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Abstract Misfolding and aggregation of mutant enzymes
have been proposed to play role in the pathogenesis of
homocystinuria due to cystathionine β-synthase (CBS) defi-
ciency. Chemical chaperones have been recently shown to
facilitate proper assembly of several CBSmutants. To asses the
number of patients that may respond to chaperone therapy, we
examined the effect of selected CBS ligands and osmolytes on
assembly and activity of 27 CBSmutants that represent 70% of
known CBS alleles. The mutant enzymes were expressed in a
bacterial system, and their properties were assessed by native
Western blotting and sensitive liquid chromatography tandem
mass spectrometry (LC-MS/MS) assay, respectively. We
studied the chaperoning activity of δ-aminolevulinic acid
(δ-ALA)—a heme precursor—and of three osmolytes betaine,
2-aminoethanesulfonic acid (taurine), and glycerol. Fourteen
mutants responded by at least 30% increase in the amount of
correctly assembled tetramers and enzymatic activity to the

coexpressional presence of either 0.5 mM δ-ALA, 100 mM
betaine, and/or 750 mM glycerol. Eight of these mutants
(p.R266K, p.P49L, p.R125Q, p.K102N, p.R369C, p.V180A,
p.P78R, p.S466L) were rescuable by all of these three
substances. Four mutants showed increased formation of
tetramers that was not accompanied by changes in activity.
Topology of mutations appeared to determine the chaperone
responsiveness, as 11 of 14 solvent-exposed mutations were
substantially more responsive than three of 13 buried
mutations. This study identified chaperone-responsive
mutants that represent 56 of 713 known patient-derived CBS
alleles and may serve as a basis for exploring pharmacological
approaches aimed at correcting misfolding in homocystinuria.

Abbreviations
δ-ALA δ-aminolevulinic acid
CBS Cystathionine β-synthase
SAM S-adenosyl-L-methionine

Introduction

Misfolding of mutant proteins plays a role in the pathogen-
esis of many human genetic diseases. These so-called
conformational disorders are characterized by decreased
stability, aggregation, impaired trafficking, and accumu-
lation of misfolded proteins. It should be noted that
misfolding is an important mechanism not only in rare
genetic conditions but has been also implicated in common
diseases such as diabetes mellitus type 2 (Hayden et al.
2005), Alzheimer’s disease (Agorogiannis et al. 2004),
Parkinson’s disease (Agorogiannis et al. 2004) and others.
In recent years, chemical or pharmacological chaperones
have been reported as a therapeutic option to prevent
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misfolding or aberrant trafficking of proteins involved in
human conformational diseases (Perlmutter 2002). Chemi-
cal chaperones are low molecular weight substances—
usually osmolytes—that protect proteins against various
denaturing conditions via a solvophobic thermodynamic
force resulting from interactions between the osmolyte
and the peptide backbone (Bolen and Baskakov 2001).
Whereas chemical chaperones facilitate folding of many
proteins nonspecifically at relatively high concentrations,
pharmacological chaperones exhibit specific effects on
particular proteins, and their efficient concentrations are
much lower. Pharmacological chaperones are protein
ligands such as substrates, inhibitors, or similar compounds
(Arakawa et al. 2006; Perlmutter 2002) that minimize
aggregation by assisting the target mutant proteins to fold
properly and/or in transporting them to the extracellular
space. Pharmacological chaperones are being used to treat
conditions such as lysosomal storage disorders (Pastores
and Sathe 2006).

Cystathionine β-synthase (CBS; EC 4.2.1.22) (http://
www.chem.qmul.ac.uk/iubmb/enzyme/EC4/2/1/22.html) is
a homotetrameric cytosolic enzyme that channels the
potentially toxic sulfur amino acid homocysteine through
the transsulfuration pathway. In addition to its two
substrates—serine and homocysteine—CBS binds also
two cofactors—pyridoxal-5-phosphate and heme (Kery et
al. 1994; Skovby et al. 1984), the role of which in CBS
folding has been discussed in several previous studies
(Janosik et al. 2001b; Majtan et al. 2008). Each subunit of
the full-length 63-kDa enzyme is composed of the N-
terminal heme-binding domain, highly conserved catalytic
domain, and the C-terminal regulatory domain that binds
the allosteric activator S-adenosyl-L-methionine (SAM)
(Janosik et al. 2001a). So far, 3D structure of only the
truncated form of CBS has been solved (Meier et al. 2001).
This 45-kDa form lacks C-terminal domain, forms dimers
instead of tetramers, and is about twice as active as the full-
length enzyme (Kery et al. 1998).

