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Abstract We examine the performance of two steady-state models, a numerical solution
of the advection-diffusion equation and the Gaussian plume-model-based AERMOD (the
American Meteorological Society/Environmental Protection Agency Regulatory Model), to
predict dispersion for surface releases under low wind-speed conditions. A comparison of
model estimates with observations from two tracer studies, the Prairie Grass experiment
and the Idaho Falls experiment indicates that about 50% of the concentration estimates are
within a factor of two of the observations, but the scatter is large: the 95% confidence inter-
val of the ratio of the observed to estimated concentrations is about 4. The model based on
the numerical solution of the diffusion equation in combination with the model of Eckman
(1994, Atmos Environ 28:265–272) for horizontal spread performs better than AERMOD
in explaining the observations. Accounting for meandering of the wind reduces some of the
overestimation of concentrations at low wind speeds. The results deteriorate when routine
one-level observations are used to construct model inputs. An empirical modification to the
similarity estimate of the surface friction velocity reduces the underestimation at low wind
speeds.

Keywords AERMOD · Low wind speed · Steady-state dispersion models ·
Wind meandering

1 Introduction

It is generally believed that commonly used steady-state Gaussian dispersion models, such
as AERMOD (Cimorelli et al. 2005) are not applicable to situations when the wind speeds
close to the ground are comparable to the standard deviation of horizontal velocity fluctua-
tions. Under these conditions, the time scale of wind meandering is large compared to the
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476 W. Qian, A. Venkatram

usual averaging time of 1 h, and consequently the horizontal concentration distribution is far
from Gaussian. Furthermore, routinely available mean wind measurements do not provide
information on the turbulence levels required for modelling dispersion.

Other modelling approaches are considered more appropriate under these conditions. For
example, Lagrangian particle models have been used to simulate dispersion under low wind-
speed conditions by Brusasca et al. (1992), Oettl et al. (2001), and Anfossi et al. (2006). The
trajectories of these particles are governed by measured wind speed and turbulence levels
as a function of time. Another approach (Arya 1995; Sharan et al. 1995; Sharan and Yadav
1998) is based on modifying the three-dimensional diffusion equation to include along-wind
diffusion, which becomes important for low wind speeds. Venkatram et al. (2004) showed
that a steady-state model can describe the concentration patterns under low wind speeds if
it accounts for the directional distribution of the horizontal wind speed. The main message
from all of these studies is that realistic estimates of concentrations under low wind-speed
conditions can be made if meteorological measurements are made at time intervals that are
much shorter than the averaging time used for the concentration. In most applications, such
highly resolved measurements are not available and it is necessary to work with routine mea-
surements resolved at 1-h intervals. This motivates the two questions addressed in our study:
(1) How do steady-state dispersion models perform under low wind speeds, and (2) Can we
use routine meteorological measurements, such as wind speed at one or several levels, to
derive inputs required by dispersion models? We only address dispersion models applicable
to source–receptor distances of a few kilometres. We also focus on surface releases under
stable conditions when the surface wind speeds are typically low, and the concentration
estimates from dispersion models can be relatively high.

To answer the first question, we consider two dispersion models. The first model is based
on the numerical solution of the two-dimensional advection-diffusion equation, combined
with the formulation for the horizontal plume spread proposed by Eckman (1994). This
numerical solution provides an excellent description of surface-layer dispersion (e.g. van
Ulden 1978), and represents the best available steady-state model. The performance of this
model is compared with that of AERMOD (Cimorelli et al. 2005), the regulatory model
recommended by the U.S. Environmental Protection Agency, which represents the current
generation of dispersion models used in regulatory applications. The next section provides
relevant details of these two models.

Cirillo and Poli (1992) and Sharan and Yadav (1998) have conducted studies similar to
that described here, and we extend their results in three ways:

1. We evaluate models that have already been shown to perform well in describing ground-
level concentrations associated with surface releases during the moderate wind-speed
conditions of the Prairie Grass experiment (Barad 1958).

2. We incorporate and examine the effects of the variation of wind speed with height on
vertical and horizontal dispersion in the surface layer.

