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Abstract Global field power is a valuable summary of

multi-channel electroencephalography data. However,

global field power is biased by the noise typical of elec-

troencephalography experiments, so comparisons of global

field power on data with unequal noise are invalid. Here,

we demonstrate the relationship between the number of

trials that contribute to a global field power measure and

the expected value of that global field power measure. We

also introduce a statistical testing procedure that can be

used for multi-subject, repeated-measures (also called

within-subjects) comparisons of global field power when

the number of trials per condition is unequal across con-

ditions. Simulations demonstrate the effect of unequal trial

numbers on global field power comparisons and show the

validity of the proposed test in contrast to conventional

approaches. Finally, the proposed test and two alternative

tests are applied to data collected in a rapid serial visual

presentation target detection experiment. The results show

that the proposed test finds global field power differences

in the classical P3 range; the other tests find differences in

that range but also at other times including at times before

stimulus onset. These results are interpreted as showing

that the proposed test is valid and sensitive to real within-

subject differences in global field power in multi-subject

unbalanced data.

Keywords Statistical test � Oddball paradigm � Data
imbalance � Electroencephalography

Introduction

Global field power (GFP) is the spatial standard deviation

of a montage of average-referenced electrode voltages

(Lehmann and Skrandies 1980; Skrandies 1990) and is

used in analysis of electroencephalography (EEG) data. A

major advantage of using GFP is that it maintains statistical

power that might otherwise be lost due to the need to

correct for multiple comparisons when statistically testing

each electrode in a potentially large array (Hamburger and

vd Burgt 1991; Koenig et al. 2011; Maris 2004; Maris and

Oostenveld 2007; Skrandies 1990). GFP is spatially

insensitive, so it can be used to test non-spatial hypotheses

or as an initial step preceding spatial analyses that are then

temporally focused (Hamburger and vd Burgt 1991; Koe-

nig and Melie-Garcia 2010). Despite the benefits of using

GFP to summarize data, computing GFP involves a non-

linear transformation of the data, so caution must be taken

when interpreting it (Murray et al. 2008). The purpose of

this article is to call attention to a situation in which using

GFP along with conventional statistical testing will lead to

erroneous conclusions and to offer a statistical testing

procedure that overcomes this problem.

Before addressing the main purpose of the article, a dis-

tinctionmust be drawn between two approaches to using GFP

to summarize EEG data (Tzovara et al. 2012). The first

approach is to compute the GFP of single-trial data and then

average the resulting single-trial GFP measurements. The

other approach is to average several trials of EEG data and

compute the GFP of the resulting average. Both approaches

are in use (for an example of analyses involving single-trial

GFP see Wagner et al. 2014), but these two approaches esti-

mate quantities that must be interpreted differently. The first

approach computes the average GFP of a single trial. This

includes the GFP of both the stimulus-locked neural activity
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and the electrical activity, neural or otherwise that is not time-

locked to the stimulus event. The second approach computes

the GFP of time-averaged data. The process of averaging will

have the effect of partially cancelling out signals with a ran-

dom relationship to the stimulus event and thereby enhance

signals that are time-locked to the stimulus event. Confus-

ingly, both can reasonably be called the mean GFP (or

mGFP), because one is the mean of the single-trial GFPs and

the other is the GFP of the mean event-related potential.

When the goal is to compare the GFP of stimulus-locked

signals with as much noise (in this context, anything not

time-locked to the stimulus event) eliminated as possible, a

situation can arise in which the degree to which noise is

eliminated is different for the two conditions under com-

parison (i.e. data are unbalanced). This occurs, for exam-

ple, in the oddball paradigm used in traditional mismatch

negativity experiments (Näätänen and Alho 1995; Näätä-

nen et al. 2004; Stefanics et al. 2015) and P3 experiments

(Picton 1992) in which a class of stimuli are presented

frequently, and another class of stimuli are presented

infrequently. Unbalanced data can also arise when trials are

segregated based on participant responses. Because there

are more trials associated with the frequent condition than

the infrequent condition, more noise is eliminated from the

average ERP for the frequent stimulus. When noise is just

as likely to increase a measure as to decrease it, then

having more or less noise in one condition or the other

should not lead to systematic effects. However; GFP is a

biased statistic, because additional noise has a tendency to

increase its value. A formal demonstration that GFP is a

biased statistic follows, but a more intuitive explanation is

simply that since GFP is the spatial standard deviation over

a set of electrodes, the larger the noise on individual

channels, the greater the standard deviation will be.

We are far from the first to point out the problem of using

biased statistics and unbalanced datasets. The difficulties

associated with estimating component peak amplitude with

unbalanced data have been previously described (Picton

et al. 2000). Standard estimates of spectra and coherence are

also biased (Bokil et al. 2007). Proposed solutions include

discarding data to force data balance, using alternative, non-

biased statistics (Picton et al. 2000; Thomas et al. 2004), or

the use of procedures that correct for bias (Bokil et al. 2007).

Alternative and corrected estimates are not always available,

and discarding otherwise perfectly good data may sacrifice

power to detect experimental effects. Here, we describe a

general statistical testing procedure that uses all available

data and is not susceptible to problems caused by unbal-

anced data. This method has been used previously (Files

et al. 2013), but here we describe the method in detail with a

careful examination of its validity and sensitivity. The

method is closely related to permutation testing procedures

that have been recommended for analysis of balanced event-

related potential data (Blair and Karniski 1993; Greenblatt

and Pflieger 2004; Karniski et al. 1994) and to unbalanced

coherence data with one subject (Maris et al. 2007), but

extensions to multi-subject paired comparisons designs have

not, to our knowledge, been examined.