Classical homocystinuria (http://www.ncbi.nlm.nih.gov/
entrez/dispomim.cgi?id=236200) is an autosomal recessive
disorder caused by mutations in the CBS gene. With the
worldwide prevalence of 1:344,000 (Mudd et al. 2001),
CBS deficiency is the most common clinically relevant
disorder of sulfur amino acid metabolism. Molecular
epidemiological studies indicate that the true incidence
may be about 20 times higher (Gaustadnes et al. 1999;
Janosik et al. 2009; Refsum et al. 2004). To date, analysis
of 713 patient-derived CBS alleles has revealed 154
different mutations (http://www.uchsc.edu/cbs). Misassem-
bly and aggregation of CBS mutants contribute substan-
tially to the pathogenesis of CBS deficiency, as many
patient-derived CBS mutants expressed in Escherichia coli
form decreased the amount of correctly assembled protein

(Janosik et al. 2001b; Kožich et al. 2010). At present the
CBS deficiency is usually treated by administration of large
doses of vitamin B6 combined with methionine restriction,
cysteine supplementation, and enhancement of homocysteine
remethylation by betaine and folates (Kožich and Kraus
2001). As about 50% of patients are nonresponsive to vitamin
B6 and management of their diet is quite difficult, especially
in late-diagnosed patients, new treatment options are highly
desirable. Our recent study (Singh et al. 2007) showed that the
presence of glycerol, trimethylamine-N-oxide, dimethylsulf-
oxide, proline, or sorbitol during expression facilitated proper
assembly of four CBS mutants expressed in yeasts, and we
proposed that chemical chaperones may be useful in treating
CBS deficiency. To estimate the proportion of patients that
may potentially benefit from chaperone therapy, we studied
the effect of three CBS ligands and three osmolytes on
assembly and activity of 27 CBS mutants representing 70% of
known CBS alleles.

Methods

Chemicals

If not mentioned specifically, all chemicals were purchased
from Sigma Aldrich (St. Louis, MO).

CBS mutants

In a previous study, we selected a series of 27 CBS mutants
representing about two thirds of all known patient-derived
alleles and reflecting their topology in different CBS
domains (Kožich et al. 2010). The set included eight most
prevalent mutations (p.R125Q, p.E144K, p.T191M, p.
R266K, p.I278T, p.G307S, p.W409_G453del, and p.
D444N) having a frequency of at least ten alleles in the
CBS Mutation Database and additional 19 less frequent
mutations known to be localized in different domains of the
CBS protein (Meier et al. 2001; Meier et al. 2003). After
selecting the mutants, we performed an in silico analysis
with calculation of the solvent-accessible surface area. Based
on previously published criteria, we considered mutant
residues with absolute and/or relative solvent-accessible
surface area >40 A2 and 9%, respectively, as being solvent-
exposed, whereas the rest of the mutations were considered
as being buried in the globule (Mirkovic et al. 2004).

Responsivity of mutants to chemical chaperones

We tested the chaperoning activity of three ligands and
three osmolytes: δ-aminolevulinic acid (δ-ALA) was
selected as a precursor of the CBS cofactor heme, L-
serine as one of the substrates, SAM as an allosteric
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activator of CBS, betaine is an osmolyte that is also used in
homocystinuria to enhance remethylation of homocysteine
to methionine, 2-aminoethanesulfonic acid (taurine) as an
osmolyte low in CBS-deficient patients, and glycerol as a
general chemical chaperone. These six substances were
used in an E. coli expression system, and their effect on
assembly/oligomerization and catalytic activity of mutants
was then examined. Responsivity of the mutants to the
chaperones was defined as an increase in the amount of
correctly assembled protein and/or of the specific activity of
the enzyme by >30%. This 30% difference was arbitrarily
chosen to safely discriminate the true effect from noise, as
the coefficient of variation of the entire expression system
using wild-type CBS was 19% (Kožich et al. 2010).
Mutants exhibiting response in the first experiment were
expressed once more in an independent experiment.