3. We propose and test methods to estimate the micrometeorological inputs required by
these models under the low wind-speed conditions when Monin-Obukhov similarity is
unreliable.

2 Description of Models

AERMOD (Cimorelli et al. 2005) uses the following formulation to estimate the ground-level
concentration from a surface release during stable conditions:
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where Hs is the effective stack height, and z is the receptor height. Under low wind
speeds, horizontal meandering of the wind spreads the plume over large azimuth angles,
which might lead to concentrations upwind relative to the vector-averaged wind direction.
AERMOD (Cimorelli et al. 2005), and other currently used regulatory models (Atmospheric
Dispersion Modelling System (ADMS), Carruthers et al. 1994), attempt to treat this situation
by assuming that when the mean wind-speed is close to zero, the horizontal plume spread
covers 360◦. Then, the concentration is taken to be a weighted average of concentrations of
two possible states: a random spread state and a plume state. In the random spread state, the
release is allowed to spread radially in all horizontal directions. Then, the weighted horizontal
distribution in Eq. 1 is written as:

H(x, y) = fr
1

2πr
+ (1 − fr )

1√
2πσy

exp

(
− y2

2σ 2
y

)
, (2)

where the first term represents the random state in which the plume spread covers 2π radians,
and r is the distance between the source and receptor. The second term is the plume state
corresponding to the Gaussian distribution. The plume is transported at an effective velocity
given by

Ue = (
σ 2

u + σ 2
v + U 2)1/2 = (

2σ 2
v + U 2)1/2

, (3)

where U is the mean vector velocity, and the expression assumes that σv ≈ σu . Note that
the effective velocity is non-zero even when the mean velocity is zero. The minimum value
of the transport wind, Ue, is

√
2σv . The weight for the random component in Eq. 2 is taken

to be

fr = 2σ 2
v

U 2
e

, (4)

which ensures that the weight for the random component goes to unity when the mean
wind approaches zero. ADMS uses a weighting scheme based on the mean wind speed. The
success of this meandering correction in AERMOD depends on measurements of σv , which
presumably reflect meandering when the wind speed is close to zero. If measurements are not
available, we have to estimate σv from other meteorological variables. The lateral dispersion,
σy , in Eq. 1 is calculated from

σy = σvx

Ue(1 + αX)p
, (5)

where X (= σvx/Uezi ) is the non-dimensional distance defined in terms of the effective wind
speed, Ue, and standard deviation of horizontal turbulent velocity component, σv . This for-
mulation for X , incorporated in AERMOD, assumes that the Lagrangian time scale for lateral
spreading is governed by eddies comparable to the height, zi , of the boundary layer; the time
scale is taken to be proportional to zi/σv , During stable conditions, zi is estimated from
2300u3/2∗ (Venkatram 1980), while α = 78 and p = 0.3 are empirically determined values.

The vertical spread, σz , of a surface release is estimated from (Venkatram 1992)

σz =
√

2

π

u∗x

Ue

(
1 + 0.7

x

L

)−1/3
, (6)
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where L is the Obukhov length defined by L = −T0u3∗/(κgQ0), where Q0 is the surface
kinematic heat flux, u∗ is the surface friction velocity, g is the acceleration due to gravity,
T0 is a reference temperature, and κ is the Von Karman constant taken to be 0.35 as in van
Ulden (1978). Equation 6 is inferred from concentrations measured during the Prairie Grass
experiment (Barad 1958). The surface friction velocity, u∗, is estimated from the wind speed
measured at one level and an estimated roughness length, z0. In the absence of measurements,
σv is taken to be 1.9u∗.

