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Background

Since human EEG was reported in 1929, the reference issue 
has been a long-term debate as only the potential difference 
between two points can be measured (Dien 1988; Schiff 
2005). It is indispensable to have a reference for scalp 
recording; however, there is no point on the scalp or body 
surface where the potential is zero or a constant. The ever-
present experienced cephalic reference electrodes include 
the uni-mastoid or ear, linked mastoids or ears (LMR), the 
vertex, the tip of the nose, neck ring, etc. To reduce the 
effect of a non-zero actual reference on various studies, a 
few off-line re-reference techniques have been proposed 
in the past years, and among them, the average reference 
(AR) (Goldman 1950; Offner 1950) has often been advo-
cated as the best available reference option (Nunez 2010), 
as Nunez and Srinivasan (2006) stated, “…when used with 
large numbers of electrodes…it often performs reason-
ably well…”. In a recent paper, professor Nunez stated that 
“AR errors are due to (1) limited electrode density and (2) 
incomplete electrode coverage (sampling only the upper 
part of head). If these errors were fully eliminated (only 
possible in detached heads), AR would provide the desired 
gold standard; that is, the nominal reference with respect to 
infinity” (Nunez 2010).

The fundamental assumption of AR is that the surface 
potential integral of a dipole in a volume conductor is 
zero, thus, the average potential of a dense and wide cov-
erage electrode array is close to the ideal zero reference 
(Geselowitz 1998). However, such a zero potential integral 
assumption has been theoretically proved only for a spheri-
cal surface (Bertrand et al. 1985). In this communication, 
three counter-examples are given, which remind that the 
average may not always be zero for some specific surfaces.
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Demonstration

According to the theory of bio-electromagnetism, biologi-
cal electric source is current source density, and for any 
current source density distribution s(r⃗), its potential satis-
fies Poisson’s equation

And according to “Appendix A” section, the potential 
produced by such source s(r⃗) can be equivalently gener-
ated by a combination of multipole sources, i.e., monopole 
(point current source density), dipole, quadrupole, octapole 
etc. at the origin of a coordinate system. Among them the 
first monopole term (0th-order multipole) would be omit-
ted due to the current conservation of a living system that 
requires the sum of the current source density inside a liv-
ing system vanishes. The second dipole term (1th-order 
multipole) is consisted of a positive and a negative point 
current source density, and the other lth-order multipoles 
with l > 1 are various complex linear combinations of 
dipoles (Wikswo et al. 1984, 1985). Furthermore, the lin-
ear relation between potential Φ and source s(r⃗) in Eq. (1) 
means that the principle of linear superposition is valid 
for EEG forward problem, thus we only need to check the 
potential integral over the surface of one dipole in a volume 
conductor.

A Dipole in a Spherical Volume Conductor

For a dipole in a spherical volume conductor, it has been 
proved that the potential integral over the surface is zero 
(Bertrand et al. 1985). In fact, this conclusion is physically 
clear as the potential of a single dipole can be generated 
equivalently by a series of lth-order multipole (l > = 1) at the 
origin (“Appendix A” section). And the positive and nega-
tive potential of each lth-order multipole (l > = 1) always 
appear anti-symmetrically on the sphere surface, thus their 
integral must be zero. In another word, not only a dipole 
but also any combination of dipoles located anywhere in 
a sphere, the surface potential integral is zero. This fact is 
also valid for multilayer spherical model as the multipole 
expansion of neural electric sources in such a model is sim-
ilar to the single sphere case (Yao 2000a, b).

A Dipole in a Half‑Space Volume Conductor

For a spherical volume conductor, if the radius R tends to 
infinity, the local surface of the sphere will evolve to the 
boundary plane of a half-space volume conductor. For 
such a model, any a dipole moment may be decomposed 
into two components, one is oriented parallel to the bound-
ary plane, and the other perpendicular to the plane surface. 
Then, it is physically clear that the potential integral of the 

(1)∇2Φ
(
r⃗
)
= − s

(
r⃗
)

parallel one is zero as its positive and negative potential 
anti-symmetrically distribute on the plane. However, the 
potential integral of the perpendicular one will not be zero. 
The mathematical proof is shown in “Appendix B” section.

