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Abstract Empirical similarity functions of the Richardson number, obtained from
bin-averaged data in the lower part of the stable boundary layer, show an undesired depen-
dence on height at which the observations are collected. A correction of this flaw is proposed
and tested by employing the neutral mixing length lo as a similarity scale for height. The
function of height describing lo is assumed to be linear in the surface layer, and approaching a
specified value with increasing height. The modification does not alter the dependence of sim-
ilarity functions on the Richardson number, and is shown to be supported by the Cooperative
Atmospheric-Surface Exchange Study-1999 (CASES-99) data.

Keywords CASES-99 · Flux-based scaling · Gradient-based scaling · Similarity theory ·
Stable boundary layer

1 Introduction

The Monin–Obukhov theory (1954) is regarded as the major tool for understanding and
describing near-surface turbulence. Its framework has been frequently applied during the past
few decades to analyze numerous field observations. Data accumulated during recent years
indicate, however, that the approach has intrinsic limitations in stable conditions. Specifically,
the Monin–Obukhov similarity scales, u∗, T∗, decrease with thermal stability, while their
relative errors increase, causing the values of the stability parameter, L∗ ∼ u2∗/T∗, to be
highly scattered. In addition, the dimensionless similarity functions and their argument z/L∗,
contain common divisors (i.e., u∗, T∗), a property referred to as “self-correlation” (e.g., Baas
et al. 2006). As a result, it is difficult to establish the form of empirical similarity functions
with satisfactory confidence in very stable conditions.
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22 Z. Sorbjan

The described flaws can be remedied by defining similarity scales and similarity functions
in terms of the gradients of scalars. The resulting similarity formulation avoids the singularity
imposed by small values of scales, and therefore is less affected by self-correlation. Sorbjan
(2010a,b) considered three gradient-based scaling systems for the stably stratified boundary
layer. Two of them were defined through second-order moments (the temperature variance
and the vertical velocity variance) and the potential temperature gradient �. The third scaling
system does not employ second-order moments, and involves only�. The resulting similarity
functions are dependent on a single stability parameter, the Richardson number Ri.

A recent analysis of Surface Heat Budget of the Arctic Ocean (SHEBA) data (Sorbjan
and Grachev 2010) revealed an additional defect, which is an undesired dependence of bin-
averaged similarity functions on height z at which the observations are collected. Such a
dependence produces a minor, but noticeable, spread of data points for a given value of
the Richardson number. Thus, the primary purpose of our study is to address the described
problem and to improve the similarity approach in the stably stratified boundary layer.

The paper has the following structure: the basis of the flux-based and the gradient-based
similarity approaches is discussed in Sect. 2, and a new similarity formulation is proposed in
Sect. 3. An empirical verification of the improved form of similarity functions is presented
in Sect. 4, with final remarks provided in Sect. 5.

2 Similarity Scaling Systems

According to the classic K -theory, the turbulent kinematic fluxes of momentum τ (modulus)
and of the potential temperature H , in stably stratified and horizontally homogeneous flow,

can be described in terms of the mean wind shear S =
√
(dU/dz)2 + (dV/dz)2 and the

potential temperature gradient � = d�/dz (e.g., Sorbjan 2010a,b):

τ = Km S, (1a)

H = −Kh�, (1b)

where U and V are components of the wind vector, Km and Kh are the eddy viscosity and
diffusivity, respectively. These can be expressed in the following form:

Km = l2
o S fm(Ri), (2a)

Kh = l2
o S fh(Ri). (2b)

Above, fm and fh are empirical functions of the Richardson number Ri = N 2/S2, where
N = √

β� is the Brunt-Väisälä frequency, β = g/To is the buoyancy parameter, g is the
acceleration due to gravity, To is the reference temperature, and lo = (τ 1/2/S)o is the mixing
length in neutral conditions, defined as a ratio of the momentum flux and shear at Ri = 0. In
the proximity of the underlying surface, τ = u2∗, S = u∗/κz, which implies that the mixing
length is a linear function of height, lo = κz, where k is the von Karman constant. Further
from the surface, the growth of the mixing length lo with height is expected to be less steep
than z.