The testing procedure described in this paper applies to a

specific combination of experimental design and compar-

ison of interest. To pinpoint this combination of design and

comparison, we refer to the experiment classification

scheme of Greenblatt and Pflieger (2004; their Fig. 1,

p. 227). According to that scheme, the comparison for

which the unbalanced paired permutation test was designed

is a two condition, paired, within-group comparison. Many

tests may be used for that general comparison, but only with

experimental designs that produce balanced data and/or

when using summary statistics that are not biased. The

unbalanced paired permutation test we describe applies to a

paired, within subjects design in which trial counts in the

paired conditions are imbalanced leading to a biased sum-

mary statistic. A concrete example of a design and com-

parison for which this test is appropriate is the typical P3/

oddball design in which rare targets are embedded in a

series of common distracters and the comparison of interest

is the GFP evoked by targets against the GFP evoked by

distracters. This design has two conditions (target, dis-

tracter), both conditions apply to every subject (the condi-

tions are paired) and the difference in the two conditions is

of interest (the comparison is within-group). This example

produces unbalanced data (rare targets and frequent dis-

tracters) and is using a biased summary statistic (GFP).

The remainder of this paper will be organized as fol-

lows. First, we show under very general assumptions that

GFP is a biased statistic, and that this bias is due to non-

linear effects of the number of trials used in calculating the

averaged evoked potential. This finding implies that

applying traditional statistical approaches for within-sub-

jects comparisons of GFP on multi-subject data with data

size imbalance will yield inaccurate results. To overcome

this issue, we introduce an unbalanced paired permutation

procedure that leads to a valid statistical test of GFP with

unbalanced, multi-subject data. Finally, to empirically

validate the proposed unbalanced paired permutation pro-

cedure, we will present simulations and analyses to illus-

trate the strengths and weaknesses of the unbalanced paired

permutation test in comparison to alternative procedures.

Materials and Methods

The Expected Value of GFP

Let Yik, i ¼ 1; . . .;C, k ¼ 1; . . .;K be from a stochastic

process representing the EEG signal for channel i and
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epoch/trial k at a single time point in the epoch, where C is

the total number of channels and K is the total number of

epochs. We make the following assumptions:

E Yikð Þ ¼ li

Var Yikð Þ ¼ r2i
Cov Yik; Yimð Þ ¼ 0

Cov Yik; Yjk
� �

¼ qij

The four assumptions, taken together, mean that each

channel has its own mean/variance, that non-phase-locked

activity across epochs are independent and that channels

within epochs are correlated as qij, with channel pairs i and

j: We believe that assumption (4) accounts for the induced

correlation due to volume conduction that is inherently

present in EEG signals and that this effect is consistent

across trials.

The Global Field Power (GFP) of the EEG data is given

as

GFP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XC

i¼1

�Yi: � �Y::ð Þ2

C

vuut

where �Yi: ¼ 1
K

PK

k¼1

Yik is the mean of the EEG data across

trials and �Y:: ¼ 1
C

PC

i¼1

�Yi: is the average of the EEG data over

channels and over epochs. Using the Delta Method (Casella

and Berger 2002), we derive an approximation (details can

be found in the Appendix) to the Expected Value of the

Global Field Power as:

EðGFPÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The sample estimates for r2i , li and qij(S
2, �Yi, and q̂ij)

can be used in place of the population estimates above.

Crucial to our purposes here is the unavoidable factor K

(indicating the number of trials or epochs) which cannot be

factored out of the expression, leading us to conclude that

EðGFPÞ is influenced by the number of trials used to cal-

culate the GFP. The other factors in the expression are not

problematic, either because they are expected to be
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S1 Continuous
EEG data
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S2 Continuous
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1 by S
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1 by S

dGFP
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Sn Continuous
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. . . . . .

Epoch & sort by condition
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paired-samples
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Fig. 1 Flowchart showing the steps in computing global field power

differences across two conditions. Data are obtained from subjects S1

through Sn. Continuous data are epoched around a stimulus event and

sorted according to condition to obtain epoched single-trial data of

dimensions C channels, S samples per epoch and A or B repetitions

for conditions a and b, respectively. Average ERPs are obtained by

averaging over repetitions, and then global field power is computed.

The unbalanced paired permutation test carries out permutation at the

single trial level, before any averaging is done. A conventional

permutation test permutes after averaging and computation of global

field power, and conventional T test would be done after computing a

difference (or equivalently a paired-samples T test would be done on

the GFPs before subtraction)
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consistent within a subject across typical experimental

manipulations in the case of the number of channels, C, and

the correlations between channels due to volume conduc-

tions, qij, or in the case of r2i or li because they are

potential experimental effects of interest. However, in

order to draw valid inferences about potential experimental

effects on GFP differences, the effect of the number of

trials must be dealt with. One possibility is to ensure that

the number of trials is equal across experimental condi-

tions, but a number of experimental designs inherently

produce unbalanced data. Here, we propose a statistical

testing procedure that enables valid statistical testing of

experimental effects in GFP with unbalanced paired data in

the context of two condition, within-subjects (also called

repeated measures) designs for multi-subject experiments.