A Dipole in a Homogenous Volume Conductor Except 
a Spherical Cave

Start from a half-space volume conductor, if the surface 
further bends to the opposite direction of the dipole, a spe-
cial case may appear that a dipole locates in a homogenous 
volume conductor except a spherical cave. For such a case, 
if we assume a spherical coordinate system with origin at 
the center of the spherical cave with a dipole outside, the 
dipole moment may be decomposed into three components, 
one radial component perpendicular to the spherical sur-
face, the other two oriented tangentially to the spherical 
surface. Similar to the half-space volume conductor model, 
the potential integrals of the two tangential components 
are zero, while that of the radial one is not zero. The math-
ematical proof is shown in “Appendix C” section, where 
the zero potential integral of a dipole in a spherical volume 
conductor is also proved passingly.

A Dipole in a Homogeneous Semi‑Sphere Volume 
Conductor

The above two models, a half-space and a homogeneous 
volume conductor with a spherical cave, looks not so like a 
head as the head would have a vivid almost closed surface. 
Here we further consider a homogeneous semi-sphere vol-
ume conductor.

First, we need the potential solution of a dipole in a 
homogeneous semi-sphere volume conductor, which must 
satisfies the Possion equation and the Neumann bound-
ary condition. Suppose an actual dipole in the upper 
hemi-sphere of a spherical volume conductor, we may 
set a mirror dipole, both position and orientation mir-
rored, in the lower semi-sphere, and take the potential of 
the primary dipole in the sphere as Φ1, and that of the mir-
ror dipole in the same sphere as Φ2, then we have both Φ1 
and Φ = Φ1 + Φ2 satisfy the Possion equation in the upper 
semi-sphere and the Neumann boundary condition on the 
upper semi-spherical surface, both Φ1 and Φ = Φ1 + Φ2 
satisfy the Possion equation in the lower semi-sphere 
and the Neumann boundary condition on the lower semi-
spherical surface. For the circular plane, which divides the 
whole sphere into two semi-spheres, due to the orienta-
tion of the virtual dipole in the lower semi-sphere is mir-
ror to the primary one, the Neumann boundary condition 
is also satisfied. Here the orientation mirror means that the 
two components parallel to the plane of the two dipoles are 
along the same direction, but the two components of them 
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perpendicular to the plane are along opposite direction. 
These facts mean that Φ = Φ1 + Φ2 is the potential solution 
of a dipole in a semi-sphere volume conductor as it satis-
fies the Possion equation inside the semi-sphere conductor 
and the Neumann boundary condition on its whole surface. 
As we have the closed-form of Φ1 and Φ2 (Yao 2000a), we 
actually have the closed solution of a dipole in such a hemi-
sphere volume conductor.

Now, let us check the potental integral over the whole 
surface of the semi-sphere conductor, we may consider 
the integrals over the hemi-spherical surface and the cir-
cular plane, separately. It is clear that the potential Φ2 at a 
point on the upper semi-spherical surface is the same as the 
potential Φ1 at a mirror point on the lower semi-spherical 
surface, thus the integral of Φ = Φ1 + Φ2 over the upper 
semi-spherical surface is equal to the integral of Φ1 over the 
whole sphere surface. According to “Appendix C” section, 
this integral is always zero (Bertrand et  al. 1985). Now, 
for the potental integral of Φ = Φ1 + Φ2 over the circular 
plane, as the two dipoles mirror to each other about the cir-
cular plane, the potential Φ2 at a point on the circular plane 
is the same as the potential Φ1 at the same point, the sum 
Φ = Φ1 + Φ2 over the circular plane is the double of Φ1, 
the integral problem actually reduces to the potential inte-
gral of the potential Φ1 over the circular plane. The poten-
tial integral of a tangential dipole at the Cartesian coordi-
nates 

(
0, 0, z0

)
 with the origin of the coordinate system at 

the center of the sphere is always zero as its potential dis-
tribution over the plane is anti-symmetrical, however, the 
mathematical deduction shown in “Appendix D” section 
indicates that the potential integral of a radial dipole at the 
Cartesian coordinates 

(
0, 0, z0

)
 is not zero but dependent 

on the radius R of the sphere and the value of z0. Specifi-
cally, if the radius R tends to infinity, the integral reduces 
to the same as the half-space model shown in “Appendix 
B” section.