The second dispersion model is based on the numerical solution of the two-dimensional
advection diffusion equation for crosswind integrated concentration, C

y
,

U
∂C

y

∂x
= ∂

∂z

(
K

∂C
y

∂z

)
, (7)

where horizontal diffusion is neglected. The profiles of wind speed U and eddy diffusivity K
are given by Businger (1973). During stable conditions, the wind speed at height z is given
by

U (z) = u∗
κ

[
ln

(
z

z0

)
+ 4.7

(z − z0)

L

]
, (8)

where z0 is the aerodynamic roughness length. The effective distance, z, from the ground is
obtained by subtracting the zero-plane displacement (dh) from the measurement height (zr ).
The eddy diffusivity, K , is taken to be equal to the diffusivity for heat:

K = κu∗z/φh, (9)

where

φh = 0.74(1 + 6.3z/L), (10)

during stable conditions. Equation 7 is solved numerically using the boundary condition

∂C
y

∂z
= 0 (11a)

at z = 0 and z = zi . When deposition is taken into account, the boundary condition at z = 0
becomes

K
∂C

y

∂z
= vgC

y
, (11b)

where vg is the deposition velocity close to the ground. The source strength is represented as

C
y
(0, Hs) = Q

U (Hs)
δ (z − Hs). (11c)

Gryning et al. (1983) used a similar numerical approach to explain concentrations measured
during the Prairie Grass experiment (Barad 1958). Surprisingly, there is little consensus on
the calculation of horizontal plume spread for near-surface releases. Based on results from
an earlier study (Venkatram 2004), we model the horizontal spread using Eckman (1994)
hypothesis

dσy

dx
= σv

U
, (12)
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where the mean horizontal velocity of the plume, U , is calculated from

U ≡
∞∫

0

UC
y
dz

/ ∞∫
0

C
y
dz. (13)

Equation 12 can be integrated numerically to yield σy as a function of downwind distance x .
Notice that σy grows rapidly close to the source where U is small and then slows down as
the plume grows vertically into regions where the mean wind speed is larger.

Then, the centreline concentration is given by

C (x, 0, z) = C
y

√
2πσy

. (14)

In order to apply these models, measurements of u∗, σv and L are needed as inputs.
If measurements are not available, we have to make estimates of these variables from rou-
tine meteorological variables. We examine the performance of these models in explaining
concentrations measured in two field studies, Prairie Grass (Barad 1958), and Idaho Falls
(Sagendorf and Dickson 1974), when the surface wind speeds were relatively low.

3 Field Studies

3.1 Prairie Grass Field Study

The Prairie Grass Project (Barad 1958) provides a complete set of data for the analysis of
surface-layer dispersion. The tracer, SO2, was released at a height of 0.46 m, for an interval
of 10 min, and the concentration was sampled with five arcs at 50, 100, 200, 400, and 800 m
distance from the release. The samplers on the arcs were spaced at 2◦ intervals on the first
four arcs, and at 1◦ on the 800-m arc. Half of the 70 experiments were conducted during
stable conditions, which covered both low and high wind-speed conditions. The data were
obtained from http://www.dmu.dk/International/Air/Models/Background/ExcelPrairie.htm.
Note that the friction velocity and the Obukhov length were not measured but obtained by
fitting similarity profiles to the mean wind speed and temperature measured at several levels
on a tower. We focus on cases when the wind speed was less than 2 m s−1 at the tower level
of 1 m.

3.2 Idaho Falls Field Study

The Idaho Falls experiment (Sagendorf and Dickson 1974), which focuses on low winds
in stable conditions, was conducted at the Idaho National Engineering Laboratory (INEL)
in a broad, relatively flat plain. SF6 was released at a height of 1.5 m, and samplers were
placed at intervals of 6◦ on arcs of radii 100, 200, and 400 m from the release. The receptor
height was 0.76 m. Wind measurements were provided by lightweight cup anemometers and
bivanes at heights of 2, 4, 8, 16, 32, and 61 m on the 200-m arc. We estimated u∗ and L
from the tower measurements, but this required an estimate of the aerodynamic roughness
length, z0. Brusasca et al. (1992) and Sharan and Yadav (1998) estimated z0 to be 0.005 m for
Idaho Falls, obtaining the value by fitting a neutral wind profile to observed winds at several
levels for the only neutral case (Test 6) in the Idaho Falls experiment. This method might
not be reliable because it is based on only one case. We recalculated z0 using the data from
all the tests. We calculated the optimum z0 by minimizing the coefficient of variation of u∗
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corresponding to the wind speeds measured at 2, 4, and 16 m (the 8-m wind measurement
was questionable because it was often lower than that at 4 m). The best estimate of z0 turned
out to be 0.08 m.