Statistical Tests for Differences in GFP

As shown in Fig. 1, in a multi-subject, two-condition,

paired comparison experiment GFP is calculated for each

subject/dataset by sorting epochs by condition, calculating

an ERP for each condition, and then taking the root mean

squared over electrodes in the condition-average ERP. To

determine an average GFP difference, the subject GFP for

condition A is subtracted from that of condition B, and then

these differences are averaged. The question at hand is

whether the GFP for condition A is statistically signifi-

cantly different from the GFP for condition B.

Conventional Tests

Conventional approaches to answering this question might

employ a student’s T test of zero difference (equivalent to a

paired-samples T test on the single-subject condition GFPs)

or a paired-samples permutation test. Both of these con-

ventional tests would operate on the single-subject condi-

tion GFPs. For the T test, the mean of the difference at each

time point would be scaled by the standard error of the

difference at each time point, and this value would be

compared to a T distribution with appropriate degrees of

freedom (i.e. the number of subjects minus one) to obtain a

p value.

The paired samples permutation test is a non-parametric

alternative to a paired-samples T test. The null hypothesis

for a paired-samples permutation test is that the data

labeled Condition A and the data labeled Condition B came

from the same distribution. If the null hypothesis is true,

then the labels on the data (A or B) are effectively arbi-

trary. To assess whether the observed data are compatible

with this null hypothesis, a null distribution is constructed

by randomly relabeling the obtained data within the

experimental unit (here, a subject’s GFP for Conditions A

and B). In a two-condition experiment, there are only two

possible labels, and so only two possible combinations of

labels: A, B or B, A. Each subjects’ data can only be

labeled two ways, so there are a total of 2N possible entries

in the permutation distribution (where N is the number of

subjects). After randomly re-labelling the data, the mean

GFP difference is calculated and that difference is added to

the permutation distribution. When N is not too large, all

possible permutations can be included in the distribution,

but for larger Ns a random subset of all possible permu-

tations are used. The actually-obtained GFP difference (i.e.

with the correct labels) is then compared to the permutation

distribution of GFP differences. If the summary with cor-

rect labels is extreme relative to the null distribution, then

the hypothesis that the labels were essentially randomly

applied to the data can be rejected.

The Unbalanced Paired Permutation Test

The unbalanced paired permutation procedure follows the

typical procedure for a permutation test, but the key

development here is the selection of the experimental unit.

The conventional paired-samples permutation test would

use the subject’s condition GFP as the experimental unit.

This poses a problem, because as we have shown in the

previous section, the condition GFP depends systematically

on the number of trials that comprise that condition, so

when the number of trials in Condition A and B are dif-

ferent, the null hypothesis of the paired-samples permuta-

tion test is false due to the unequal number of trials. This

tells us nothing about whether there is a difference due to

the experimental manipulation itself. To get around this

problem, the procedure described here reshuffles the data

labels at the level of the single trial, while still respecting

the relative number of trials per subject. A reference

implementation is available at https://github.com/btfiles/

UBpermGFP

1. For each subject

a. Count the number of trials for Condition A and B.

b. Randomly shuffle the labels (A or B) across the

data for that subject, such that number of trials

labeled A remains constant (as do the number of

trials labeled B). Call the data with shuffled labels

A0 and B0

c. Compute mean ERPs for A0 and B0

d. Compute the GFP of these ERPs, and call them

GFP(A0) and GFP(B0), respectively.
e. Calculate a difference GFP, dGFP = GFP(B0) -

GFP(A0).

2. Compute the group mean dGFP by averaging over all

subjects.
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3. Add the resulting dGFP to a null permutation

distribution.

Repeat this procedure many times with a different ran-

dom shuffling each time. Because there are far more pos-

sible reshufflings than could be reasonably computed, an

exhaustive permutation is practically impossible. There-

fore, the GFP difference computed using the true (non-

shuffled) labels should also be included in the null distri-

bution (Edgington and Onghena 2007). A two-tailed

p value is computed in the usual way: compute the pro-

portion of entries in the null distribution that are smaller

than the entry corresponding to the actual data labels and

count the proportion of entries that are larger. A two-tailed

p value is two times the smaller of these proportions.

The novelty of this method is not in applying permutation

testing to EEG data (Blair and Karniski 1993; Maris and

Oostenveld 2007). The unbalanced paired permutation test is

a modification of standard techniques that lets it be used in

tests of mGFPwith unbalanced data. The goal is to show that

this method allows valid statistical testing of unbalanced

mGFP data, in contrast to conventional methods.

Simulation and Experimental Methods

Three experiments were run to examine how unbalanced

data can be summarized and tested using GFP. The first

experiment was a simulation designed to test the relative

performance of the paired-samples T test, the conventional

paired-samples permutation test, and the unbalanced paired

permutation test in a situation in which the null hypothesis

was true, because labeling of the data was random. The

second experiment was a simulation with the goal of

assessing the sensitivity of the unbalanced paired permu-

tation test by adding a known effect to data that were in

other aspects not different. The third experiment used a

GFP analysis on unbalanced data that had been previously

shown to have an experimental effect using conventional

ERP analysis methods.