Discussions

Though zero surface potential integral of a dipole in a 
conductor is proved only for a spherical surface (Bertrand 
et al. 1985), in current practice, “a consensus has emerged 
among researchers relying on data from dense electrode 
arrays that the use of an average reference may still be 
considered as the ‘gold standard’ for EEG analysis” (Srini-
vasan et al. 1998; Kayser and Tenke 2010). However, there 
is a 5.1% relative error between AR and true zero reference 
potential stubbornly there in a recent detailed simulation 
study with 256-channel EGI montage which covers almost 
the whole head (Liu et  al. 2015). Such an error may not 
be totally attributed to the faulty montage and the discrete 
error of the boundary element method. In another recent 

detailed study, they found that the relative error between 
AR and true zero reference potential even increases with 
increasing sensor density for the tested electrode arrays 
from 21 to 128 channels (Chella et al. 2016). It means that 
array density may not be the most crucial factor.

What is the relation between the spherical model and 
half-plane model? As noted above, when the radius of a 
sphere extends to infinity, the local sphere surface tends to 
an infinite hemi-plane (the first counter-example).The theo-
rem for spherical surface indicates that the integral over the 
whole sphere of the potential should exactly vanish (Ber-
trand et al. 1985; “Appendix C” section, Eq. (33)), but the 
integral over the half-plane may not vanish (“Appendix B” 
section, Eq. (10)). This fact means that the integral over 
the rest of the sphere should cancel the result for the plane. 
The reason is that the dipole potential at large distance L 
decreases as 1∕L2, but the surface area of the integration at 
large distance behaves as L2, the surface integral may be a 
finite value to cancel the plane integral.

In recent decades, there are some efforts aimed at 
improving the accuracy of AR by spherical spline inter-
polation (Junghofer et al. 1999), weighted average (Lemos 
and Fisch 1991), dynamic average (Orekhova et  al. 2002) 
and generalized average (Carbonell et  al. 2004). These 
methods are based on different additional assumptions, 
with each of them needs further comparative studies to test 
their performances.

Based on the above existed facts in literatures and the 
newly illustrated three counter examples, we’d like to ask, 
how reliable is the average potential over a head surface 
as EEG and ERP reference? In another word, is AR still 
a theoretical ‘gold standard’? Apparently, the above exam-
ples especially the semi-sphere model do shake its theoreti-
cal foundation that AR is not theoretically zero for general 
realistic head surface no matter what are the sensor density 
and coverage, and AR should not be taken as “gold stand-
ard” from now on. It means that we should be more open 
for other re-reference techniques and pay more attention to 
the potential fault of average reference in practice.

Is there any other potential ‘gold standard’ re-reference? 
In our opinion, the reference electrode standardization 
technique (REST) (Yao 2001) might be a latent one. REST 
utilizes the fact that the neural electric sources inside the 
brain are physically linked to the scalp recordings with any 
a reference, thus it is an intrinsic bridge, the Rosetta stone 
(Kayser and Tenke 2010), from one reference based record-
ings to the other. Furthermore, due to the non-uniqueness 
of the EEG inverse, same scalp recordings can be generated 
by different source configurations, where except the actual 
sources, all the other source configurations are equivalent 
sources of the actual sources in generating same scalp 
potential, and they can be used as the bridge from one ref-
erence recordings to the other, too. REST adopts equivalent 
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distributed sources over the cortical surface as the bridge, 
thus only a linear inversion is needed (Yao 2001), and mak-
ing REST easily realized. The equivalent distributed source 
model of any actual sources provides the theoretical foun-
dation of REST(Yao 2000b; Yao and He 2003), and its 
accuracies were repeatedly confirmed by a serial simulation 
studies with comparison to AR and linked-ears etc. (Zhai 
et al. 2004; Marzetti et al. 2007; Qin et al. 2010; Liu et al. 
2015; Chella et al. 2016). Its rationality in processing vari-
ous real data were also proven step by step (Yao et al. 2005, 
2007; Tian and Yao 2013; Bonfiglio et al. 2013; Xu et al. 
2014; Chella et al. 2014, 2016; Kugiumtzis and Kimiskidis 
2015), therefore it is quite valuable for further test and eval-
uation comparatively.