4 Model Performance

The performance of the models considered here can be described using a variety of statistics,
described in Chang and Hanna (2004). We have chosen to use the geometric mean (mg) and
the standard deviation (sg) of the ratios of the observed to modelled variable as the primary
measures of model performance because they can be readily interpreted (Venkatram 2008).
They are defined as:

mg = exp (〈εm〉), (15a)

sg = exp (σ (εm)), (15b)

where 〈 〉 and σ represent mean and standard deviation respectively, and εm is the residual
between the logarithms of the model estimate and observation,

εm = ln
(
C p

) − ln (Co) (16)

where Co and C p are observed values and corresponding estimates respectively. The angle
brackets refer to an average. The deviation of the geometric mean, mg , from unity indicates
whether the model is underpredicting or overpredicting, and is a measure of bias of the model
estimate. The geometric standard deviation, sg , is a measure of the uncertainty in the model
prediction with s2

g being approximately the 95% confidence interval for the ratio of C p/Co.
The calculation of the geometric mean, mg , and the geometric standard deviation, sg , using
Eq. 15 poses problems when the observation is close to zero and the corresponding model
estimate is finite; the large logarithm of the ratio dominates the calculation. This is avoided
by equating mg to the median of the ratio of the observed to predicted concentration ratio, and
using the interquartile range of the ratios to estimate sg . The statistics of model performance
include the correlation between model estimates and observations, r2, and the fraction of the
estimates within a factor of two of the observations, fact2, in addition to mg and sg .

We first examine the performance of the numerical model in estimating the normalized
crosswind integrated concentration, C

y
/Q, for all the stable cases that occurred during the

Prairie Grass experiment. This ensures that our results are consistent with those obtained in
earlier studies (Nieuwstadt and van Ulden 1978; van Ulden 1978). We used a typical value of
deposition velocity equal to 0.01 m s−1 in the numerical model for SO2 dispersion (Gryning
et al. 1983). The meteorological inputs are taken from Table 2 of van Ulden (1978). Figure 1
shows that the performance of the numerical method is similar to that from earlier studies. The
bias between the model estimates and observations is only 4% and the correlation between
the two sets is excellent (r2 = 0.90).

The performance of the model in explaining centreline concentrations is examined by
separating the experiments into two sets: a low-wind set corresponding to wind speeds of
less than 2 m s−1 at 1 m, and the high-wind set that includes the remainder of the cases. The
calculation of the horizontal spread of the plume requires the standard deviation of horizontal
velocity fluctuations, σv , which is based on σθ measured at 1 m. We estimate σv from σθ and
U using a semi-empirical formulation suggested in Venkatram et al. (2004),

σv = atanh

(
σθ

σθ max

)
σθ maxU, (17)
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Fig. 1 Comparison of
crosswind-integrated
concentrations (C

y
/Q) from the

numerical model with
corresponding observations
during stable conditions of the
Prairie Grass experiment

Fig. 2 Comparison of centreline concentrations (C/Q) and horizontal plume spreads (σy ) from the numerical
model with observations from the Prairie Grass experiment during high-wind stable conditions

where the maximum value of σθ is σθ max = π/
√

3, which corresponds to a uniform dis-
tribution of the wind direction over 2π . When σθ is small compared to σθ max, σv ≈ σθU .
Equation 17 yields results that are very close to those from a model suggested by Cirillo
and Poli (1992), which assumes that the horizontal velocity fluctuations are determined by
a constant magnitude wind vector whose direction is normally distributed. Luhar (2010) has
recently extended this model by allowing the wind vector to vary in magnitude as well as
direction. Luhar’s expression is a viable alternative to Eq. 17 if measurements of the standard
deviation of the scalar wind are available. The observed values of horizontal plume spread,
σy , are obtained by fitting Gaussian distributions to observed concentrations at each arc.

