
Impacts of human alteration of the nitrogen cycle
in the US on radiative forcing

Robert W. Pinder • Neil D. Bettez • Gordon B. Bonan •

Tara L. Greaver • William R. Wieder • William H. Schlesinger •

Eric A. Davidson

Received: 23 May 2012 / Accepted: 23 August 2012 / Published online: 9 September 2012

� The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract Nitrogen cycling processes affect radia-

tive forcing directly through emissions of nitrous

oxide (N2O) and indirectly because emissions of

nitrogen oxide ðNOxÞ and ammonia (NH3) affect

atmospheric concentrations of methane (CH4), carbon

dioxide (CO2), water vapor (H2O), ozone (O3) and

aerosols. The emissions of N2O are mostly from

agriculture and they contribute to warming on both

short and long time scales. The effects of NOx and

NH3 on CH4, O3, and aerosols are complex, and

quantification of these effects is difficult. However,

the net result on time scales of decades is likely one of

cooling, which becomes less significant on longer time

scales. Deposition of N onto ecosystems also affects

sources and sinks of N2O, CH4, and CO2, but the

dominant effect is changes in carbon (C) stocks.

Primary productivity in most temperate ecosystems is

limited by N, so inputs from atmospheric deposition

tend to stimulate plant growth and plant litter produc-

tion, leading in some cases to significant C sequestra-

tion in biomass and soils. The literature reviewed here

indicates a range of estimates spanning 20–70 kg C

sequestered per kg N deposited in forests, which are

the dominant C sinks. Most of the sequestration occurs

in aboveground forest biomass, with less consistency

and lower rates reported for C sequestration in soils.

The permanency of the forest biomass sink is uncer-

tain, but data for the fate of forest products in the US

indicate that only a small fraction of enhanced forest

biomass C is sequestered in long-term harvest prod-

ucts or in unmanaged forests. The net effect of all of

these N cycle processes on radiative forcing in the US

is probably a modest cooling effect for a 20-year time

frame, although the uncertainty of this estimate
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includes zero net effect, and a modest warming for a

100-year time frame. We know that N-cycling

processes are important and that biotic feedbacks to

climate change are unlikely to be properly modeled or

assessed without including C–N interactions. How-

ever, due to the complexity of biological processes

involving C–N–climate interactions, biogeochemical

models are still poorly constrained with respect to

ecosystem responses to impacts of N deposition and

climate change. Only recently have N-cycling pro-

cesses been incorporated into Earth system models for

C–N interactions. The robustness of these models

remains to be demonstrated. Much work remains for

improving their representation in models used to

simulate climate forcing scenarios.

Keywords Climate change � Reactive nitrogen �
Carbon cycle � Atmospheric chemistry

Introduction

Reactive nitrogen (Nr) emissions alter the climate in

many ways, and the importance of the nitrogen (N)

cycle in regulating climate is gaining increasing

attention. Excess N in terrestrial systems can change

the uptake and emission of the three most important

anthropogenic greenhouse gases: carbon dioxide

(CO2), methane (CH4), and nitrous oxide (N2O).

Many experiments have demonstrated substantial N

limitations of CO2 uptake on land. Therefore, owing to

its scarcity, N is a chief player in climate change and

the fate of anthropogenic CO2 emissions. In addition,

Nr is a substrate for N2O production by nitrifying and

denitrifying bacteria in soils, sediments, and water

bodies. Microbial production and consumption of CH4

is also affected by N. In the atmosphere, Nr alters

atmospheric chemistry and affects the production and

lifetimes of greenhouse gases such as ozone (O3) and

CH4, and also leads to the formation of aerosols,

which, in turn, affect regional and global climate. This

article provides an overview on the impacts of Nr on

radiative forcing, paying particular attention to the

specific interaction between the N and carbon (C)

cycles. We present evidence from field studies, meta-

analyses, and models of biogeochemical processes

within earth system models.