Toxicity of chemical chaperones for E. coli

To optimize conditions, we first determined the toxicity of
chaperones. Growth of E. coli DH5-α after the addition of
chaperones to medium was monitored by measuring optical
density at 600 nm (OD600). Chaperones were added at the
time of induction (OD600∼0.5–0.6) in two different
concentrations: 50 mM and 100 mM L-serine, 0.5 mM
and 1 mM SAM, 0.5 mM and 1.5 mM δ-ALA, 50 mM and
100 mM betaine, 25 mM and 50 mM taurine, and 750 mM
and 1,000 mM glycerol, respectively. No significant
inhibition of E. coli growth was observed after 4-h expression
in the presence of these substances in the medium, with the
exception of 1,000 mM glycerol (see Supplementary Table 1).
Based on these experiments, we selected optimal chaperone
concentrations as follows: 100 mM L-serine, 1 mM SAM,
0.5 mM δ-ALA, 100 mM betaine, 50 mM taurine, and
750 mM glycerol.

Intracellular chaperones concentrations

In the next step, we examined the efficiency of transport of
chaperones into the bacteria grown in the presence of the
respective compounds for 4 h. The bacterial pellets were
washed three times in 1× phosphate-buffered saline (PBS),
PBS excess was aspirated by pipette tip, and wet pellets were
weighted; extracts were then prepared as mentioned above.
Intracellular concentration of betaine was determined by
modification of liquid chromatography tandemmass spectrom-
etry (LC-MS/MS) on hydrophilic interaction liquid chroma-
tography high-performance liquid chromatography (HILIC–
HPLC) column by a previously published method (Holm et al.
2003). Serine was measured by LC-MS/MS using commer-
cially a available kit for amino acid analysis (EZ:faast,
Phenomenex, Torrance, CA, USA). SAM was measured by
LC-MS/MS utilizing a Hypercarb column filled with porous

graphitic carbon stationary phase (Krijt et al. 2009). Concen-
tration of glycerol was determined by gas chromatography
MS (GC-MS) after solvent extraction used to analyze urinary
organic acid (Chalmers and Lawson 1982). Intracellular
taurine was measured by an amino acid analyzer AAA 400
(Ingos, Czech Republic) using cation-exchange chromatogra-
phy with postcolumn ninhydrin derivatization.

Expression in E. coli

The wild-type CBS and mutant constructs were derived from
the pHCS3-expression plasmid (Kožich and Kraus 1992).
Seven mutant plasmids, namely, c.341 C>T (p.A114V),
c.442 G>A (p.G148R), c.526 G>A (p.E176K), c.1224-2
A>C (r.1224_1358del; p.W409_G453del), c.1265 C>T
(p. P422L), c.1304 T>C (p.I435T), and c.1397 C>T
(p.S466L) were prepared using the previously described
procedure of replacing a fragment of wild-type CBS
expression plasmid with the equivalent restriction fragment
derived from the mutant patient-derived complementary
DNA (cDNA) (Kožich and Kraus 1992). The remaining
mutations were introduced into the wild-type expression
plasmid with the help of the GeneTailor Site-directed
mutagenesis kit (Invitrogen, Carlsbad, CA, USA) according
to the manufacturer’s procedure. The authenticity of all
constructs was verified by dideoxy sequencing using ALF
sequencer (Amersham Pharmacia Biotech, Piscataway, NJ,
USA). Mutants were expressed in E. coli strain DH5-α at
37°C for 4 h after addition of 0.3 mM isopropyl thiogalacto-
side (IPTG) to super optimal broth (SOB) medium at
OD600∼0.5–0.6, and bacterial extracts were obtained after
sonication, as described previously (Kožich and Kraus
1992). Total protein was determined by Lowry method
using bovine serum albumin (BSA) as a standard (Lowry et
al. 1951). Each mutation was expressed in parallel in the
absence and presence of each chaperone, which was added at
the time of IPTG induction.