Figure 2 shows that during high wind-speed conditions, the numerical method underesti-
mates the observed concentrations by 39%, and overestimates the horizontal plume spread,
σy , by 48%. But the estimates are well correlated with observations with r2 larger than 0.89.
The underestimation of concentrations by the numerical method is clearly related to the over-
estimation of σy , which can be related to the use of a single value of σv measured close to
surface. For present purposes, we calibrated Eckman (1994) model with the observations by
multiplying the right-hand side of Eq. 12 by a factor of 0.7 to reduce the value of σy . This
results in the removal of most of the bias in the modelled concentration estimates.

This calibrated model is then used to explain the concentrations observed for the low-
wind set. The upper panel of Fig. 3 shows that the calibrated numerical model overestimates
the centreline concentrations by 42%. The correlation coefficient between the estimates and
observations is only 0.55. The extreme overestimation for certain points correspond to the
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Fig. 3 Comparison of centreline concentrations (C/Q) and horizontal plume spreads (σy ) from the numerical
model (upper panel) and AERMOD (lower panel) with observations from the Prairie Grass experiment during
low-wind stable conditions

lowest wind speed (U = 0.66 m s−1) that occurred during the Prairie Grass experiment. The
overestimation of concentrations is mainly due to the underestimation of σy , shown on the
upper right plot of Fig. 3.

The performance of AERMOD is comparable to that of the numerical model when the
wind speed is higher than 2 m s−1 at 1 m. AERMOD’s estimates of σy are closer to obser-
vations because they are based on an empirical fit, Eq. 5, to the Prairie Grass data. The
performance of AERMOD under low wind conditions is illustrated in Fig. 3. The lower
panel shows that AERMOD overestimates the concentrations by 38% and underestimates
σy by 30% during low wind-speed conditions in the Prairie Grass experiment. The scatter
in the concentration estimates (sg = 3.05) is much larger than that of the numerical model
(sg = 1.80). The correlation between the concentration estimates and observations using
AERMOD (r2 = 0.12) is also smaller than that of the numerical model (r2 = 0.55).

These results show that the numerical steady-state model provides adequate estimates of
concentrations and plume spreads because it has a justifiable description of the interaction
between dispersion and the gradient of the wind speed near the surface. The meandering
correction does not play a role for these cases because σv is small compared to the mean
wind speed at 1 m. Note that Eckman’s model describes horizontal plume spread even under
low wind speeds as long as measured values of σv are used. The horizontal plume spread
relation in AERMOD does not perform as well as that based on Eckman’s hypothesis.
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We next address the second question of the paper: how reliable are the estimates of the
meteorological inputs when only routine observations at one level are available?

5 Estimating Meteorological Inputs

The meteorological inputs required by the models are the surface friction velocity, u∗, the
Obukhov length, L , and the standard deviation of the horizontal velocity fluctuations, σv . We
estimate these variables using the wind speed measured at one level, and an estimate of the
surface roughness length, z0.

The surface friction velocity is estimated using a method proposed in Venkatram (1980;
Venkatram and Princevac 2008) and currently incorporated in AERMET, AERMOD’s mete-
orological processor. It is based on Monin-Obukhov similarity theory for the profile of the
mean wind, U (see Eq. 8). Analysis of data from field experiments conducted in Kansas
(Izumi 1971), Minnesota (Caughey et al. 1979) and Prairie Grass (Barad 1958) shows that
the temperature scale, T∗ = −w′T ′/u∗ varies little with u∗ and can be taken to be about
0.08 K. Assuming a constant value of T∗ in Eq. 8 results in the following equation for u∗:

u∗ = C1/2
DN U

2

[
1 + (

1 − r2)1/2
]

(18)

where CDN is the drag coefficient for neutral conditions,

CDN = κ2

(
ln

(
zr −dh

z0

))2 , (19)

where zr is the measurement height, and r is the ratio between the critical wind speed, Ucrit ,
and measured wind speed, U

r = Ucrit

U
(20)

with

Ucrit = 2u0

C1/4
DN

(21)

and

u0 =
(

βg (zr − dh − z0) T∗
T0

)1/2

. (22)

Equation 18 does not have real solutions for r > 1. Under such conditions, the surface friction
velocity is computed as half of the neutral value,

u∗ = C1/2
DN U/2. (23)

In our analysis, we approximate the offending term by

(
1 − r2)1/2 � exp

(
−r2

2

)
, (24)

and so the expression for u∗ becomes

u∗ = C1/2
DN U

2

[
1 + exp

(
−r2

2

)]
. (25)
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The vertical turbulent velocity, σw, which is not used directly in the models, is proportional
to the surface friction velocity (e.g. Panofsky and Dutton 1984) with σw = 1.3u∗, while
the horizontal turbulent velocity, σv , is related to the friction velocity through σv = 1.9u∗.
Assuming a constant temperature scale, T∗, this results in L = 1100u2∗.