All three experiments used data from an EEG dataset

that has been described in previous publications (Cecotti

et al. 2015; Marathe et al. 2015; Ries et al. 2013). Briefly,

these data were collected in a rapid serial visual presen-

tation target detection paradigm from 16 subjects (13 male,

mean age 33.5 years). Target stimuli were people in sim-

ulated natural scenes holding guns, and the non-target

stimuli were simulated natural scenes with no people.

Participants were asked to silently count the number of

targets. Electrophysiological recordings were sampled at

256 Hz from 64 active scalp electrodes and analyzed using

an average reference. Large artifacts from EMG were

removed through visual inspection and EOG artifacts were

removed using independent component analysis (ICA),

(Jung et al. 2000) prior to analysis. The voluntary, fully-

informed written consent of participants in this research

was obtained as required by federal and U.S. Army regu-

lations (U. S. Department of Defense Office of the Secre-

tary of Defense 1999; U. S. Department of the Army 1990).

The investigator adhered to Army policies for the protec-

tion of human subjects (U. S. Department of the Army

1990). All human subjects testing was approved by the

Institutional Review Board of the United States Army

Research Laboratory.

For Experiments 1 and 2, EEG data were filtered using a

high-pass filter at 1 Hz and only non-target epochs were

used. Epochs extended from 1 s before to 2 s after non-

target stimulus onset. To avoid contamination of non-target

epochs with activity due to temporally adjacent target

stimuli, only non-target epochs that were at least 3 s

removed from any target stimuli were used. Epochs with

any voltage exceeding ±75 lV were rejected; this left 3 of

the 16 subjects with less than 150 accepted non-target

epochs. These participants’ data were not used. In the 13

remaining data sets, the average number of accepted

background epochs was 177.7 (std 11.2, min 153, max

189).

Experiment 3 used both target and non-target epochs.

Processing of the data for Experiment 3 differed slightly

from processing for Experiments 1 and 2. Specifically,

epochs were required to be 2 (rather than 3) seconds away

from any target stimuli for inclusion, and data were high-

pass filtered at .2 Hz. The narrower exclusion window was

chosen to increase the number of non-target epochs and the

lower high-pass filter was chosen to avoid filtering out the

low frequency P3 effect while still eliminating drift over

the course of an epoch. All other processing steps were

identical to those used for Experiments 1 and 2. After

epoching and rejection, the average number of background

epochs was 425.5 (std 83.6, min 240 max 496) and the

average number of target epochs was 48.5 (std 9.4, min 25,

max 54).

Experiment 1

This experiment was a simulation intended to determine

the validity of four different statistical tests on GFP sum-

maries of unbalanced data. Validity is the criterion that

when the null hypothesis is true, the probability of getting a

p value less than or equal to alpha is equal to alpha. In other

words, the probability of a false rejection should be equal

to the threshold for rejection. The data used in this simu-

lation was chosen to be typical of an EEG experiment with

no experimental effects (i.e. the null hypothesis of no dif-

ference between conditions is true). To achieve this, a

subset of non-target epochs were randomly selected from
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each subject and labeled as Condition A. The remaining

non-target epochs were labeled as Condition B. These

labeled trials were then submitted to statistical testing by

the paired-samples T test (two-tailed, df = 12), the con-

ventional paired-samples permutation test (with 2000

resamplings), and the unbalanced paired permutation test

(with 2000 resamplings). This procedure (i.e. randomly

selecting a subset and then statistical testing) was repeated

100 times in order to gather summary statistics on the false

positive rate of each method. Additionally, the size of the

subset of trials labeled Condition A relative to the size of

the total number of trials was systematically varied, such

that 1/15, 1/10, 1/8, 1/5 or 1/2 of the trials were labeled as

Condition A.

To statistically test for validity, the false positive rate

with a threshold for significance of .05 was compared to the

nominal value (i.e. .05) for each testing method and each

ratio. Two-tailed tests were used because false positive

rates that are significantly higher than the nominal value

indicate an overly liberal test and false positive rates that

are significantly lower than the nominal value indicate an

overly conservative test.

Experiment 2

This simulation tested the sensitivity of the unbalanced

paired permutation test to experimental effects. The

approach was to randomly select 30 of the background

epochs as Condition A and then select from the remaining

background trials as Condition B. In this experiment, as in

Experiment 1, the number of trials selected for Condition B

was systematically varied, such that 1/2, 1/3, 1/4, and 1/5 of

the trials in the experiment were labeled as Condition A. A

simulated experimental effect was added to the trials in

Condition A. The simulated experimental effect was a

simple additive offset that was positive for half of the

electrodes and negative for the other half. This simulated

effect was chosen not to be similar to actual ERP effects, but

instead to be simple to describe and control. The size of the

effect was varied to produce a range of simulated signal-to-

noise ratios. The effect powers used were (in RMS micro-

volts) 1.17, 1.47, 1.76, 2.05, 2.35, 2.64, 2.93, 3.25, and 3.59.

Signal-to-noise ratio was computed as the root mean

squared effect divided by the root mean squared noise.

Noise was defined as the residual of the non-target epochs

once the mean of the non-target epochs was subtracted.

This simulation was repeated 100 times in order to collect

summary statistics on the true positive rate of the unbal-

anced paired permutation test. For each simulation, a sig-

moid was fit to the sensitivity curve and was summarized

as the (interpolated) SNR at which sensitivity was .5.