Specific activity of mutants

First, specific activity of all mutants to synthesize cystathio-
nine was measured by radiometric assay using [14C]serine as
a substrate (Kožich and Kraus 1992). The product—[14C]
cystathionine—was separated using paper chromatography
and detected by scintillation (Kraus 1978). Subsequently,
specific activity of the chaperone-responsive mutants
(increase in the specific activity of the enzyme by >30%)
was determined by a more sensitive LC-MS/MS method in
both lysates from the first experiment and from the
additional independent expression study. CBS activity was
assayed at 10 mM homocysteine and 10 mM serine by the
standard procedure, with incubation at 37°C for 2 h (Kožich
and Kraus 1992) with the following modification: mixture
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of unlabeled and 14C-labeled serine was replaced by 10 mM
2,3,3-2H-labeled serine (Cambridge Isotope Laboratories),
and the amount of 2,3,3-2H-labeled cystathionine produced
was determined by LC-MS/MS using a commercially
available kit for amino acid analysis (EZ:faast, Phenomenex
(Krijt et al, unpublished).

Native polyacrylamide gel electrophoresis and Western blot

As a surrogate marker of the tendency of mutants to
misfold, we examined their quaternary structure in crude
bacterial extracts. To assess the oligomeric structure, we
used electrophoresis in gradient polyacrylamide gels under
nondenaturing conditions, followed by Western blotting.
Bacterial extracts containing 15 μg of total protein were
subjected to electrophoresis under nondenaturing condi-
tions using Laemmli buffer system without sodium dodecyl
sulfate (SDS) and with NuPAGE® Novex 3–8% Tris-
acetate midi gel (Invitrogen) at 15 mA per gel. Proteins
were transferred to polyvinylidene fluoride (PVDF) mem-
brane by semidry blotting system, as described previously
(Janosik et al. 2001b). CBS was detected by purified chicken
anti-hCBS serum H19 (HenA, Czech Republic) followed by
stabilized rabbit anti-chicken horseradish-peroxidase-
conjugated antibody (Pierce, Rockford, IL, USA). In our
previous study, we demonstrated that in our electrophoretic
system, the wild-type CBS is present predominantly in the
form of tetramers and in small amounts as octamers,
dodecamers, and hexadecamers (Kožich et al. 2010). Signals
of these correctly assembled CBS tetramers/oligomers that
present as sharply demarcated fractions were obtained in this
study by chemiluminescence (SuperSignal West Femto
Chemiluminescence Substrate, Pierce, Rockford, IL, USA)
employing the ChemiGenius station and GeneTools software
for quantification (Janosik et al. 2001b).

Results

Transport of chaperones into E. coli

Efficient transport of chaperones across the E. coli
cytoplasmic membrane and their intracellular retention are
necessary conditions for studying their effects on CBS
mutants. Intracellular concentrations of betaine, taurine, and
glycerol increased significantly after 4-h growth of E. coli
in the presence of these compounds in the medium,
demonstrating their efficient uptake and retention by
prokaryotic cells (see Table 1). It can be stipulated that δ-
ALA was also transported, as: (1) its transport system in
E. coli exists and has already been characterized (Verkamp
et al. 1993), and (2) it was shown previously that addition
of 0.3 mM δ-ALA to the medium increased heme content
in the bacteria up to 50-fold (Kery et al. 1994). In contrast,
we detected no increase in serine and SAM concentration
after addition to the medium, and we excluded them from
further studies. However, it cannot be ruled out that these
two metabolites were transported efficiently but were
released from the cells during harvesting.

Effect of chaperones on structure and function of CBS
mutants

Effect of δ-ALA The role of heme in CBS folding has been
previously implicated, and impaired heme binding of CBS
mutants has been proposed to be a common pathogenic
mechanism in CBS deficiency (Janosik et al. 2001b; Majtan
et al. 2008; Ojha et al. 2002). It was also shown that the heme
precursor δ-ALA increases heme saturation and yield of the
wild-type human CBS expressed in E. coli (Kery et al. 1995).
In our study, the coexpressional presence of 0.5 mM δ-ALA
improved oligomerization of 14 mutants, with an increase in

Table 1 Intracellular concentrations of chemical chaperones and cystathionine β-synthase (CBS) ligands after 4-h exposure to Escherichia coli