When the empirical functions fm , fh and the mixing length lo are specified, the system (1)
and (2) is formally closed, and describes the relationship between the turbulent fluxes τ , H ,
and parameters S,�,β, lo. Instead of solving such a system of equations, one can employ sim-
ilarity theory often applied in situations when the complexity of physical processes prevents
direct solutions of governing equations being obtained.
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Height Correction of Similarity Functions 23

The variables appearing in the system (1) and (2) will be used to define local (z-dependent)
similarity scales in the stable regime. The choice of the similarity scales for the set of n = 6
variables:

{τ, H, β, �, lo, S} (3)

with k = 3 independent units, [m], [s], [K], is not unique and can be performed in a number
of ways. Generally, n − k = 3 dimensionally independent parameters in the above list can
be selected to build a system of three scales for length, temperature, and velocity. Let us
consider two local scaling systems, based on the following choice of parameters:

{τ, H, β}, (4a)

and

{β, �, lo}. (4b)

The first set of parameters leads to the local “flux-based scaling”, while the other set implies
the local “gradient-based scaling”.

The local flux-based scales first were proposed by Nieuwstadt (1984) as an extension of
the surface scales, constant with height, and introduced by Monin and Obukhov (1954):

U∗(z) = τ 1/2, (5a)

ϑ∗(z) = − H

τ 1/2 , (5b)

�∗(z) = − τ 3/2

κβH
. (5c)

Employing dimensional analysis, one can conclude that non-dimensional products of a
statistical moment X (such as S and �, which appear in the list (3), and also other moments,
such as e.g., the standard deviations of the vertical velocity σw and temperature σθ ) and the
above flux-based scales, are universal functions of a single dimensionless parameter, obtained
as a ratio of the mixing length lo, which is a remaining parameter in the list (3), and the length
scale �∗:

X

U a∗ ϑb∗�c∗
= �X (lo/�∗) (6)

where the exponents a, b, c are chosen in such a way that the function�X is dimensionless.
Specifically, for S and �, one obtains:

�∗
U∗

S = �m (lo/�∗) , (7a)

�∗
ϑ∗
� = �h (lo/�∗) , (7b)

which is equivalent to:

lo
U∗

S = lo
�∗
�m (lo/�∗) = �m (lo/�∗) , (8a)

lo
ϑ∗
� = lo

�∗
�h (lo/�∗) = �h (lo/�∗) . (8b)

The expressions (6) and (8) constitute a new and more general form of the flux-based simi-
larity function. For lo = κz, one recovers the local form of similarity functions in the surface
layer: κzS/U∗ = �m (z/�∗) , and κz�/ϑ∗ = �h (z/�∗) .
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From Eqs. 8a, b it follows that the local Richardson number Ri is dependent on the dimen-
sionless parameter lo/�∗:

Ri ≡ β�

S2 = lo
κ�∗

�h (lo/�∗)
�2

m (lo/�∗)
, (9)

and consequently, Eqs. 8a, b can also be rewritten as functions of the Richardson number:

lo
U∗

S = ψm(Ri), (10a)

lo
ϑ∗
� = ψh(Ri). (10b)

By using an appropriate form of lo(z), as a function of height, the validity of the flux-based
similarity functions, ψm and ψh , can be extended to the entire stable boundary layer. This
approach, however, is not constructive above the surface layer, because the flux-based scales,
U∗ and ϑ∗, are generally unknown functions of height.

An alternative similarity scaling can be introduced by using Eq. 4b:

Us = lo N , (11a)

Ts = lo�, (11b)

Ls = lo. (11c)

As implied by the dimensional analysis, non-dimensional products of a statistical moment
X in the surface layer (such as the fluxes H, τ , and standard deviations, σw and σθ ), and the
gradient-based scales (11a–c), are universal functions of the Richardson number Ri:

X

U a
s T b

s Lc
s

= G X (Ri), (12)

where the exponents a, b, c are chosen in such a way that the function G X is dimensionless.

3 New Similarity Formulation

The similarity formulation (11–12) requires specifying the mixing length lo. Assuming that in
Eqs. 11a–c the dependence of the mixing length on height near the surface is linear, lo = κz,
Sorbjan (2010a) proposed the following form of the gradient-based similarity scales valid in
the surface layer:

Us = κzN , (13a)

Ts = κz�, (13b)

Ls = κz. (13c)

The resulting gradient-based similarity functions for fluxes and standard deviations were
obtained based on SHEBA data as the following functions of the Richardson number Ri
(in the range 0< Ri < 0.7):
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Gt ≡ τ

U 2
s

= 1

Ri(1 + 300Ri2)3/2
, (14a)

Gh ≡ − H

Us Ts
= 1

0.9Ri1/2(1 + 250Ri2)3/2
, (14b)

Gw ≡ σw

Us
= 1

0.85Ri1/2(1 + 450Ri2)1/2
, (14c)

Gθ ≡ σθ

Ts
= 5

(1 + 2500Ri2)1/2
. (14d)

Using Eqs. 14a, b, we can also obtain:

ψm ≡ lo
U∗

S = 1

Ri1/2G1/2
t

= (1 + 300Ri2)3/4, (15a)

ψh ≡ lo
ϑ∗
� = G1/2

t

Gh
= 0.9

(1 + 250Ri2)3/2

(1 + 300Ri2)3/4
, (15b)

and also:

fm ≡ Km

l2
o S

= RiGt = 1

(1 + 300Ri2)3/2
, (16a)

fh ≡ − Kh

l2
o S

= Ri1/2Gh = 1

0.9

1

(1 + 250Ri2)3/2
. (16b)

The assumption of linearity for the mixing length (13a)–(13b), (15a)–(15b), and
(16a)–(16b) is acceptable only in close proximity to the underlying surface. A closer analy-
sis of SHEBA data reveals that the bin-averaged similarity functions Gt ,Gh,Gw,Gθ of the
Richardson number Ri do reflect a minor dependence on the height of observations z (Sorbjan
2010a; Sorbjan and Grachev 2010). Such a dependence could be caused by the departure
of the mixing length lo from linearity for greater heights above the surface. It should be
mentioned that level 1 at SHEBA was located at 2.2 m above the underlying surface, level 2
at 3.2 m, level 3 at 5.1 m, level 4 at 8.9 m, and level 5 at either 18.2 or 14 m (e.g., Andreas
et al. 1999; Persson et al. 2002).

According to Blackadar (1962), the mixing length in the neutral boundary layer is linear
near the surface and nearly constant near its top, and can be expressed in the following form:

lo = κz

1 + κz/λ
(17)

where λ is an external parameter. Blackadar related λ to two parameters, the geostrophic
wind G and the Coriolis parameter f , by assuming that λ = cG/ f, where c = 2.7 × 10−4.

Formally, c should be assumed to be dependent on the Rossby number Ro = G/( f zo),
where zo is the aerodynamic roughness length.

Adopting the Blackadar-type mixing-length formulation, and substituting Eq. 17 into
Eq. 11, yields the following gradient-based similarity scales, valid in the surface layer and
above:

Us(λ) = κzN

1 + κz/λ
, (18a)

Ts(λ) = κz�

1 + κz/λ
, (18b)

Ls(λ) = κz

1 + κz/λ
. (18c)
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Note that when z/λ → 0, then Us(λ), Ts(λ) and Ls(λ) coincide with the scales listed in
Eq. 13.

For the similarity scales (18), the analogue of (12) is of the form:

X

U a
s (λ)T

b
s (λ)L

c
s(λ)

= G X (Ri). (19)

The above expression implies that the dependence of similarity functions G X on the
Richardson number Ri is the same in the surface layer and above. Such a notion will be
examined in Sect. 4, based on data collected during the Cooperative Atmospheric-Surface
Exchange Study-1999 (CASES-99) experiment.

4 Empirical Verification

The employed set of data (courtesy of Dr. Jielun Sun of the National Center of Atmospheric
Research in Boulder, Colorado) contains values of the momentum and heat fluxes, vertical
velocity and temperature variances, wind shear S, and temperature gradient �, evaluated at
nine levels: 0.5, 1.5, 5, 10, 20, 30, 40, 50, and 55 m above the underlying surface, collected
during 18 days of the CASES-99 experiment in Kansas, U.S.A., within an interval between
1800 and 0600 LST (e.g., Poulos 2002). The processed fluxes do not contain mesoscale
fluctuations, which were removed based on the method of Vickers and Mahrt (2003, 2006).
Data affected by airflow distortion due to the anemometer booms at certain wind directions
were also eliminated; the block-averaging interval for obtaining mean variables was 10 min.
The wind velocity and temperature gradients were estimated using an approach described by
Klipp and Mahrt (2004) and Sun (2011).

The plots of the resulting similarity functions Gt ,Gh,Gw,Gθ , for fluxes and variances,
normalized by the gradient-based scales (13a, b) and (18a, b), are presented in Figs. 1, 2,
3 and 4, and the dimensionless gradients, ϕm = lo S/U∗ and ϕh = lo�/ϑ∗, are depicted
in Figs. 5 and 6. The figures show results at two levels, 10 and 50 m above the under-
lying surface, which were selected as representative of the upper portion of the surface
layer, and of the layer above it. Results obtained for the remaining seven levels are similar.
In contrast to Sorbjan (2010a), who presented the bin-averaged results, data presented here
are not bin-averaged.

Since values of the geostrophic wind G are not available for the employed dataset, Blacka-
dar’s scale l = 2.7 × 10−4G/ f , could not be applied to evaluate λ, in the definition of scales
(18). Instead, the value λ = 12 m was found as optimal for the employed dataset (i.e., for all
nine levels above the surface). For comparison, a similar value of 14.2 m was obtained by
Kim and Mahrt (1992), through the use of aircraft data from three different field programs.