In summary, this short communication shows three 
examples revealing that the surface potential integral of a 
dipole in a volume conductor may not be zero, thus shak-
ing the fundament assumption of the well-known average 
reference. We thus argue that further detailed comparative 
simulation studies and various real data evaluations among 
REST, AR and linked-ears etc. should be conducted in the 
near future to better confirm a timely ‘gold standard’ for 
various applications.
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Appendix A: Potential Multipole Expansion 
of Any Electric Sources

According to bio-electromagnetic theory, biological elec-
tric source is current source density, and for any current 
source density distribution s

(
r⃗
)
, its potential satifies Pois-

son’s equation (Stratton 1941)

(2)∇2Φ
(
r⃗
)
= − s

(
r⃗
)
∕𝜎

where r⃗ is the field point, � is the conductivity of the con-
ductor (Geselowitz 1960). Equation (1) is a special case 
with unit conductivity. This equation is known to have a 
solution of the form

If the source distribution region v can be bounded by 
a closed surface S, then the potential outside of S satisfies 
Laplace’s equation

For the area r > R with R as the maximum radius of v, 
Eq.  (4) can be solved using spherical harmonic multipole 
expansion technique (Wikswo et al. 1984, 1985; Yao 2000b).

where Pm
l
(cos �) being the associated Lgendre function of 

the first kind, the coefficients may be represented as

where � is the Neumann factor:� = 1 for m = 0,and � = 2 
for m ≠ 0.b0

1
= 0 for all l, j =

√
−1. The first term a0

0
 corre-

sponds to monopole (l = 0) term, it would be omitted due to 
the current conservation of a living system that requires the 
total sum of the current source densities inside a living sys-
tem vanishes. There are three dipole components 

(
a0
1
, a1

1
,b1

1

)
 

(l = 1), and (2l + 1) components for the following lth order 
multipole.

Equation  (2)–(6) show us that the potential produced by 
any sources s

(
r⃗
)
 in the head can be equivalently generated by 

a combination of dipole, quadrupole, octapole etc., at the ori-
gin of a coordinate system.

Appendix B: A Dipole in a Half‑Space Volume 
Conductor

For a dipole in a sphere (Fig. 1), with the Cartesian coordi-
nate origin at the center, the potential on the sphere surface is 
(Yao 2000a)

(3)Φ
(
r⃗
)
=

1

4𝜋𝜎 ∫v

s
(
r⃗�
)

||r⃗ − r⃗�||
d3r⃗�

(4)∇2Φ
(
r⃗
)
= 0, r⃗ ∉ v

(5)
4𝜋𝜎Φ

(
r⃗
)
=

∞∑
l=0

l∑
m=0

1

rl+1

(
am
l
cosm𝜙 + bm

l
sinm𝜙

)
Pm
l
(cos 𝜃), r > R

(6)

am
l
+ jbm

l
= 𝜀

m

(l −m)!