Radiative impacts of reactive nitrogen

The most direct effect of N on climate is through N2O

production, the third most important anthropogenic

greenhouse gas, contributing 6 % of total human-

induced global warming. It has about 300 times the

per-molecule warming potential of CO2 and it is long-

lived in the atmospheric (a ‘‘mean residence time’’ of

more than 110 years) (Forster et al. 2007). The

concentration of N2O in Earth’s atmosphere is derived

from a variety of sources, mainly from the activity of

nitrifying and denitrifying bacteria in soils, sediments,

and water bodies. Globally, natural ecosystems release

about 10 Tg N2O-N year-1, and anthropogenic

sources sum to about 7 Tg N2O-N year-1, although

one recent study has reported a lower natural contri-

bution (Zhuang et al. 2012). Anthropogenic sources

are dominated by the widespread use and subsequent

microbial processing of fertilizer in agricultural soils

(Forster et al. 2007). Atmospheric concentrations of

N2O have increased rapidly since the industrial

revolution, as livestock herds increased globally and

as use of synthetic-N fertilizers increased after WWII

(Davidson 2009). The natural sink for N2O in soils is

small (Syakila and Kroeze 2011; Van Groenigen et al.

2011). The current rate of increase in the concentration

of N2O is about 0.3 % year-1, equivalent to the

accumulation of 4 Tg N2O-N year-1 in Earth’s

atmosphere. Global emissions of N2O are likely to

increase as fertilizers are used to boost agricultural

productivity.

The US EPA estimates that agricultural activities in

the US are directly or indirectly responsible for

emissions of about 0.48 million tons of N2O-N year-1

(United States Environmental Protection Agency

Office of Atmospheric Programs, 2011), which is

about 80 % of total US N2O production (the remainder

from energy and industrial sources) and about 10 % of

the global N2O emissions from agriculture. Several

mitigation options exist to reduce the emissions of

N2O from agricultural soils (Davidson et al. 2012),

and are addressed in more detail in Robertson et al.

(this issue). Associated emissions of N2O are esti-

mated to negate much of the CO2 mitigation effect

from C sequestration in soils (e.g., Schlesinger 2010)

or from biofuel production using fertilized crops such

as corn (Melillo et al. 2009).

While not a greenhouse gas directly, nitrogen

oxides ðNOxÞ are often a limiting factor in the
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production of O3 in the troposphere (the lower

atmosphere), which acts as a potent greenhouse gas

(Derwent et al. 2008). Nitrogen oxide (NO) reacts

with radicals that donate an oxygen atom and convert

the NO to nitrogen dioxide (NO2). In sunlight, NO2

can give up one of its oxygen atoms as it is converted

back to NO by photolysis. The extra atomic oxygen

reacts with the molecular oxygen (O2), which is

abundant in the lower atmosphere, and creates O3. In

the short-term, NOx emissions contribute to warming

by enhancing tropospheric O3 concentrations. Fur-

thermore, the short-term increase in O3 due to NOx can

impact climate indirectly, by damaging photosynthe-

sis and plant CO2 uptake by as much as 20 %, leading

to a reduction of atmospheric CO2 sequestration by the

plant biomass and resulting in more CO2-driven

warming (Felzer et al. 2004; Ollinger et al. 1997;

Sitch et al. 2007). Carbon storage and Nr are discussed

in more detail in the next section.

Another indirect effect of NOx is through its effect

on CH4, which is the second-most important green-

house gas, contributing 15 % of total human-induced

global warming. With an atmospheric lifetime of

12 years, CH4 has roughly 27 times the per-molecule

warming potential of CO2 (Boucher et al. 2009). The

largest removal process of CH4 is oxidation by the

hydroxyl radical (OH), accounting for 88 % of the

total sink. Emissions of NOx can increase atmospheric

OH and accordingly, decrease CH4 concentrations

(Boucher et al. 2009). An additional feedback is that

the by-products of CH4 oxidation include radicals that

can convert NO to NO2. Through this mechanism,

CH4 is also an important contributor to ozone forma-

tion (Fiore et al. 2002). Hence, in addition to

increasing O3 on daily time scales, NOx can lead to

decreases in O3 concentration on a decadal time scale,

because it causes an increase in OH radical concen-

tration, which decreases CH4 concentration, which

decreases NO2 formation, which decreases O3

formation.