We first examine the performance of Eq. 25 and expressions for turbulent velocities with
data from the Cardington experiment, which includes turbulence measurements during low
wind-speed conditions.

5.1 Cardington Experiment

The data analysed here were collected at a meteorological tower operated by the UK Mete-
orological Office at Cardington, Bedfordshire (see http://badc.nerc.ac.uk/data/cardington/).
The tower, located on a large grassy field, has sonic anemometers making wind and temper-
ature measurements at 10, 25, and 50 m above the ground. These data are sampled at 50 Hz,
and the vector mean winds, temperatures, turbulent fluxes and variances are averaged over 1,
10, and 30 min. We used the 30-min averages from 10-m height in our analysis. The dataset
corresponds to all the stable periods (L > 0) for 2005. The aerodynamic roughness length,
z0 = 0.025 m, was obtained by fitting the similarity wind-speed profile to observations dur-
ing near-neutral conditions (|L| > 200 m). This value is the same as that used by Luhar et
al. (2009) in their study of low wind-speed conditions.

The left panel of Fig. 4 shows the variation of u∗/u∗n with U/Ucrit , where u∗n is the fric-
tion velocity assuming neutral conditions. The dashed line representing Eq. 24 follows the
variation when U/Ucrit ≥ 1, but when the wind speed approaches zero, the ratio of u∗/u∗n

approaches values much larger than half of the neutral values. We propose the following
tentative modification to Eq. 25 shown by the solid line to better follow the variation when
the wind speed is low:

u∗ = C1/2
DN U

2

1 + exp
(−r2/2

)
1 − exp(−2/r)

. (26)

This modification leads to a limit for u∗ = C1/2
DN Ucrit/4 when the wind speed approaches

zero. On the right panel of Fig. 4, we see that this limit lies in the middle of the measured
values when the wind speed is close to zero, while Eq. 25 gives much lower u∗ estimates.
The performance of Eq. 25 in estimating u∗ is compared to that of Eq. 26 in the left panel
of Fig. 5. Estimates of u∗ from Eq. 25 (stars) are scattered when the observed u∗ is low. The
modification of Eq. 26 (dots) reduces most of the underestimation in u∗. The bias between
the estimates and observations is reduced from 7% to zero and the scatter is also reduced with
sg decreasing from 1.31 to 1.27. However, the proposed modification does not decrease the
bias when u∗ is overestimated. The right panel of Fig. 5 shows that σv is also underestimated
if the linear relation, σv = 1.9u∗, is used and u∗ is estimated from Eq. 25. The modification
of Eq. 26 removes most of the underestimation of σv , which can be seen from the reduction
of bias from 16 to 9%. However, a fraction of the values is still underestimated.

6 Model Performance with Estimated Meteorological Parameters

We first use the numerical model to estimate the concentrations, but the meteorological inputs
are based on measurements at the 1-m level. The upper panels of Fig. 6 show estimates based
on the observed values of σv , while the lower panels show concentrations based on values of
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Fig. 4 Variation of u∗/u∗n (left) and u∗ (right) with U/Ucrit see Eq. 21. Stars correspond to observations,
dash lines correspond to Eq. 25, solid lines correspond to Eq. 26, and the dash-dot line represents the limit

Fig. 5 Comparison of u∗ (left panel) and σv (right panel) estimates with observations from the Cardington
site. The stars correspond to Eq. 25 and dots correspond to Eq. 26. σv is estimated from σv = 1.9u∗ using the
u∗ estimates from the left panel

σv related to u∗ using Eq. 26. The upper panel indicates that the bias between the concentra-
tion estimates and observations is reduced to 33%, from 42%, corresponding to the surface
friction velocity estimated from similarity relations (see Fig. 3). The correlation between the
estimates and observations is also better, r2 = 0.62 here compared with r2 = 0.55 in the
upper panel of Fig. 3. The correlation between the estimated and observed σy is also slightly
increased (r2 = 0.58) compared with r2 = 0.56 in the upper panel of Fig. 3, indicating that
for this limited dataset, using friction velocities based on a single wind speed, yields results
that are at least as good as those based on surface friction velocities derived from similarity
relations.