Chaperones and ligands in SOB medium Chaperones and ligands in E. coli, mmol/kg wet weight

- Addition + Addition

Chaperones Glycerol 750 mmol/l 2.3 64.6

Betaine 100 mmol/l 0.4 11.0

Taurine 50 mmol/l NDa 8.4

CBS ligands δ-ALA 0.5 mmol/lb Not measured

L-serine 100 mmol/l NDa NDa

SAM 1 mmol/l 0.05 0.05

SOB super optimal broth, δ-ALA δ-aminolevulinic acid, SAM S-adenosyl-L-methionine
aND Not detected, below the detection limit −0.02 mmol/kg E. coli wet weight for taurine, 0.01 mmol/kg E. coli wet weight for serine
b Concentrations of δ-ALAwere not determined, as it was shown previously that addition of 0.3 mM δ-ALA to the growth medium increased heme content
in the bacteria up to 50-fold (Kery et al. 1994).

42 J Inherit Metab Dis (2011) 34:39–48



Fig. 1 Effect of δ-
aminolevulinic acid (δ-ALA),
betaine, glycerol, and taurine
on oligomerization of 27
cystathionine β-synthase (CBS)
mutants. Crude extracts—15 ·g
total protein—obtained from
the cells grown in the absence
(odd lanes) and presence (even
lanes) of chaperone were
examined for the presence of
CBS tetramers/oligomers by
native polyacrylamide gel
electrophoresis (PAGE) and
Western blot with immunode-
tection. Correctly assembled
CBS tetramers (arrows) and
higher-order oligomers
(octamers, dodecamers,
hexadecamers) are present as
sharply demarcated fractions.
Mutants responding to
chaperones by formation of
increased amounts of correctly
assembled CBS molecules are
shown in boxes
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the amount of tetramers up to 8.9-fold (see Fig. 1 and
Table 2); 11 of the responsive mutants also showed a
simultaneous increase in specific activity up to 4.1-fold (see
Fig. 2 and Table 3), whereas activity of three mutants—
p.G305R, p.G307S, and p.C165Y—did not rise. Responsive
mutants are located in the regulatory domain (p.P422L,
p.S466L), at the dimer–dimer interface (p.A114V, p.V180A,
p.P78R), or in other locations of the active core (p.P49L,
p.E302K, p.C165Y, p.R125Q, p.K102N, p.R369C). The
effect of δ-ALA on two mutations in the heme-binding
pocket differed substantially. Whereas oligomerization and
activity of the p.R266K was dramatically rescued, the
p.H65R did not exhibit any changes after δ-ALA treatment.

Effect of betaine Betaine is a naturally occurring osmolyte in
which thermo- and osmoprotective properties are well known

(Caldas et al. 1999; Perroud and Le Rudulier 1985). As a
methyl donor, betaine facilitates remethylation of homocys-
teine to methionine and is widely used to treat CBS deficiency
(Lawson-Yuen and Levy 2006). Similar results as in δ-ALA
experiments were observed after 100 mM betaine treatment,
but the effects were weaker. Eleven mutants (p.P49L,
p.C165Y, p.R125Q, p.K102N, p.R369C, p.V180A, p.P78R,
p.S466L, p.I435T, p.G305R, p.R266K) exhibited an increase
in the amount of correctly folded tetramers up to 1.8-fold (see
Fig. 1 and Table 2), which was—with the exception of
p.G305R and p.C165Y—accompanied by an increase in the
catalytic activity of up to 1.6-fold (see Fig. 2 and Table 3).

Effect of glycerol Glycerol belongs to osmotically active
polyols, and its properties as a general chemical chaperone
have been demonstrated by many studies (Brown et al.