Because NOx can both increase and decrease ozone

production, the net result of these competing effects

strongly depends on where the NOx emissions occur

(Berntsen et al. 2005; Collins et al. 2010; Fry et al.

2012; Naik et al. 2005). However, the net impact of

NOx on atmospheric chemistry is likely to be cooling,

by (i) decreasing the CH4 concentration, and (ii)

decreasing O3 formation due to lower CH4 concen-

trations (Fuglestvedt et al. 2010; Wild et al. 2001).

Both global, regional, and emission sector-based

estimates of the impact of NOx on CH4 and O3

radiative forcing are listed in Table 1.

In addition to altering radiative forcing from CH4

and O3, both NOx and ammonia (NH3) also react with

other atmospheric constituents to form fine particles

called aerosols. Aerosols are powerful cooling agents,

both directly by scattering or absorbing light, and

indirectly, by affecting cloud formation and

lifetime (Forster et al. 2007). Ammonium sulfate

((NH4)2SO4), ammonium nitrate (NH4NO3), and

organic aerosols are especially important in these

processes. Because NOx influences the rate of oxida-

tion in the atmosphere, it impacts the formation of

sulfate and organic aerosols (Shindell et al. 2009).

Ammonia (NH3) is the most important atmospheric

base, and by neutralizing sulfate and nitrate (NO3
-), it

can enhance the formation of new particles and can

condense onto existing acidic particles. Both NOx and

Table 1 Change in ozone

and methane radiative

forcing (mW m-2) due to

reactive nitrogen (per Tg

N), as calculated in global,

regional, and source-

specific sensitivity studies

Source Region/sector NOx ! ozone NOx ! methane

Derwent et al. (2008) Global ?1.0 -2.4

Naik et al. (2005) North America ?0.088 -1.7

Fry et al. (2012) North America ?2.2 -2.7

Berntsen et al. (2005) Europe ?2.0 -1.9

Wild et al. (2001) Mid-latitudes ?1.1 -1.9

West et al. (2007) Anthropogenic ?2.9 -3.7

Stevenson et al. (2004) Aircraft ?1.5 -13.8

Khler et al. (2008) Aircraft ?28 -28

Eyring et al. (2007) Shipping ?1.3 -4.5

Endresen et al. (2003) Shipping ?3.8 -7.7

Fuglestvedt et al. (2008) Shipping ?5.3 -7.6
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NH3 alter the chemical and optical properties of the

aerosol (Martin et al. 2004), which influences the

conversion of aerosol to cloud droplets and ice nuclei

(Abbatt et al. 2006; Sorooshian et al. 2008), and alters

the lifetime and brightness of clouds. The wide ranges

of estimates of the effect of NH4NO3 on aerosol

radiative forcing globally are shown in Table 2. Note

that while the values presented in Table 2 are globally

averaged, nearly all of the forcing from NH4NO3 is in

the northen hemisphere. Therefore, these aerosols can

have a larger impact on regional precipitation and

temperature patterns.

Furthermore, O3 and aerosols cause serious human

health effects and contribute to air pollution (see Peel

et al. this issue). Interactions between the N cycle and

climate change can exacerbate air pollution problems.

For example, O3 formation is also strongly tempera-

ture sensitive (Bloomer et al. 2009), thus rising

temperatures can exact a so-called ‘‘climate penalty’’

on the air pollution gains made by reducing NOx

emissions (Jacob and Winner 2009; LaFranchi et al.

2011).

Ultimately, the atmosphere tends to convert NOx

and NH3 to more water-soluble forms that are readily

deposited to the Earth’s surface. This is a significant

source of N available to ecosystems, which influences

climate forcing indirectly by altering rates of C

sequestration and emissions of CH4 and N2O from

soils. Deposition of Nr onto ecosystems changes N

availability and can increase N2O emissions and

decrease uptake of atmospheric CH4 by soil microor-

ganisms. Natural well-drained soils (i.e., not wetlands)

are an important sink for atmospheric CH4. However,

soil microbes that consume CH4 often preferentially

consume ammonium (NH4
?), leading to reduced CH4

consumption rates in the presence of abundant NH4
?