However, the lower panel of Fig. 6 shows that, when σv is estimated from the surface fric-
tion velocity, model performance deteriorates. The centreline concentration is underestimated
by 37% while σy is overestimated.

Figure 7 shows the performance of the numerical model for the Idaho Falls data, where
the observed σθ is used to calculate σv with Eq. 17. The friction velocity and Obukhov length
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Fig. 6 Comparison of centreline concentrations (C/Q) and horizontal plume spreads (σy ) from the numerical
model with observations from the Prairie Grass experiment during low-wind stable conditions. u∗ and L are
estimated using Eq. 26. The upper panel uses observed σv , and the lower panel uses σv = 1.9u∗

are estimated using Eq. 26 and the approximation L = 1100u2∗. The left panel shows that the
centreline concentration is overestimated by 61% with the correlation coefficient between the
estimates and observations, r2 = 0.48. The overestimation of the centreline concentration
can be reduced by including meandering into the formulation in AERMOD:

C = C
y

[
(1 − fr )√

2πσy
+ fr

2πr

]
. (27)

The performance of the modified numerical model is shown on the right plot of Fig. 7. The
overestimation of the concentration is reduced when meandering is included in the numerical
model, with mg decreasing from 1.61 to 1.31. But the concentration is still overestimated
for some cases. Figure 7 compares the performance of the numerical method with that of
AERMOD using the Idaho Falls experimental data. AERMOD overestimates concentrations
by 72% even though meandering is included. The correlation coefficient between the esti-
mates and observations is worse than that from the numerical method (r2 = 0.39 compared
with r2 = 0.50 in the upper right plot of Fig. 7).

The effect of meandering on the performance of the numerical model becomes appar-
ent by examining the concentration distribution on the 50-m arc. Concentration estimates
from the numerical model with and without meandering are plotted against the observations
as a function of the receptor angle relative to the wind direction. The left plot of Fig. 8
shows results for Test # 10, when the wind speed is relatively high and the random fraction is
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Fig. 7 Comparison of centreline concentrations from the numerical model (upper panel) and AERMOD
(lower panel) with observations from the Idaho Falls experiment. Observed σθ is used to calculate σv . No
meandering is considered in the upper left plot while meandering is considered in the upper right plot

relatively low. The observed data show two peaks of concentration, which cannot be described
by the steady-state model. The maximum concentration estimated from the numerical model
with no meandering is higher than the observed maximum. Accounting for meandering in
the model brings the maximum concentration closer to the observed value.

The right plot of Fig. 8 shows results for Test # 8, for the wind speed when the random
fraction has its highest value. We see that the concentrations are observed at large azimuth
angles relative to the wind direction, indicating wind meandering. The maximum concentra-
tion from the numerical model is much larger than the observed value even when meandering
is considered. These results show that accounting for meandering reduces the overestimation
of maximum concentrations during low wind-speed conditions. However, when meandering
is large, estimated concentrations are still much larger than the observed values indicating
that the actual vertical spread is much larger than that estimated using the surface friction
velocity.