A comparison of the dimensionless momentum flux Gt = τ/U 2
s is depicted in Fig. 1.

The values of τ/U 2
s , obtained for Us = κzN are marked by red circles, while the values

obtained for Us(λ) = κzN/(1 + κz/λ) are identified by black diamonds, and the stability
function (14a) is represented by the blue curve. The data points in Fig. 1a show that the
impact of the mixing-length correction at the level of 10 m is relatively small. The red and
black data points are generally consistent with the blue curve. Such an impact is significantly
larger at the level of 50 m (Fig. 1b), where most of the red circles are located below the blue
curve in Fig. 1b, while the black diamonds are grouped around the curve. At Ri < 0.04,
the data points marked by black diamonds in Fig. 1b, are highly scattered and located below
the blue line. This fact is also noticeable in Fig. 5, which displays the dimensionless shear
ϕm = Ri−1/2G−1/2

t .

123



Height Correction of Similarity Functions 27

Fig. 1 The dimensionless momentum flux Gt = τ/U2
s , based on the CASES-99 data at a z = 10 m, and

b z = 50 m, obtained for Us = κzN (red circles), and for Us = κzN/(1 + κz/λ) with λ = 12 (black
diamonds). The stability function of the Richardson number Ri (blue line), obtained from the SHEBA data, is
described by Eq. 14a

Fig. 2 The dimensionless heat flux Gh = −H/(Us Ts ), based on the CASES-99 data at a z = 10 m, and b z =
50 m, obtained for Us = κzN , Ts = κz� (red circles), and for Us = κzN/(1+κz/λ), Ts = κz�/(1+κz/λ)
with λ = 12 (black diamonds). The stability function of the Richardson number Ri (blue line), obtained from
the SHEBA data, is described by Eq. 14b

The dimensionless heat flux Gh = −H/(Us Ts) is shown in Fig. 2, where the same sym-
bols as in Fig. 1 are employed (and also in the remaining Figs. 3, 4, 5 and 6). The values
of the dimensionless flux, obtained for Us and Ts are marked by red circles, and the val-
ues evaluated for Us(λ) and Ts(λ) are indicated by black diamonds; the stability function
(14b) is represented by the blue curve. The figure indicates that the effect of the mixing-
length correction at z = 10 m is small (Fig. 2a). At the level of 50 m (Fig. 2b), the effect of
the mixing-length correction is significant, where most of the red circles are located below
the blue curve. On the other hand, the black diamonds are shifted closer to the blue curve
(for Ri > 0.09). The black diamonds at Ri < 0.09, in Fig. 2b, are located slightly above the
curve. The influence of this fact can also be seen in Fig. 6, which displays the dimensionless
vertical gradient of the potential temperature ϕh = G1/2

t G−1
h .

Figure 3 shows a comparison of the dimensionless standard deviation of the vertical veloc-
ity Gw = σw/Us , obtained for Us (red circles) and for Us(λ) (black diamonds); the blue
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Fig. 3 The dimensionless standard deviation of the vertical velocity Gw = σw/Us , based on the CASES-99
data at a z = 10 m, and b z = 50 m, obtained for Us = κzN (red circles), and for Us = κzN/(1 + κz/λ)
with λ = 12 (black diamonds). The stability function of the Richardson number Ri (blue line), obtained from
the SHEBA data, is described by Eq. 14c

Fig. 4 The dimensionless standard deviation of the potential temperature Gθ = σθ /Ts , based on the CASES-
99 data at a z = 10 m, and b z = 50 m, obtained for Ts = κz� (red circles), and for Ts = κz�/(1 + κz/λ)
with λ = 12 (black diamonds). The stability function of the Richardson number Ri (blue line), obtained from
the SHEBA data, is described by Eq. 14d

curve in the figure is described by Eq. 14c. As in Figs. 1 and 2, the result of the mixing-length
correction is relatively small at the level of 10 m (Fig. 3a), and larger at the level of 50 m
(Fig. 3b). Most of the data points, marked by red circles at z = 50 m, are located below the
blue curve. The black diamonds are situated closer to the blue curve in the entire range of Ri.