Table 2 Effects of δ-ALA, betaine, glycerol and taurine on amounts of tetramers/oligomers of 27 CBS mutants

topology of the mutants mutants δ-ALA betaine glycerol taurine

0mM 0.5mM 0mM 100mM 0mM 750mM 0mM 50mM

buried mutants p.G305R 213.4a 277.8a 137.2a 187.2a 276.6 264.8 199.8 237.8

p.G307S 250.2a 311.9a 230.2 226.4 102.5a 143.1a 258.7 253.3

p.P422L 86.0a 100.5a 28.2 27.2 23.5a 47.3a 19.0 20.0

p.I278T N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

p.E144K N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

p.G148R N.D. N.D. N.D. N.D. 1.9a 20.8a N.D. N.D.

p.R266K 28.7a 65.8a 15.0a 19.3a 11.8a 28.6a 11.1 8.4

p.T262R N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

p.N228K N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

p.L539S N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

p.W409_G453del N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

p.C165Y 152.3a 270.2a 112.4a 155.7a 125.3a 172.3a 100.5 109.9

p.S466L 133.0a 199.0a 47.1 55.0 53.4a 74.9a 88.7 81.8

solvent accessible mutants p.H65R N.D. N.D. N.D. N.D. 4.6a 18.8a N.D. N.D.

p.R369C 9.7a 47.7a 17.7a 19.7a 10.9a 19.4a 19.1 17.8

p.T191M N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

p.A114V 127.3a 207.5a 69.6 59.2 113.4 130.2 127.0 115.9

p.P78R 45.9a 72.6a 7.2a 13.1a 9.7a 34.0a 4.2 4.2

p.R125Q 7.3a 64.2a 6.4a 13.6a 15.1a 22.9a 6.5 7.8

p.K102N 24.2a 45.4a 6.5a 9.3a 8.4a 22.7a 12.6 15.6

p.E176K 5.8 2.2 13.7 14.2 12.6a 29.2a 7.3 6.8

p.V180A 41.9a 76.6a 11.6a 16.2a 12.5a 30.9a 20.6 19.9

p.I435T 72.3 50.9 76.4a 109.8a 125.8a 186.8a 109.1 96.7

p.P49L 224.3a 256.0a 160.0a 198.2a 88.2a 109.3a 156.1 163.1

p.E302K 175.8a 233.8a 247.5 213.2 234.1 218.0 187.4 182.8

p.R439Q 148.2 153.5 219.1 247.3 329.2 233.1 189.4 204.8

p.D444N 180.1 208.4 261.0 297.8 377.6 350.8 291.0 300.5

wild-type CBS 100.0a 110.2a 100.0a 109.3a 100.0a 120.6a 100.0a 105.4a

ND not detected, signal of CBS antigen on Western blot below the signal of negative control
a Signals of responsive mutants (>30%) and wild-type expressed as percent of signal of wild-type CBS as a mean of two independent experiments
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1996; Kim et al. 2006; Meng et al. 2001; Sato et al. 1996;
Tamarappoo and Verkman 1998). Fifteen mutants showed
an increased amount of correctly assembled protein up to
11.2-fold (see Fig. 1 and Table 2). In 12 of them, we also
observed increased specific activity up to 6.6-times (see
Fig. 2 and Table 3). Glycerol restored specific activity and/
or tetramer assembly of three additional mutants that were
not rescued by δ-ALA or betaine—p.G148R, p.E176K, and
p.H65R. The effect of glycerol on enhancing the assembly of
CBS subunits can also be demonstrated by the appearance of
higher-order oligomers (see additional upper bands in Fig. 1),
as also shown in other studies (Shelanski et al. 1973).

Effect of taurine Taurine is an amino acid with many
physiological functions, including osmotic activity (Huxtable
1992). Taurine levels in CBS-deficient patients are
decreased, which has been proposed to possibly contribute
to the clinical complications of homocystinuria (Mafrici
2005). We examined the properties of mutants expressed in
50 mM taurine, but no effect on the amount of oligomers

and/or activity was observed (see Tables 2 and 3), although
taurine was efficiently transported into the cells (see Table 1).

