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Abstract We designed a mathematical model to describe

and quantify the mechanisms and dynamics of tumor

growth, cell-kill and resistance as they affect durations of

benefit after cancer treatment. Our aim was to explore how

treatment efficacy may be related to primary tumor char-

acteristics, with the potential to guide future trial design

and appropriate selection of therapy. Assuming a log-nor-

mal distribution of both resistant disease and tumor dou-

bling times generates disease-free survival (DFS) or

invasive DFS curves with specific shapes. Using a multi-

variate mathematical model, both treatment and tumor

characteristics are related to quantified resistant disease and

tumor regrowth rates by allowing different mean values for

the influence of different treatments or clinical subtypes on

these two log-normal distributions. Application of the

model to the CALGB 9741 adjuvant breast cancer trial

showed that dose-dense therapy was estimated to achieve

an extra 3/4 log of cell-kill compared to standard therapy,

but only in patients with more rapidly growing ER-nega-

tive tumors. Application of the model to the AZURE trial

of adjuvant bisphosphonate treatment suggested that the

5-year duration of zoledronic acid was adequate for ER-

negative tumors, but may not be so for ER-positive cases,

with increased recurrences after ceasing the intervention.

Mathematical models can identify different effects of

treatment by subgroup and may aid in treatment design,

trial analysis, and appropriate selection of therapy. They

may provide a more appropriate and insightful tool than the

conventional Cox model for the statistical analysis of

response durations.

Keywords Mathematical model � Adjuvant therapy �
Bisphosphonates � Resistance � Cell-kill � Growth rate

Introduction

Mathematical models that incorporate information regard-

ing tumor biology have the potential to provide mecha-

nistic insights derived from trial data that cannot be gained

by conventional statistical methods. We describe an

approach that directly estimates the underlying biological

parameters which generate particular DFS/IDFS curves.

Previous work

A previously published mathematical model [1, 2] related

outcome durations to the amount of sub-clinical resistant

disease and to tumor regrowth rates. Briefly, the model

relates certain patterns in the shapes of DFS curves [1] to

underlying quantity of undetectable resistant disease post-

treatment, and the rate of tumor regrowth. Plateaus on the

curves, gradients of the slopes, and the relationship
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between the height of the plateau and the delay on the

curve before relapses start to occur, are all incorporated

and explained by the model. It was hypothesized that DFS

curves for faster growing tumors would have steeper

slopes, and that the frequency and intensity of treatment

should be matched to the aggressive growth of the tumor.

In the management of a number of early-stage solid

cancers, primary surgical treatment removes the bulk pri-

mary tumor; the volume of any remaining disease being

below the level of clinical detection. Based on tumor char-

acteristics and pathological stage, adjuvant therapies may

then be applied with the goal of reducing or eradicating this

clinically undetectable residual disease. Clinical relapse

occurs when tumor regrowth exceeds this level of detection.

The model assumes that the component of this disease that is

resistant to the adjuvant treatment employed is that which is

destined to regrow and cause subsequent relapse, and that the

volume of this resistant disease is log-normally distributed

over the population of patients under consideration [1].

Adjuvant treatment is assumed to eradicate sensitive disease,

but to be ineffective against resistant disease. In the event of

the resistant disease being less than a given log volume (not

necessarily 1 cell), the patient is assumed to be cured.

Otherwise, the resistant disease is assumed to grow expo-

nentially during and after treatment until relapse occurs, with

the rate of regrowth being taken from a log-normal distri-

bution of doubling times (Fig. 1). Similar model assump-

tions have been applied to other cancers [1, 5, 6].

The model assumptions give rise to DFS curves with the

desired shapes, enabling differences in curves to be ascri-

bed to effects on either resistant disease burden at the end

of treatment or subsequent regrowth rates. The ‘‘plateau’’

in the curve results from allowing for the possible extinc-

tion of the tumor when reduced below a given level.

Rapidly growing tumors have a steeper curve slope. Curves

with a pronounced delay before relapses start to occur are

likely to have lower volumes of resistant disease, and

therefore a higher plateau.

New model developments

The model has now been solved explicitly (see supple-

mentary methods) and extended to a multivariate form.