The values of the dimensionless standard deviation of the potential temperature Gθ =
σθ/Ts , obtained for Ts (red circles) and for Ts(λ) (black diamonds), are shown in Fig. 4. The
effect of the mixing-length correction is minor at the level of 10 m (Fig. 4a), and significant
at the level of 50 m in Fig. 4b. Most of the red circles at the level of 50 m in Fig. 4b are located
below the blue curve, defined by Eq. 14d, while the black diamonds are placed closer to the
curve, especially for larger Ri. For Ri < 0.09, the black diamonds in Fig. 4b are grouped
above the curve.
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Fig. 5 The dimensionless wind shear ϕm = lo S/U∗
(
≡ Ri−1/2G−1/2

t

)
, based on the CASES-99 data at

a z = 10 m, and b z = 50 m, obtained for lo = κz (red circles), and for lo = κz/(1 + κz/λ) with λ = 12
(black diamonds). The stability function of the Richardson number Ri (blue line), obtained from the SHEBA
data, is described by Eq. 15a

Fig. 6 The dimensionless potential temperature gradientϕh = lo�/ϑ∗
(
≡ G1/2

t G−1
h

)
,based on the CASES-

99 data at a z = 10 m, and b z = 50 m, obtained for lo = κz (red circles), and for lo = κz/(1 + κz/λ) with
λ = 12 (black diamonds). The stability function of the Richardson number Ri (blue line), obtained from the
SHEBA data, is described by Eq. 15b

Figures 5 and 6 show the dimensionless gradients for wind velocity and temperature.
The dimensionless values of the wind shear, ψm = lo S/U∗, are depicted in Fig. 5, while
the dimensionless temperature gradient, ψh = lo�/ϑ∗, is shown in Fig. 6. The effect of the
mixing-length correction at the level of 10 m is minor in Figs. 5a and 6a. Because the function
Gt in Fig. 1b lies below the blue curve for small values of Ri, consequently, the function
ψm = Ri−1/2G−1/2

t (black diamonds) in Fig. 5b is located above the blue curve (given by
Eq. 15a) for the same range of Ri. Similarly, because Gt in Fig. 1b is below the blue curve
for small values of Ri , and Gh in Fig. 2b is above the blue curve in-near neutral condi-
tions, consequently the values of the function ψh = G1/2

t G−1
h (black diamonds) are located

significantly below the blue curve in Fig. 6b, for Ri < 0.09.
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Figures 1, 2, 3, 4, 5 and 6 imply that the similarity formulation with the Blackadar-type
mixing length is supported by the CASES-99 data in stable conditions, for sufficiently large
values of Ri. For small values of Ri, the considered moments at z = 50 m are inconsistent (with
the exception of the standard deviation of the vertical velocity), i.e., either highly scattered
(the momentum flux), or overestimated (the heat flux and the temperature standard deviation).
This behaviour can be associated with errors in evaluating the Richardson number when the
wind velocity and temperature gradients are relatively small.

Equations 15a, b, for the dimensionless gradients ψm and ψh , together with the
non-linear expression for the mixing length (17), formally extend the Monin–Obukhov
similarity functions for the entire stable boundary layer. The extension can be practically
used to obtain local values of the momentum and temperature fluxes, based on local gradi-
ents of the wind velocity components and the potential temperature. The reverse procedure,
of obtaining wind and temperature profiles based on fluxes, can be accomplished only in the
surface layer, under the assumption that the fluxes are constant with height.

The resulting expressions (16a, b) and (18a, b), for eddy viscosity and diffusivity, Km and
Kh , have been employed as closure assumptions within a single-column model by Sorbjan
(2011). Equations 14c, d and 18a, b have been used to diagnose variances of the vertical
velocity and temperature. A comparison of the model results (for fluxes and variances) with
two high-resolution large-eddy simulation models shows very good agreement, and supports
the described above approach.

5 Conclusions

A modified form of gradient-based similarity functions in the stable boundary layer has
been proposed and tested using the CASES-99 data. The considered similarity functions
are expressed in terms of new gradient-based similarity scales (Eq. 18), which employ
the mixing length lo as a scaling parameter. Blackadar’s expression for the mixing length,
lo = κz/(1 + κz/λ), has been tested, as opposed to lo = κz, originally proposed by Sorbjan
(2010a,b). The value λ = 12 m is found to best fit the observations obtained during the
CASES-99 experiment. The modification of the scales does not alter the dependence of the
similarity functions for fluxes and standard deviations on the Richardson number Ri, and is
supported by the CASES-99 data in stable conditions (for sufficiently large values of Ri).
The introduced modification is also valid for the flux-based similarity functionsψm(Ri), and
ψh(Ri).

The new formulation allows the local values of fluxes and standard deviations for the
vertical velocity and temperature to be obtained in the stable boundary layer, based on local
gradients of the wind-velocity components and the potential temperature. It can be employed
as a closure scheme within single-column models.
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