investigated by Tops et al., who performed an

extensive assessment of the aortic root anatomy

using 64-MSCT in 169 patients, including 19 patients

with aortic stenosis [76]. The main findings of this

study included an oval-shape of the aortic annulus,

with larger diameter in the coronal images

(26.7 ± 3.9 mm) than in the sagittal images

(24.2 ± 3 mm). In addition, a variable height of the

coronary ostia (Fig. 5) was observed with the length

of the left coronary leaflet exceeding the distance

between the annulus and the left coronary ostium in

49% of patients. Accordingly the authors concluded

that MSCT may indeed provide detailed and clini-

cally relevant information on the shape of the aortic

annulus as well as its relation with the ostia of the

coronary arteries. Potentially, MSCT may also be of

value in assessing prosthesis deployment and posi-

tioning after the procedure (Fig. 5). Prospective

studies should address whether assessment with

MSCT may indeed improve selection of potential

candidates for PVR procedures and improve proce-

dural success and outcome.

Summary and conclusions

During the past few years MSCT has rapidly

developed into a versatile non-invasive imaging

modality. While imaging of the coronary arteries to

determine or rule out the presence of CAD will

remain one of the main indications, additional

information on plaque severity and composition can

be obtained. Potentially this particular feature may

provide clinically relevant information with regard to

risk stratification. Notably, imaging with MSCT is

not restricted to the coronary arteries as the entire

heart is visualized high resolution. Accordingly,

comprehensive cardiac assessment is possible and

as a result, the technique has a high potential for

several other cardiac applications, including guidance

of interventional procedures such as catheter ablation

in atrial fibrillation or PVR in valvular heart disease.

Importantly, the improvements in image quality and

accuracy have been paralleled by simultaneous

effective dose reduction, broadening acceptance of

this promising imaging modality. Nevertheless, as the

technique is relatively new, only limited data are

currently available. Large prospective studies are

needed to validate these novel applications of MSCT

for use in daily clinical practice.
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