With the new model, prognostic factors can be related to

components of both the regrowth rate and the level of

undetectable resistant disease, potentially providing

hypotheses for future tailoring of treatment. Measurable

factors likely to be related to the volume of post-treatment

resistant disease would include, as an example, primary

tumor size at presentation [2], while those expected to

correlate with tumor growth rates would include the his-

tological grade of tumor, and markers of proliferation such

as Ki67 [3, 4].

To demonstrate how the shape of the DFS curves relates

to the underlying parameters, Fig. 2a, b show hypothetical

curves from the original application [1] to treatments for

acute myeloid leukemia (AML) [7] that produce purely

resistant disease burden (effectively cell-kill) effects

(Fig. 2a), compared with those that produce purely growth

rate-related effects (Fig. 2b). In the latter case the curves

diverge initially, but then gradually come back together,

while in the former case divergence continues until relap-

ses cease. The maximum likelihood algorithm effectively

locates the closest such fits with a particular set of model

assumptions (see supplementary methods).

This new multivariate mathematical model does not

require proportional hazards, and therefore may also be

more appropriate than the Cox model [8], for the analysis

of these types of data.

Applications

Model applications to the CALGB 9741 and AZURE

adjuvant breast cancer trials [9–11] are presented. The

CALGB study employed a dose-dense chemotherapy

schedule, based on the work of Norton and Simon [12, 13].

The dose-dense treatment, with shorter treatment intervals
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Fig. 1 Diagrammatic representation of the model: a assumed distri-

bution of resistant disease after adjuvant treatment, b assumed pattern

of regrowth rates of resistant disease
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would theoretically kill rapidly dividing cells more effec-

tively, making it a good study in which to test the ability of

the model to show differential effects on groups of patients

with different tumor growth rates. In contrast, zoledronic

acid, the bisphosphonate evaluated in the AZURE trial,

differed in that its potential mechanism(s) of action was not

understood and that bisphosphonate efficacy in the adju-

vant setting was unproven. There was no a priori expec-

tation that there would be any specific subgroup that would

demonstrate a treatment effect. Information on several

growth-related prognostic factors was, however, available

affording the potential to evaluate treatment/growth rate

interactions.

Methods

The model

The model, outlined in the introduction, is described

mathematically in the supplementary methods section, with

diagrammatic representation in Fig. 1. The new multi-

variate version assumes that the means of the two log-

normal distributions can be related to both treatment and

tumor characteristics in a linear multiplicative fashion,

thereby producing different DFS curves for different

treatment/prognostic groups.

Application of the model

The model is applied to DFS times, complete and censored,

and a set of treatment/prognostic factors are then examined

for their relationship to these durations of response, via

effects on resistant disease and growth rates, using a for-

ward stepwise approach (see supplementary methods).

Factors can be included for their effects both on growth

rates and/or resistant disease. The significance of a

covariate, if required, can be evaluated by testing the pair

of parameters together, namely resistant disease and dou-

bling time, in the new model. Related computer programs

are available (see supplementary methods).

Model assumptions

The model assumes exponential growth. Alternative

growth rate assumptions, such as the gompertzian model

proposed by Norton [14], were considered; the model is,

however, attempting to estimate the growth rate of sub-

clinical disease, where the gompertzian model is less rel-

evant. The assumption of a log-normal distribution of

growth rates is consistent with other findings [15, 16].

The volume of resistant disease after treatment is

assumed to be independent of its growth rate, consistent

with results from an independent set of data from CLL

(data not shown). The original rationale for assuming a log-

normal distribution of resistant disease [1, 5, 6] was related

to a Goldie/Coldman mathematical model where random

spontaneous mutations conferred drug resistance over a

tumor’s lifetime [2]; this assumption was shown to lead to

a log-normal distribution of resistant tumor at presentation

[5]. The situation is somewhat different with operable

breast cancer treated initially by surgery, with or without

radiotherapy, where the local disease has been effectively

eliminated but the cancer may have disseminated through

vascular or lymphatic channels [16]. Before diagnosis, as

the tumor increases in size, the likelihood of occult distant
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metastases developing increases. Thus, we can assume a

random spontaneous chance of mutations to a metastatic

phenotype developing and cells becoming disseminated,

which increases over time, with a similar pattern of

mutation to resistance; this results in a log-normal distri-

bution of, in this case, disseminated resistant disease at

presentation.