Experiment 3

The goal of this experiment was to apply the three methods

described above to an experimental dataset. The GFP from

the target and non-target epochs was compared. Previous

studies have shown differences between rare target and

frequent non-target epochs using conventional ERP meth-

ods (e.g. Hamburger and vd Burgt 1991).

All three methods were applied to the experimental data

with the same settings as in the simulation in Experiment 1.

Results are presented with timepoint-by-timepoint test

results both before and after correction for multiple com-

parisons. Several options are available for correcting time-

series data for multiple comparisons (Groppe et al. 2011a).

The approach we used was to control the false discovery

rate (Benjamini and Hochberg 1995; Benjamini and

Yekutieli 2001), because it is convenient to apply to all of

the statistical tests under comparison without being too

conservative.

As an additional comparison, we performed EEG

channel-based testing using the mass univariate toolbox

(Groppe et al. 2011a, b) to perform a permutation T test for

differences in the mean ERP for targets vs. non-targets.

Because both the mass univariate and GFP tests are per-

mutation tests, we used two permutation-based methods for

correcting for multiple comparisons for each test. One was

a cluster-based correction (Bullmore et al. 1999), which

has high power for detecting broadly distributed effects,

but does not provide strong family-wise error rate control.

For the ERP test, a cluster t-mass correction was applied

with an initial inclusion criterion of .05 and an electrode

adjacency criterion of 5.24 cm. For the GFP test, a cluster

size (i.e. number of consecutive tests with uncorrected

p value \.05) correction was applied with an inclusion

criterion of .05. Cluster size was used instead of cluster

mass, because the null distribution of cluster mass was not

symmetrical about zero. The other correction provided

strong control over family-wise error rate. For the ERP test,

a tmax correction (Blair and Karniski 1993) was used. For

the GFP test a similar procedure was used, but GFP dif-

ference (rather than a t statistic) was computed.

In summary, Experiment 1 was a simulation examining

the validity of the unbalanced paired permutation test as

compared with conventional paired-samples permutation

test and the conventional paired T test under varying levels

of data imbalance with a true null hypothesis. Experiment 2

was a simulation examining the sensitivity of the unbal-

anced paired permutation test with a false null hypothesis

under varying effect sizes and data imbalances. Experiment

3 uses the three statistical tests to analyze an experimental

(rather than simulated) data set.
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Results

Experiment 1

This simulation tested the validity of three statistical

methods for detecting GFP difference when they were

applied to unbalanced datasets. Datasets were constructed

such that the null hypothesis of no difference between data

labeled Condition A and data labeled Condition B was true,

but the relative number of trials in Condition A and Con-

dition B were unbalanced. A balanced dataset was also

included. All methods except the unbalanced paired per-

mutation method had false positive rates substantially

above the criterion for significance (i.e. alpha) over the

entire range of criteria for all but the balanced data

(Fig. 2a). At alpha = .05 (Fig. 2b), all methods except the

unbalanced paired permutation method had false alarm

rates above the nominal value of .05 when data were

unbalanced, as assessed by one-sample T tests (df = 99),

all p\ 10-4. When data were balanced, however, the

proportion of false positives was less than .05 for the

paired-samples T test, T(99) = -3.7, M = .046, 95 % CI

(.042, .049), p = .0003.

For the unbalanced paired permutation test, mean false

positive rates (with 95 % confidence intervals, Bonferroni

corrected) were .052 (.046, .056), .049 (.045, .053), .050

(.046, .055), .051 (.046, .055), and .048 (.043, .054) when

1/2, 1/5, 1/8 1/10 and 1/15 of the trials were assigned to

Condition A, respectively. These results show that when

data are simulated under a true null hypothesis and with

imbalanced data, conventional statistical tests produce

more false positives than expected given any particular

criterion for statistical significance. The unbalanced paired

permutation test can be called valid because it produces a

false positive rate equal to the chosen threshold for statis-

tical significance.

Experiment 2

This simulation tested the sensitivity of the unbalanced paired

permutationGFP test by partitioning data for each subject into

two unequal sets and then adding an artificial effect to the

smaller set (labeled ConditionA). The size of the added effect

was varied to test the validity of the unbalanced paired per-

mutationGFP test across a range of effect sizes. No effect was

added to the other set, labeled Condition B. The number of

trials in Set B was varied in order to examine sensitivity with

different levels of imbalance.

Across all imbalances tested, the sensitivity, as mea-

sured by true positive rate, increased with increasing effect

size (Fig. 3). To assess whether changing the number of

trials in Condition B while holding the number of trials in

Condition A constant had an effect on the sensitivity of the

unbalanced paired permutation test, a generalized linear

model with a modified logit link function was fit to the

sensitivity data with effect SNR and data imbalance ratio as

predictors. The model included an intercept term and terms

for SNR, imbalance ratio, and the interaction of SNR with

imbalance ratio. Through backward elimination it was

determined that the interaction term was not significant
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Fig. 2 False positive statistical results under a true null hypothesis.

a Each panel shows a family of validity curves that show the mean

false positive rate versus significance threshold taken over 250

simulations. Data imbalance increases as curves go from light to dark,

with the lightest curve showing balanced data through the darkest in

which 1/15th of the trials are assigned to Condition A. For the

unbalanced paired permutation test, all curves fall on the unity line.

b Shows the comparison of false positive rates for the three statistical

tests across all imbalances tested when the threshold for significance

is .05. Note the log scale. The dashed line shows a false positive rate

of .05. Error bars show plus and minus 1.96 standard errors of the

mean
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(p[ .05), so we reduced the model to one including only

SNR and imbalance ratio. The model (df = 3597) fit the

data better than an intercept-only model (v2 = 3.4 9 103,

p\ 10-10). The effect of SNR (B = 30.7, SE = 1.54,

T = 19.9, p = 2.9 9 10-88) was statistically significant.