(l + m)! ∫
2𝜋

0

ejm𝜙
�

d𝜙�

∫
𝜋

0

Pm
l

(
cos 𝜃�

)
sin 𝜃�d𝜃� ∫

R

0

s
(
r⃗�
)(
r�
)l+2

dr�

(7)Φ =
P⃗⋅

4𝜋𝜎

{
2
r⃗p

r3
p

+
1

R2rp

[
R⃗ +

R⃗r0 cos𝜑 − Rr⃗0

R + rp − r0 cos𝜑

]}
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where R⃗ and r⃗0 are the field point (on the sphere surface) 
and dipole source location, rp

(
r⃗p = R⃗ − r⃗0

)
 and � are the 

distance and angle between R⃗ and r⃗0, respectively. P⃗ is the 
dipole moment, � is the conductivity of the volume con-
ductor. R is the radius of the sphere. Apparently, when R 
extends to infinity, R → ∞, the formula simplifies to

It is the potential formula for a dipole in a half-space vol-
ume conductor (Fig. 2). This formula can also be derived 
by mirror image source method in electromagnetic field 
theory. Now to further simplify the following deduction, 
we suppose that the Cartesian coordinate origin is at the 
source point, then r0 = 0, and r⃗p=R⃗ − r⃗0=xe⃗x + ye⃗y + ze⃗z,

P⃗=Pxe⃗x + Pye⃗y + Pze⃗z, where e⃗x , e⃗y , e⃗z are the three unit 
vectors of the Cartesian coordinate system. Then we have

Now, let’s consider the potential integrals of the three 
dipole components separately. For the z-axis component, 
the integral over the boundary plane (z = constant, Fig. 2) is

(8)Φ =
2

4𝜋𝜎

P⃗ ⋅ r⃗p

r3
p

=
2

4𝜋𝜎

P⃗ ⋅

(
R⃗ − r⃗0

)

|R⃗ − r⃗0|3

(9)Φ =
2

4��

Pzz + Pxx+Pyy(
x2 + y2 + z2

)3∕2

(10)

Φz =
2

4��

∞

∫
−∞

∞

∫
−∞

Pzz(
x2 + y2 + z2

)3∕2 dxdy

=
2Pz ⋅ z

4��

2�

∫
0

∞

∫
0

1(
r2
xy
+ z2

)3∕2
rxyd�drxy

=
Pz

�

For the x-axis component, the integral over the surface 
plane (z = constant) is

Similarly, the potential integral of y-axis component is 
also zero.

These results are physically very clear. For the z-axis 
component, only positive or negative potential of the dipole 
is on the plane, while for the x- or y-axis component, the 
positive and negative potential are anti-symmetrically dis-
tributed on the plane, thus their sum is zero.

Appendix C: A Dipole in a Homogenous Volume 
Conductor Except a Spherical Cave

In general, the potential of a dipole in an infinite volume 
conductor is

where r⃗(r,𝜃,𝜙) and r⃗0
(
r0, 𝜃0,𝜙0

)
 are the field point and 

dipole source location, rp and � are the distance and angle 
between r⃗ and r⃗0, respectively. Equation (12) also may be 
written as (Yao 2000b; Stratton 1941):

(11)

Φx =
2

4��

∞

∫
−∞

∞

∫
−∞

Pxx

(x2 + y2 + z2)3∕2
dxdy

=
2Px

4��

2�

∫
0

∞

∫
0

x

(r2
xy
+ z2)3∕2

rxyd�drxy =
2Px

4��

2�

∫
0

∞

∫
0

rxy cos �

(r2
xy
+ z2)3∕2

rxyd�drxy

=

2�

∫
0

cos �d�
2Px

4��

∞

∫
0

r2
xy

(r2
xy
+ z2)3∕2

drxy = 0

(12)

Φ∞ =
1

4𝜋𝜎

P⃗ ⋅ r⃗p

r3
p

, r⃗p = r⃗ − r⃗0, rp =

√
r2 + r2

0
− 2rr0cos𝜑

Fig. 1  Illustration of a dipole in a spherical volume conductor. P⃗ is 
the dipole moment, the grey area is the spherical volume conductor

Fig. 2  Illustration of a dipole in a half-space volume conductor. P⃗ is 
the dipole moment, the grey area is the volume conductor
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Here 1∕rp may be expanded as a series. For r > r0, we 
have