Note that it is assumed that C109 cells are clinically

detectable, and that all these cells need to be eliminated to

eradicate the disease. The choice of this level, which is the

same for all covariates, does not affect the shape of the

distribution of growth rates or the fitting process; it merely

affects the doubling time estimates. The model estimates

for doubling times under this assumption are consistent

with those reported in breast cancer [15].

Model-based DFS curves and comparison

with the Cox model

Model fits for both models can be shown by deriving an

estimated survival curve for each prognostic category,

taking into account the mix of treatment and prognostic

factors that determine a specific resistant disease volume

and growth rate, averaging these survival figures over a

group of patients, for example those with ER-positive

disease, then validating this by comparison with the actu-

arial curve (see Figs. 3, 4, and 5 and supplementary Fig. 1).

Akaike’s Information Criterion (AIC) [17] allows for the

(four) extra parameters in this new model in comparison

with the partial likelihood derived from the Cox model and

facilitates an order-of-magnitude comparison of the fits of

the two models (see supplementary methods).

Application data/studies

CALGB study 9741 treated 1973 women with node-posi-

tive breast cancer. One of the two randomizations in this

study tested dose-dense chemotherapy comprising dox-

orubicin, cyclophosphamide, and paclitaxel given every

two weeks versus a conventional schedule given every

three weeks [9, 10]. Berry et al. [10] broke down the results

by ER status demonstrating a 24 % [95 % CI 1–42 %]

reduction in risk of recurrence for women with ER-nega-

tive tumors, but a non-significant risk reduction of 8 %

[95 % CI 20–29 %] in ER-positive cases at a median fol-

low-up of 6 years.

The AZURE trial [11] tested the hypothesis that bis-

phosphonate treatment may reduce rates of recurrence and

death in 3360 women with high risk early breast cancer,

with axillary lymph node metastasis (N1) or T3/T4 primary

tumors. Consenting patients were randomized to receive

standard adjuvant systemic therapy with or without zole-

dronic acid following local treatment. Zoledronic acid

treatment was planned for 5 years duration. The median

follow-up at the time of reporting was 7 years. Zoledronic

acid was effective only in postmenopausal women

(n = 1041), with an IDFS hazard ratio of.75 [95 % CI 59–

.96]. Efficacy in this subgroup was later verified in a meta-

analysis of other studies [18]. This analysis focuses on

invasive disease-free survival (IDFS).

Reconstructing DFS data

Published DFS graphs from CALGB 9741 [10] were

scrutinized and individual survival times were successfully

derived, ensuring that all p-values, confidence intervals

(CIs), numbers of events, median DFS times, and durations

of patient follow-up matched those reported. For the

AZURE trial individual patient data were provided by the

Leeds Clinical Trials Research Unit.

Results

CALGB 9741

The associated DFS curves for study 9741, along with the

model fits, are given in Fig. 3a. From the model results

dose-dense therapy was estimated to produce 3/4 log of

additional cell-kill in women with ER-negative disease,

which equates to an additional 10 % of these women being

cured. The associated distribution of resistant disease is

shown in Fig. 3b, and comparison with the Cox model DFS

estimates are shown in Fig. 3c. The model clearly attrib-

uted the difference in ER status DFS curves to a large

difference in mean doubling times: 31 days for ER-nega-

tive women compared with 84 days for ER-positive

women (Fig. 3d).

Azure

Model analyses again attributed ER status differences in

IDFS to a difference in growth rates, with estimated mean

doubling times of 39 and 114 days for ER-negative and

ER-positive women, respectively (shown graphically in

supplementary Fig. 1). In support of this finding ER status

was also highly correlated with tumor grade (see Table 1).

Model fits to the two treatment arms in postmenopausal

women are shown in Fig. 4a. The curves appear to show a

possible fall-off after 5 years, which coincides with stop-

ping treatment, and so the model was re-run using data up

to 5 years only, with data after this time being censored.

The model fits are shown in Fig. 4b. Since this is a

mathematical model, it is possible to extrapolate these

curves beyond the 5 years of data that were used to fit the

curves, as in Fig. 4c to predict IDFS with continuation of
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treatment. For the zoledronic acid group there was a

marked divergence from the predictions starting immedi-

ately at the cessation of treatment at 5 years (Fig. 4d).