Effect of chaperones on steady-state levels of CBS
polypeptides

The above-described CBS mutants exhibited increased steady-
state levels of correctly assembled tetramers after chaperone
treatment. We examined whether this increase of tetramers
originated from shifted proportion between correctly assem-
bled and misassembled molecules or whether they resulted
from an increased amount of total CBS. Therefore we analyzed
the amounts of total CBS signal containing both the correctly
assembled water-soluble as well as misfolded water-insoluble
fractions by boiling uncentrifuged cell lysates in 3% SDS at
100°C for 10 min. Extracts were than subjected to SDS-PAGE
followed by Western blotting. No significant differences of
total SDS-soluble CBS antigen in samples grown in the
absence and presence of chaperones were observed (data not

Fig. 2 Effect of δ-
aminolevulinic acid (δ-ALA),
betaine, and glycerol on
specific activity of responsive
cystathionine β-synthase
(CBS) mutants. Effects are
expressed as increases in
specific activity as percentage
of signal of wild-type CBS
(100% corresponds to specific
activity of wild-type CBS
expressed without presence
of chaperone). Data were
obtained by sensitive liquid
chromatography tandem mass
spectrometry (LC-MS/MS) and
are presented as a mean from
two independent
expressions
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shown). This experiment demonstrated that in the presence of
chaperones, the total amounts of mutant enzymes did not rise
and suggests that the increased tetrameric fractions originate
from a shift in proportion between correctly assembled and
misassembled molecules.

Discussion

Our study showed that two thirds of mutants in this study
responded to the presence of either 0.5 mM δ-ALA,
100 mM betaine, and/or 750 mM glycerol during expres-
sion by increased formation of correctly assembled
tetramers. More importantly, this restoration of quaternary

structure was in most cases accompanied by an increase in
catalytic activity, with the exception of p.G305R, p.G307S,
p.G148R, and p.C165Y. Mutation topology appears to be
an important determinant of chaperone responsiveness.
Eleven of 14 mutations located at the enzyme surface
(i.e., solvent-accessible mutations) showed an increase in
the amounts of tetramers as well as in the catalytic activity.
In contrast, only six of 13 buried mutants formed more
tetramers in the presence of chaperones. Moreover, raised
levels of tetramers were not accompanied by restoration of
the catalytic activity of p.G305R, p.G307S, and p.G148R,
which are all located in the active site of the enzyme, and of
the mutant p.C165Y. Our previous study showed that
solvent-exposed mutations were more prone to rescue by

Table 3 Effects of δ-aminolevulinic acid (δ-ALA), betaine, glycerol, and taurine on specific activity of 27 cystathionine β-synthase (CBS)
mutants

topology of the mutants mutants δ-ALA betaine glycerol taurine

0mM 0.5mM 0mM 100mM 0mM 750mM 0mM 50mM

buried mutants p.G305R N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

p.G307S N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

p.P422L 43.4a 65.0a 48.4 63.2 61.4a 150.0a 61.7 64.0

p.I278T N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

p.E144K N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

p.G148R N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

p.R266K 19.5a 66.1a 21.7a 33.8a 17.1a 76.1a 48.7 51.0

p.T262R N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

p.N228K N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

p.L539S N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

p.W409_G453del N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

p.C165Y N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

p.S466L 260.5a 382.5a 280.5 360.0 229.5a 453.0a 226.0 173.6

solvent accessible mutants p.H65R N.D. N.D. N.D. N.D. 2.5a 15a N.D. N.D.