The effect of ratio (i.e. the proportion of trials that were

targets) was statistically significant (B = -2.2, SE = .73,

T = -3.04, p = .0024). So, although the biggest factor for

the sensitivity of the test is the SNR of the effect in

question, increasing the number of trials in the no-effect

condition and thereby decreasing the proportion of trials

that are in the effect condition increases sensitivity as well.

In summary, Experiment 2 shows that the unbalanced

paired permutation test increases its sensitivity as the effect

size in the affected condition increases, but increasing the

number of trials in the majority, non-affected condition

also has a relatively small but positive impact on the sen-

sitivity of the test.

Experiment 3

This experiment used EEG data from 13 subjects performing

a target detection task in a rapid serial visual presentation

paradigm. After artifact rejection, an average of 48.5 (range

25–54) target trials and 426.1 (range 240–496) non-target

trials were maintained. In the terms used in Experiments 1

and 2, data imbalance as the proportion of target trials was

1/9.8 on average (range 1/8.8–1/10.6). The three statistical

tests (unbalanced paired permutation, conventional paired-

samples permutation, paired-samples T test) were applied to

the GFP at each time point from 1000 ms before stimulus

onset to 2000 ms after onset. At the sampling rate of

256 Hz, this results in 768 time points. Results of the four

statistical tests are shown in Fig. 4. All three tests rejected

their respective null hypotheses (q\ .05, FDR corrected)

from 296 to 1051 ms post-stimulus onset. However, con-

sistent with the simulation results from Experiment 1, the

conventional statistical tests rejected their respective null

hypotheses prior to stimulus onset 239 and 235 times out of

256 total pre-stimulus samples for paired-samples T test and

paired-samples permutation test, respectively.

Because these analyses were carried out on experimental

(rather than simulated) data, it is impossible to differentiate

false positive results from true positive results. With that

said, the most likely explanation for rejections of the null

hypothesis preceding stimulus onset is that these rejections

are false positives. This is because a stimulus preceding a

target and a stimulus preceding a non-target were always

background stimuli, so it is more likely that rejections of

the null hypothesis preceding the target onset are false

positives caused by data imbalance. The same argument

cannot be made for rejections after stimulus onset by the

conventional methods. Those rejections could be false

positives due to the sensitivity of the tests to data imbal-

ance demonstrated in Experiments 1 and 2, or they could

be reflecting a true, meaningful difference in the GFP

caused by persistent differences in neural processing of the

target stimulus. In that case, the failure of the unbalanced

paired permutation test to reject would be considered a

false negative. Generally, nonparametric methods such as

permutation tests are less sensitive than their parametric

counterparts if the assumptions of the parametric test are

met. However, the simulation results illustrating the sen-

sitivity of the conventional methods to data imbalance

show that at best the post-stimulus rejections of the con-

ventional statistical tests are equivocal.

For comparison with the within-subject GFP difference

testing, we also carried out a mass univariate test that would

be used to simultaneously test hypotheses about both spatial

and temporal effects. These tests clearly are testing for

different kinds of effects, so a direct comparison of their

results is not possible, but looking at them simultaneously

reveals what can be gained from GFP analysis relative to

mass univariate analysis of mean ERP (Fig. 5). The GFP

test, under both strong and weak family-wise error correc-

tion for multiple comparisons, finds statistically reliable

differences in the time-range of the P3. The mass univariate

ERP test also finds effects in that time range. Under the

cluster-based correction, both positive and negative clusters

are found that start well after the GFP cluster but also

extend past the GFP cluster. Under strong FWER control,

focal effects are found at the peaks of the differences
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Fig. 3 Sensitivity for the unbalanced paired permutation test with

fixed number of target trials. Points show the mean proportion of tests

rejecting the null hypothesis (i.e. the true positive rate) for each effect

size tested for each of the four imbalances tested. Curves are fitted

logistic functions. Highlighted areas around the curve show the 95 %

confidence area for new observations. Vertical lines call out the SNR

at which half of tests rejected the null hypothesis and black segments

show the slope of the curve at that point. For all proportions, the

number of class A trials was fixed at 30 and the number of class B

trials was adjusted to achieved the proportion being tested

352 Brain Topogr (2016) 29:345–357

123



identified by the cluster method. As might be expected due

to performing one test per time point (rather than one test

per channel per time point), GFP testing appears to be more

sensitive after correction for multiple comparisons than

mass univariate testing, but some caveats must be kept in

mind. First, because these are experimental data, we lack

ground truth and cannot determine with certainty which

rejections of the null hypothesis are correct. Second, using

cluster-based corrections for multiple comparisons provides

p values for clusters as a whole, so particular claims about

parts of clusters, such as their onsets and offsets, are made

with caution. Finally, GFP and ERP tests are looking for

different effects, but they are not mutually exclusive. If both

temporal and spatial hypotheses are of interest, a temporal

window could be established by GFP testing, and then mass

univariate ERP tests could be performed over the time

window(s) identified in GFP testing.