However, the divergence occurs only in women with ER-

positive disease (Fig. 5a), not those with ER-negative

disease (Fig. 5b). For the control arm the predictions were

much more accurate, only beginning to diverge, if at all, at

about 7 years, when the numbers at risk are small and the

confidence intervals in the IDFS curves are wide. To test

whether these differences from model predictions after

5 years are chance findings IDFS times were generated to

match the modeled pattern beyond 5 years and compared

with the actual data beyond 5 years using a landmark

analysis beginning at 5 years. This revealed a highly sig-

nificant difference between actual data and predicted data

in the zoledronic acid group (p = .0014, Wilcoxon test)

compared with a non-significant difference in the control

group (p = .22, Wilcoxon test) confirming that this is not

simply a chance effect.

Stepwise biological model results for tumor grade, size,

nodal status, and ER status are given in detail in supple-

mentary Table 1. Hazards were clearly not proportional for

ER status or for histological grade (p\ .001) resulting in

poor fits for the Cox model, whereas, in contrast, the new

model incorporates such effects explicitly and exhibits

good fits (see supplementary Fig. 1). AIC differences

confirm these interpretations, and are presented in the

supplementary methods. The fits for the two models for

T-stage and for the number of involved lymph nodes were

similar.

Discussion

This new biologically based model demonstrates that it is

possible to determine, in a logical and structured fashion,

interrelationships between treatment and biological factors

of the primary tumor, via their effects on the crucial
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Table 1 Correlation between histological grade and ER status in the

AZURE trial

ER ?ve ER -ve % ER ?ve v2 (trend)

Grade 1 86 0 100 157.2

(p\ .0001)Grade 2 410 44 90

Grade 3 265 202 57
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parameters of resistant sub-clinical tumor burden and

growth rates.

The model we developed resulted in additional results

and hypotheses over and above those obtained from con-

ventional trial analyses. Women with ER-negative breast

cancer are estimated to have more rapid tumor growth

rates; they may, therefore, receive benefit from more fre-

quent chemotherapy, as was demonstrated with accelerated

chemotherapy in the CALGB 9741 study [10]. Further

evidence to support this comes from an analysis of the

CALGB 8541 trial, which tested lower doses/shorter

durations of adjuvant CAF chemotherapy [10]. In that

study, for women with ER-negative disease, who would be

expected to have more rapidly proliferating tumors, 4

cycles of standard CAF chemotherapy was superior to 6

cycles of lower dose CAF; by contrast, for those with more

slowly proliferating ER-positive disease lower dose CAF

given for a longer duration was equally effective [10].

Differential effects of treatment by ER status are

particularly pronounced in both breast cancer datasets,

though similar personalizing of therapy could be consid-

ered within different histological grade, or genomic sub-

groups. This model will outperform standard models such

as the Cox model where factors relate to growth rate dif-

ferences, which are unlikely to fit the proportional hazards

assumption.

What distinguishes this new model from the classical

statistical approach of the Cox model is the incorporation

of an a priori understanding of biological mechanisms; it

does not require the often flawed assumption of propor-

tional hazards, yet produces substantially better model fits

in these breast cancer DFS/IDFS datasets than does the

equivalent Cox model (see Fig. 3 and supplementary

Fig. 1). Interactions with time, and stratification by non-

proportional hazards variables such as ER status, can, of

course, be incorporated into Cox models to avoid the

assumption that hazard ratios are constant across time, but

at the cost of added complexity often making the results
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only projected out to current follow-up compared with actual IDFS

outcomes
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difficult to understand. This model, in contrast, produces

results that relate to the very biological parameters that the

researchers are usually trying to affect in the trial design,

and are therefore meaningful and directly interpretable.

The distinction between these two approaches is significant

since our model offers the prospect of developing a clini-

cally useful framework for cancer treatment that incorpo-

rates the increasingly sophisticated understanding of tumor

biology gained from experimental studies. Such a frame-

work could include features such as measures of tumor

genome heterogeneity [19] and consequent evolutionary

dynamics [20]. The former might be reflected, for example,

in the parameters describing resistant volume and growth

rate. Such models could incorporate factors such as phar-

macokinetic parameters and have the potential to inform

personalized treatment regimens [21, 22]. Because this

approach is mathematical, it offers a rigorous and

quantitative approach to integrating various aspects of

tumor biology and determining the consequences for

therapy [23].