p.R369C 2.1a 6.1a 1.8a 2.7a 1.7a 6.2a 2.0 1.9

p.T191M N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

p.A114V 69.5a 101.7a 69.8 71.0 75.8 100.8 58.8 60.3

p.P78R 9.4a 24.0a 14.1a 19.9a 7.8a 40.7a 2.8 1.6

p.R125Q 2.0a 8.1a 2.6a 3.3a 1.5a 4.1a 6.8 2.7

p.K102N 8.4a 11.7a 9.9a 12.7a 5.5a 21.9a 9.2 6.8

p.E176K 8.6 8.5 1.5 1.5 2.7a 17.5a 7.3 6.8

p.V180A 12.4a 35.2a 9.0a 12.0a 13.0a 55.7a 25.8 26.8

p.I435T 132.1 135.7 174.6a 191.0a 215.3a 340.3a 205.8 177.3

p.P49L 119.5a 172.5a 158.5a 214.5a 119.0a 158.5a 92.8 94.0

p.E302K 107.0a 152.0a 78.4 82.6 140.7 137.7 134.9 153.0

p.R439Q 138.7 150.6 139.9 180.4 131.9 152.6 94.6 69.1

p.D444N 220.8 183.5 196.1 223.9 179.4 205.0 124.8 137.5

wild type CBS 107.4a 118.0a 135.1a 150.2a 129.3a 153.2a 111.7a 109.0a

ND not detected; activity below the limit of detection [0.3 nmol/mg/h for liquid chromatography tandem mass spectrometry (LC-MS/MS) and
1.5 nmol/mg/h for radiometric assay, respectively]
a Specific activity of responsive mutants (>30%) and wild-type CBS were determined by sensitive LC-MS/MS and expressed as a mean of two independent
experiments (all mutants were measured once by the radiometric method); nmol cystathionine/mg protein/h
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lower temperature of expression (Kožich et al. 2010) and
that their activity correlated significantly with the amount
of tetramers. Both these studies strongly suggest that
mutation topology may be an important determinant of
responsiveness to therapeutic approaches aimed at correct-
ing misfolding/misassembly of mutant subunits in CBS
deficiency. However, detailed insight into the structure–
function relationships is beyond the scope of this paper, and
will require purification and structural analysis of the
mutants.

The chaperoning activity of tested compounds differed
in both the number of rescuable mutants and the magnitude
of effects; δ-ALA and glycerol rescued an overlapping set
of mutants, although their mechanisms of action are most
likely different. Glycerol acts as a general osmolyte via
interaction with protein backbone, resulting in globule
stabilization by preferring hydration that favors the more
compact native state over the denatured state (Gekko and
Timasheff 1981; Mishra et al. 2007). In contrast, addition of
δ-ALA increases concentrations of CBS ligand, heme, the
effect of which on mutant assembly has been discussed in
previous studies (Janosik et al. 2001b; Majtan et al. 2008).
This chaperoning activity of heme may be due to
stabilization of a limited number of partially folded
intermediates (Wittung-Stafshede 2002). It should be noted
that only mutants with retained ability to bind heme can
potentially be rescued by heme, whereas mutations affect-
ing heme binding (such as p.H65R) result in nonrespon-
siveness to δ-ALA. Betaine rescued a partially overlapping
and smaller set of mutants, and its effect on oligomerization
and activity was much weaker than that of δ-ALA and
glycerol. This as yet undescribed chaperoning effect of
betaine may contribute to its well-known therapeutic
efficacy in homocystinuria that is based on enhanced
homocysteine remethylation via the betaine homocysteine
methyltransferase.

Although the tested compounds improved oligomeriza-
tion and activity of many mutants in E. coli, their possible
therapeutic use requires additional considerations. It is
unclear whether efficient concentrations of these com-
pounds can be achieved in humans in vivo without eliciting
side effects. Data on concentrations of glycerol and betaine
that can be achieved in human tissues are not available, and
only plasma levels of these compounds can be found in the
literature. Plasma concentrations of glycerol observed in
asymptomatic patients with glycerol kinase deficiency of
5 mM (McCabe 2001) and peak concentration of plasma
betaine after oral administration of 1.5 mM (Schwahn et al.
2003) were one order of magnitude lower than the
intracellular concentrations of these compounds observed
in E. coli. Whereas administration of glycerol (Singh et al.
2007) and betaine (Schwahn et al. 2003) are safe, with no
significant side effects even in relatively high concentra-

tions, δ-ALA is far from practical for use in humans
because of its toxicity. Nevertheless, exploration of mech-
anisms by which heme rescues misfolded CBS enzyme
molecules may facilitate a design of novel and possibly less
toxic heme analogs.

Our study shows that patients with only certain genotypes
may benefit from chaperone treatment. Fourteen chaperone-
responsive mutants represent 56 of 713 of known patient-
derived CBS alleles. Candidates for chaperone therapy are
undoubtedly those mutants that responded to all three
compounds, namely, p.R266K, p.P49L, p.R125Q, p.K102N,
p.R369C, p.V180A, p.P78R, and p.S466L. It should be
emphasized that p.R125Q, as well as p.H65R and p.E176K—
both rescuable by glycerol—are mutations present in difficult-
to-manage patients nonresponsive to B6 therapy. Considering
the frequency of patient-derived mutations that may be
responsive to chaperone treatment, our study indicates that
this new therapeutic approach may become useful in about
one tenth of patients with homocystinuria.
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