Discussion

Global field power (Lehmann and Skrandies 1980; Skran-

dies 1990) offers a useful summary of multichannel EEG

data (Koenig et al. 2011; Murray et al. 2008). Because the

value of GFP depends on the variability of the data used to

construct the GFP, GFP comparisons are problematic in

common EEG protocols that result in unbalanced datasets.

The unbalanced paired permutation test described here

aims to solve that problem. Experiment 1 showed that, in

contrast to other methods, the unbalanced paired permu-

tation test is valid when applied to unbalanced datasets. In

particular, the false positive rates of the paired-samples

T test and the paired-samples permutation test are higher

than the nominal alpha criterion when data are imbalanced.

Experiment 2 simulated EEG effects of various sizes and

showed that the unbalanced paired permutation test is able

to detect simulated experimental effects over a range of

effect sizes. This result would be expected for any valid

statistical test. Perhaps more interesting is that increasing

the number of trials in the majority class (i.e. by increasing

the data imbalance) improves the sensitivity of the unbal-

anced paired permutation test, although this effect was

small relative to the effect of increasing the size of the

effect. So, in contrast to conventional tests that were

impacted negatively by data imbalance, the unbalanced

paired permutation test proposed here takes advantage of

the additional samples in an unbalanced data set. Experi-

ment 3 applied all three statistical tests to an experimental

(rather than simulated) data set. Because ground truth is

unknown, rejections of the null hypothesis cannot be
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Fig. 4 Results of three statistical tests applied to experimental data.

In all panels, the dark blue line depicts the measured group mean GFP

difference of Condition A, target images, minus Condition B,

background images. The three tests are the unbalanced paired

permutation test, conventional paired T test and the conventional

paired permutation test. For the two permutation tests, the shaded area

covers the central 95 % of the permutation distribution. Values falling

outside of that area correspond to a rejection of the null hypothesis at

the uncorrected .05 criterion. For the T test, the shaded area depicts a

95 % confidence interval about the measured value. Samples at which

the confidence area does not include 0 correspond to a rejection of the

null hypothesis at the uncorrected .05 criterion. For all tests, pale

marks at y = 0 indicate samples at which the null hypothesis is

rejected at the uncorrected .05 criterion, and dark marks indicate

samples at which the null hypothesis is rejected after FDR correction.

All tests were done with N = 13 subjects
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classified with certainty as false or true rejections. The

conventional statistical tests rejected the null hypothesis of

equal GFP during the pre-stimulus interval, and the most

likely explanation is that these rejections were false

rejections. Overall, the unbalanced paired permutation test

performs well when applied to global field power calcu-

lated on within-subjects, unbalanced data.

Unbalanced data also present concerns when interpret-

ing conventional (e.g. ANOVA) analyses of ERP ampli-

tude, which is why the mean amplitude over a time window

is recommended rather than the absolute maximum

amplitude (Luck 2005; Picton et al. 2000). This differs

from the current approach to GFP in that mean amplitude is

not biased with increased noise levels. However, there is

not always an a priori reason to choose one time window

over another when analyzing ERP amplitude. In these sit-

uations, the unbalanced paired permutation test described

here can be used to establish time windows of interest for

subsequent ERP analyses.

Computing GFP difference is one of many approaches

to reducing comparisons over an entire EEG array to a

single statistic. Other approaches include global dissimi-

larity (Lehmann and Skrandies 1980) and taking the GFP

of an ERP difference (Greenblatt and Pflieger 2004). The

resampling strategy employed by the unbalanced paired

permutation test described here could be adapted to these

(and any other) summary statistics. If the summary statistic

is known to be unbiased it may not be worth the additional

computational effort to apply this resampling scheme, but

we expect the unbalanced paired permutation test should be

valid for unbiased statistics as well.

The problems with using biased summaries of unbal-

anced data have been noted in the context of coherence, a

common measure of the association of two time-varying

signals (Bokil et al. 2007; Maris et al. 2007). Maris and

colleagues applied a permutation test to unbalanced, sin-

gle-subject data. A similar approach has been applied to

single-subject GFP (Wagner et al. 2014). The key differ-

ence between those permutation tests and the one described

here lies in extending the method to multi-subject designs.

The unbalanced paired permutation test introduced here

can be applied directly to multi-subject designs and yields a

useful summary of the entirety of the data, without having

to consider individual subjects in isolation or having to

discard useful data. As such, the unbalanced paired per-

mutation test should be a useful tool when applied to data

gathered under paradigms that are unbalanced by design, as

those that evoke P3 (Picton 1992) or mismatch negativity

(Näätänen and Alho 1995; Stefanics et al. 2015) compo-

nents as well as data sorted by behavioral responses.
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Fig. 5 Global field power and mass univariate analyses. The upper

marginal plot shows p values from the unbalanced paired permutation

test. The uncorrected p values are obtained directly from the test, and

strong family-wise error rate (FWER) control was achieved using a

modified maximum statistic. The pink area indicates a cluster of

consecutive results that was identified as statistically significant using

cluster-size correction. The main panel shows statistical results for

mass univariate mean ERP analyses with one row per EEG electrode.