Applying the insights gained from the CALGB study,

we can consider the AZURE results in the light of factors

relating to tumor growth rate. Firstly, the correlation

between ER status and tumor grade again supports the

conclusion derived from the model analyses that ER-neg-

ative women have faster growing tumors. Then considering

the treatment effect by ER status, a fall-off in the IDFS

curves at 5 years is only seen in the women with ER-

positive disease not in those with ER-negative disease

(Fig. 5a, b). We have not found departures such as this to

be common, and we have now had considerable experience

of using this model across a range of cancers. This analysis

therefore suggests that 5 years of zoledronic acid treatment

is adequate in women with the faster growing ER-negative

tumors, but perhaps insufficient for those with more slowly

proliferating ER-positive tumors who continue to relapse at

a significant rate well beyond the 5 year time point. This

conclusion would not have been forthcoming from the Cox

model, which does not deal well with growth rate effects.

Although zoledronic acid has a long half-life in bone, there

may be a threshold of residual activity and inhibition of

bone turnover required for benefit to occur. Tumor dor-

mancy is also a much more prominent feature in ER-pos-

itive disease and may well be of relevance to these

findings, with[50 % of relapses beyond 5 years reflecting

the late, unexplained, emergence of disseminated tumor

cells from the dormant state [24]. Continuous long-term

application of treatment appears necessary to prevent this

re-awakening of quiescent ER-positive cells unlike the

highly proliferative ER-negative disseminated cells which

are typically either eradicated by adjuvant treatments or

initiate clinically detectable metastases over a much shorter

timeframe (typically\5 years). It is intriguing that recent

data suggest longer duration of treatment may also benefit

patients receiving adjuvant tamoxifen therapy [25–27]. We

do not, therefore, assume this effect to be specific to bis-

phosphonates. The findings are consistent with the long

duration of therapy that is now the standard of care in

hormone-receptor positive breast cancer, with 5 years as a

minimum standard, and with several studies supporting

extended therapy to 10 years [28, 29]. Thus, the model may

lead to the generation of novel treatment strategies, as did

the original univariate model [1] in acute lymphoblastic

leukemia, Hodgkin’s disease, multiple myeloma, and

breast cancer [6].

It is well recognized that cancers are not homogenous

with regard to biology and natural history. This was first

documented in breast cancer with the recognition that

women with ER-positive disease were more at risk of late

relapse than those with ER-negative disease. As molecular
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and genetic understanding grows in this and other cancers,

identification of patients with different outcomes will be

increasingly possible. The model demonstrates that it is

possible to determine these differences, and their potential

interactions with treatment, by modeling the ‘‘shape’’ of the

DFS/IDFS curves. Furthermore, with that insight, the

mathematical model allows predictions to be made of the

long-term benefit beyond the period of follow-up of the

study and generate hypotheses that can be tested in

prospective randomized trials. This model, as with all such

models, represents a considerable simplification of tumor

dynamics, since it does not, at present, explicitly incorpo-

rate current understanding of immune signaling, angio-

genesis, stem-cell subpopulations, and other important

host-tumor interactions, but unless they are thought to act

other than on the net tumor doubling time and resistant

disease volume, their effects could still be estimated. As

more data are generated on the biological and genetic

characteristics of cancers, this approach may be further

developed and additional complexity included as required.

Concepts derived from mathematical modeling have

been productive in generating new trials and treatment

approaches, for instance of alternating non-cross resistant

drug combinations as proposed by Goldie et al. [30], or

hypotheses regarding proportional cell-kill and its

exploitation as suggested by Skipper et al. [31, 32]. More

recently, and since the publication of the univariate version

of this model, Norton [14] and Day et al. [33] used the

Gompertzian model of tumor growth in breast cancer and

derived fits to observed response duration curves using

simulation techniques [14], and numerical integration [33].

The Gompertzian model provided the background for the

dose-dense chemotherapy schedules [9, 10] which have

since been tested in clinical trials [11, 12] and implemented

in clinical practice. As with all pre-clinical hypotheses in

cancer, not all of these insights have been confirmed in

prospective clinical studies, but the mathematical model

described herein is a continuation of these lines of thought,

designed to quantify and add scientific rigor to these con-

cepts by analytically fitting such a model. This brings with

it related statistical techniques such as significance testing

and confidence intervals, as well as enabling a multivariate

form to become a practical tool for trial data interpretation.

This approach may be especially relevant in the era of

rationally designed targeted therapies, defining subgroups

where therapeutic interactions occur. The application of the

model warrants confirmation in future prospectively

designed clinical trials.
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