Figure 9 shows that setting σv = 1.9u∗ results in overestimation of concentrations because
σy is underestimated. The meandering component does not help because of the underestima-
tion of σv . Limiting σv to be larger than 0.2 m s−1 reduces the overestimation to 74% from
88%. Unexpectedly, the scatter in the concentration estimates (sg = 2.07) is smaller than that
corresponding to the use of the observed σv (see Fig. 7, sg = 2.43). The correlation between
the concentration estimates and observations is also improved, with r2 = 0.54 compared with
r2 = 0.50 in the upper right plot of Fig. 7. These results either indicate that measurements
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Fig. 8 Variation of concentration with angle relative to the mean wind direction for Test # 10 (left) and Test #
8 (right) of the Idaho Falls experiment. Stars represent observations, circles represent model estimates when
meandering is considered, and pluses correspond to model estimates when meandering is not considered

Fig. 9 Comparison of centreline concentrations from the numerical model with observations from the Idaho
Falls experiment. Meandering is modelled with Eq. 27. σv is estimated using σv = 1.9u∗ (left panel), and
with a lower limit of 0.2 m s−1 (right panel)

of σθ may not be reliable under low wind speeds, or that a steady-state dispersion model is
not applicable under these conditions.

Finally, we examine the performance of the numerical model using several levels of wind
measurements. Since the similarity relation, Eq. 8, might not hold during low wind-speed con-
ditions, we calculate the wind speed in Eq. 7 using the power law profile, U/Ur = (z/zr )

p ,
where p is obtained by fitting the profile to the observed wind speeds at 1, 2, 4, 8, 16 m of the
Prairie Grass experiment. The power, p, is obtained from the observed wind speeds at 2, 4, 8,
16, 32, and 61 m of the Idaho Falls experiment. The advantage of using several levels of wind
measurements can be seen by comparing Fig. 10 with the upper left plot of Fig. 6 and the
upper right plot of Fig. 7. The overestimation of concentration is reduced using wind speeds
fitted to several levels of measurements. However, the correlation coefficients between the
estimates and observations are comparable with those when a single level of wind measure-
ment is used: r2 = 0.63 compared with r2 = 0.62 for the Prairie Grass experiment and
r2 = 0.51 compared with r2 = 0.50 for the Idaho Falls experiment.
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Fig. 10 Comparison of centreline concentrations from the numerical model with observations from the
Prairie Grass experiment (left) and the Idaho Falls experiment (right). The wind speed profile is described
with a power law fitted to wind speed measurements at several levels

7 Conclusions

We evaluated the performance of two steady-state dispersion models in explaining observa-
tions from two tracer studies, the Prairie Grass experiment and the Idaho Falls experiment,
under stable low wind-speed conditions. Both these models have been shown to perform well
in describing concentrations observed in the Prairie Grass experiment when the wind speeds
are above 2 m s−1 at a height of 1 m. When applied to low wind-speed conditions, we find that
about 50% of the concentration estimates are within a factor of two of the observations, but
the scatter is large: the 95% confidence interval of the ratio of the observed to estimated con-
centrations is ≈4. These performance statistics are comparable to those obtained by Sharan
and Yadav (1998) using a model that includes along-wind diffusion, which might be impor-
tant under low wind speeds. This result suggests that ignoring diffusion along the plume in
the two models examined herein is empirically justified. It is also consistent with the results
of Cirillo and Poli (1992), who showed that the performance of a standard Gaussian model
with the horizontal spread estimated from the measured σv differed little from that of a model
that considered along-wind diffusion explicitly.

A combination of the two-dimensional diffusion equation and Eckman (1994) model
for horizontal dispersion provides a better description of dispersion from near-surface point
releases than does AERMOD. This suggests the need to consider the variation of wind speed
with height in modelling near-surface dispersion. The performance of both models depends
on using measurements of the standard deviation of horizontal turbulent velocity fluctua-
tions, σv , to estimate horizontal plume spread. The models overestimate concentrations if
σv is estimated from the surface friction velocity. The inclusion in a model of the effects of
wind meandering reduces the overestimation of concentrations resulting from the Gaussian
plume formulation for horizontal spread. We then examined the estimation of meteorological
inputs at low wind speeds, and the impact of using these estimates on modelling the disper-
sion of near-surface releases. An analysis of data from the Cardington tower indicates that
Monin-Obukhov similarity theory generally underestimates the surface friction velocity at
low wind speeds. These estimates can be empirically modified to reduce the underestimation,
leading to estimates of vertical dispersion that result in improved descriptions of concentra-
tions observed during the Prairie Grass and Idaho Falls experiments under low wind-speed
conditions.
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