For r < r0, we have

Equations (14) and (15) are quite similar except the roles 
of r and r0 exchanged. Pm

l
 is the associate Legendre func-

tion. Taking into consideration of these Legendre function 
relations:

Invoking Eq.  (16), Eq.  (15) into Eq.  (13), we have the 
following equations for r > r0 case.

where

(13)
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0
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Φ∞ =

∞∑
l=0

l∑
m=0
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Fig. 3  Illustration of a dipole in a volume conductor outside of a 
spherical cave. P⃗ is the dipole moment, the grey area is the volume 
conductor

Considering the difference between Eq. (14) with r > r0 
and Eq. (15) with r < r0, and the derivtives related to r0 in 
Eq. (13), we have the following equation for r < r0 case.

where

(20)
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(
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(22)
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(
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Now, if there is a spherical boundary to have the dipole 
inside the spherical volume conductor (Fig.  1) or to have 
the dipole outside the spherical case (Fig.  3), according 
to the uniqueness theory of the Neumann boundary value 
problem (Yao 2000a), the potential of the dipole inside/out-
side the sphere of radius R may be obtained by adding to 
Eq. (17)/(22) a solution Φi of Laplace’s equation which has 
no poles inside/outside the spherical region, respectively, 
and make �Φ∕�r = �

(
Φ∞ + Φi

)
∕�r=0 at r = R.

The final results would be

And

Now consider the potential integral over the spherical 
surface (r = R),

It can be processed as two parts of Sm
l

 or Tm
l

, respectively. 
The first term involves

(26)

Hm
l
= −(l + 1)prP

m
l

(
cos �0

)
sinm�0 +

mp�

sin �0
Pm
l

(
cos �0

)
cosm�0−

p�

2

(
(l − m + 1)(l + m)Pm−1

l

(
cos �0

)
− Pm+1

l

(
cos �0

))
sinm�0

(27)

Φ =

∞∑
l=1

l∑
m=0

(
1

rl+1
+

rl

R2l+1

l + 1

l

)
Km
l

(
P⃗

)
Sm
l

(
P⃗, 𝜃,𝜙

)
, for R >= r > r0
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∫
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0, other cases

where we utilized

The second term involves

For the case r0 < R, dipole in the spherical volume con-
ductor, even for l = m = 0, according to Eqs. (13), (15), (16) 
and P0

0
(x) = 1, Y0

0
= Z0

0
= 0, it means that there is no mono-

pole in the mutipole expansion series of a dipole. Combing 
these facts with Eqs. (30) and (31), it means

And

Equation (33) confirms the statement that the poten-
tial integral over a spherical surface is zero when a dipole 
inside a spherical volume conductor (Bertrand et al. 1985). 
This fact is reasonable as the equivalent multipoles at the 
coordinate origin of a dipole is consisted of dipole, quad-
rupole, octapole etc, there is no monopole which may pro-
duce a constant non-zero poential over the whole spherical 
surface, and the other lth-order multipole all produce a anti-
symmetrical positive and negative potential distriution over 
the surface, thus their integral is definitely zero.

For the case R < r0, a dipole outside a spherical cave, for 
l = m = 0, according to Eqs. (25) and (26), we have

Invoking Eq. (30), Eq. (31) into Eqs. (23–26, 28), we 
have
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This fact means that for a dipole outside a spherical 
cave, the radial component of the dipole may evoking an 
equivlaent monopole term at the origin, its surface poten-
tial integral is not zero except the dipole is quite far away 
(r0 → ∞). Apparently, for a P⃗r oriented outside the spheri-
cal cave, the negative pole of the dipole close to the sur-
face, the surface integral is negative, for an opposite case, 
the integral is positive.

Appendix D: The Potential Integral Over 
the Circular Plane of a Dipole in a Homogenous 
Semi‑Sphere Volume Conductor

As explained in the above “A Dipole in a Homogeneous 
Semi-Sphere Volume Conductor” section, the potential Φ 
on the circular plane of a dipole in a homogeneous semi-
sphere volume conductor is the double of the potential on 
the same plane of the same dipole in a homogeneous sphere 
volume conductor, thus we may just work on the potential 
integral of the potential Φ1 over the circular plane.