The inlayed diagram shows a mapping of electrode number to

approximate position on the head. Dark red and dark blue indicate

significant positive and negative differences (target minus non-target)

as determined using tmax correction to achieve strong FWER control

(p\ .05). Pale pink and blue indicate clusters of positive and negative

differences, respectively, with p\ .05 determined using cluster mass

correction. Vertical green bars indicate the time windows over which

the GFP testing found a statistically reliable difference using strong

FWER and cluster-based statistics for solid and dashed bars, respec-

tively. All tests were done with N = 13 subjects

354 Brain Topogr (2016) 29:345–357

123



Acknowledgments This project was supported by The U.S. Army

Research Laboratory under a Director’s Strategic Research Initiative

entitled ‘‘Heterogeneous Systems for Information Variable Environ-

ments (HIVE),’’ an appointment to the U.S. Army Research Laboratory

Postdoctoral Fellowship program administered by the Oak Ridge

Associated Universities through a cooperative agreement with the U.S.

Army Research Laboratory and the Office of the Secretary of Defense

ARPI program MIPR DWAM31168. The views and conclusions

contained in this document are those of the authors and should not be

interpreted as representing the official policies, either expressed or

implied, of the Army Research Laboratory or U.S. Government. The

U.S. Government is authorized to reproduce and distribute reprints for

Government purposes notwithstanding any copyright notation herein.

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflict

of interest.

Ethical Approval All procedures performed in studies involving

human participants were in accordance with the ethical standards of

the institutional and/or national research committee and with the 1964

Helsinki declaration and its later amendments or comparable ethical

standards. This article does not contain any studies with animals

performed by any of the authors.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits unrestricted use, distribution, and

reproduction in any medium, provided you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Com-

mons license, and indicate if changes were made.

Appendix: Derivation of the Expected Value
of the Global Field Power

The global field power (GFP) of the EEG data is given as

GFP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XC

i¼1

�Yi: � �Y::ð Þ2

C

vuut

where �Yi: ¼ 1
K

PK

k¼1

Yik is the mean of the EEG data across

trials and �Y:: ¼ 1
C

PC

i¼1

�Y:: is the average of the EEG data over

channels and over epochs. For ease of notation, define Xi ¼
�Yi: and X ¼ �Y::. If we assume the EEG is globally average

referenced, the GFP reduces to:

GFP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XC

i¼1

Xið Þ2

C

vuut

Note that the GFP can be re-written in terms of the

sample variance S2 as

C

C � 1
GFP2 ¼ C

C � 1

XC

i¼1

Xið Þ2

C

" #

¼ S2

which can be further rewritten as

GFP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � 1

C
S2

r

We are interested in E GFPð Þ, the expected value of the

GFP. From the expressions above, we need to calculate

E
ffiffiffiffiffi
S2

p� �
, the expectation of the square root of the sample

variance. Without any distributional assumptions on the

distribution of S2 this expression has no closed form

solution. However, this expression is of the form Eðf xð ÞÞ,
where f xð Þ ¼

ffiffiffi
x

p
. Therefore, we can use a Taylor Series

approximation to derive an estimate for the mean and

variance of E
ffiffiffiffiffi
S2

p� �
.

For background material, the Taylor Series of a function

f �ð Þ around a value a is:

f xð Þ ¼ f að Þ þ f
0
að Þ x� að Þ þ f

00
að Þ x� að Þ2

2!
þ . . .

The second-order Taylor Series approximation is the

first three terms of this sum:

f xð Þ � f að Þ þ f
0
að Þ x� að Þ þ f

00
að Þ x� að Þ2

2

If we set a ¼ E S2ð Þ, f ðxÞ ¼
ffiffiffi
x

p
, and let the random

variable x ¼ S2; then Eðf xð ÞÞ simplifies to

E
ffiffiffiffiffi
S2

p� �
� f að Þ þ f

00
að Þ

E S2 � EðS2Þð Þ2
� �

2

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
EðS2Þ

p
� 1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E S2ð Þ3

q Var S2
� �

Now note that S2 ¼ 1
C�1

PC

i¼1

Xið Þ2. First, we need

E S2
� �

¼ 1

C � 1
E
XC

i¼1

X2
i

 !

¼ 1

C � 1

XC

i¼1

E X2
i

� �

¼ 1

C � 1

XC

i¼1

Var Xið Þ þ E Xið Þ½ �2
� �

For Var S2ð Þ:

Var S2
� �

¼ 1

C � 1ð Þ2
Var

XC

i¼1

X2
i

 !

¼ 1

C � 1ð Þ2
XC

i¼1

Var X2
i

� �

þ 2
1

C � 1ð Þ2
X

i[ j

CovðX2
i ;X

2
j Þ

For the variance, we can use a first-order Taylor Series

approximation (referred to as the Delta Method (Casella
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and Berger 2002) in the statistics literature), with

f xð Þ ¼ x2; a ¼ E Xið Þ ¼ 1

K

XK

k¼1

EðYikÞ ¼ li :

1

ðC � 1Þ2
XC

i¼1

Var X2
i
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þ 2

1

ðC � 1Þ2
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i[ j

Cov X2
i ;X

2
j
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� 4
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� �

Now note that Xi ¼ 1
K

PK

k¼1

Yik, the average of the EEG

data per channel over all epochs. Using this, the expecta-

tion becomes:

EðS2Þ ¼ 1

C � 1

XC

i¼1

Var Xið Þ þ E Xið Þ½ �2
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In summary,
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