In general, for a dipole in a homogenous spherical vol-
ume conductor, the potential at anywhere in the sphere is 
(Yao 2000a)

where the Cartesian coordinates of the field point r⃗ and the 
position r⃗0 of the dipole with moment p⃗ are (x, y, z) and (
x0, y0, z0

)
, respectively, and the length of the displacement 

r⃗p = r⃗ − r⃗0 between these two points are 
rp=

(
r2+r2

0
− 2rr0 cos�

)1∕2, � is the angle between r⃗ and r⃗0, 
R is the radius of the sphere, � is the conductivity of the 
volume conductor. Where 
rpi=

(
1+

(
rr0/R

2
)2

− 2rr0/R
2 cos�

)1∕2

. Here, as an exam-
ple, we specifically consider a dipole at Cartesian coordi-
nates 

(
x0, y0, z0

)
=
(
0, 0, z0

)
 and positively oriented along 

z–axis with P⃗ = Pxe⃗x + Pye⃗y + Pze⃗z = Pze⃗z, where (
Px, Py,Pz

)
 are the three components of the dipole moment 

P⃗ in accordance with the three unit vectors 
(
e⃗x, e⃗y, e⃗z

)
 of the 

Cartesian coordinate system with origin at the center of the 
sphere. For the potential on the circular plane (z = 0), we 
have � = 90o and r⃗=

(
xe⃗x, ye⃗y, ze⃗z

)
=
(
xe⃗x, ye⃗y, 0e⃗z

)
.

For this special case, we get the following simplified for-
mula Eq. (37) from the above Eq. (36).

(36)

Φ1 =
P⃗⋅

4𝜋𝜎

⎧⎪⎨⎪⎩

r⃗ − r⃗0

r3
p

+

�
r⃗ −

r2

R2
r⃗0

�

R3r3
pi

+
1

R3rpi

⎡
⎢⎢⎣
r⃗ +

r⃗
r0r

R2
cos𝜙 −

r2

R2
r⃗0

rpi + 1 −
r0r

R2
cos𝜙

⎤⎥⎥⎦

⎫⎪⎬⎪⎭

where Φ is the total potential of the dipole and its mirror, 

the double of Φ1, rp =
(
r2 + z2

0

)1∕2, r2=x2 + y2, 

rpi =
(
1 +

(
r0r∕R

2
)2)1⟋2

=1/R2
(
R4 +

(
z0r

)2
)1⟋2

.

Then the integral over the circular plane is

Specifically, if the dipole is just located on the circular 
plane 

(
z0 = 0

)
, the potential shown by Eq.  (37) and the 

integral shown in Eq. (38) are all zero. However, this case 
is not the situation that we concerned that a dipole is in a 
semi-sphere volume conductor with z0 > 0.

Now we check each item in Eq. (38) for z0 > 0,we have

and
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and

(41)
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Take Eqs. (43, 44) into Eq. (41), we have
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Finally, we have

Specifically, let � = 1, Pz = 1, R = 1, we have
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For Eq. (47), it is easy to test by Matlab that its value is 
always smaller than 0 and z0 value dependent. For exam-
ple, for z0 = 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
0.7, 0.8, 0.9, 0.99, the values of I are −0.9994, −0.9938, 
−0.9688, −0.9377, −0.8765, −0.8173, −0.7611, 
−0.7082, −0.6591, −0.6138, −0.5723, −0.5343, -0.5033, 
respectively. In fact, here the dipole is oriented along the 
positive z-axis in the upper semi-sphere, the potential on 
the circualr plane would be negative.

Specifically, if R tends to infinity, then according to 
Eq. (38), we have

It is the same as Eq.  (10) except a sign because the 
dipole here is located upper the plane, and it is below the 
plane for Eq. (10).
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