(Mosier et al. 1991). The effects of Nr deposition on

plant growth and C storage is described in the next

section.

N effects on carbon storage

Atmospheric deposition of Nr affects terrestrial C

sinks by affecting two key processes. First, inputs of

Nr from atmospheric deposition can enhance plant

growth rates because of the fundamental constraint of

N availability on plant productivity and CO2 uptake

into plant biomass. Second, decomposition is affected

by altering Nr availability which slows decomposition

of plant litter and soil organic matter in many, but not

all, forest types. Excess N can also impact C cycling in

coastal and marine ecosystems; this is discussed in

Baron et al. (this issue).

N effects on plant growth rates

It is well established that net primary production (NPP)

is limited by N availability in many terrestrial ecosys-

tems (LeBauer and Treseder 2008), due to the fact that

experimental or fertilizer N additions typically increase

C capture and storage. A meta-analysis of 126 N

addition experiments evaluated N limitation of above-

ground net primary productivity (ANPP) in terrestrial

ecosystems by comparing above-ground plant growth

in fertilized to control plots (LeBauer and Treseder

2008). ANPP was calculated by multiple methods,

including allometric biomass increment plus litterfall,

basal area increment, diameter increment, annual

litterfall, and allometric volume increment. The results

showed that most ecosystems are N limited with

an average 29 % growth response to N additions.

The response was significant within temperate for-

ests, tropical forests, temperate grasslands, tropical

Table 2 Change

ammonium nitrate

(NH4NO3) radiative forcing

(W m-2) due to global

anthropogenic emissions, as

calculated in global climate

modeling studies

Source W m-2 Type of radiative forcing

Forster et al. (2007, Table 2.13) -0.10 ± 0.10 NH4NO3 aerosol direct effect

Adams et al. (2001) -0.19 NH4NO3 aerosol direct effect

Liao and Seinfeld (2005) -0.16 NH4NO3 aerosol direct effect

Bauer et al. (2007) -0.06 NH4NO3 aerosol direct effect

Myhre et al. (2009) -0.023 NH4NO3 aerosol direct effect

Shindell et al. (2009) -0.11 NH4NO3 aerosol direct effect

Xu and Penner (2012) -0.12 NH4NO3 aerosol direct effect

Xu and Penner (2012) -0.09 Effect of nitric acid gas and NH4NO3

aerosol on cloud droplets
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grasslands, wetlands, and tundra, but not deserts

(LeBauer and Treseder 2008). The majority of these

estimates were based on data from forest ecosystems in

northern latitudes, whereas tropical areas and other

ecosystem types were not well represented (LeBauer

and Treseder, 2008).

While increasing N availability can stimulate plant

growth, estimates of this stimulation show greater vari-

ation. For example, in a recent synthesis by Butterbach-

Bahl et al. (2011), the average increase in above ground C

sequestration per unit of N addition is 25 kg C kg-1 N

(Table 3). For eastern US forests, Thomas et al. (2010)

estimated an above-ground sink of 61 kg C kg-1 N. The

magnitude of growth stimulation is likely greatest in

regions of moderate Nr deposition and slower or even

leading to enhanced mortality in regions of highest Nr

deposition, due to nutrient imbalances or acidification

(Aber et al. 1998). At present, most US ecosystems are

probably in the former category, although some high

elevation ecosystems in the eastern US may be in the latter

category (Pardo et al. 2011). Finally, some ecosystems are

also limited by phosphorous (P). When both N and P are

enhanced, the impact of N can be substantially larger

(Elser et al. 2007; Harpole et al. 2011).

The addition of N has also been shown to increase

foliar N concentration (Xia and Wan 2008), which

often results in higher photosynthetic rates, but not at

high levels of chronic N addition (Bauer et al. 2004).

The de-coupling of a photosynthetic-N relationship

was observed in numerous chronic N-addition studies,

mainly because the excess N was invested in amino

acids rather than enzymes and proteins associated with

the photosynthetic process (Bauer et al. 2004). Foliar

N may also increase the albedo of the canopy,

enhancing the reflectivity of the Earth’s surface, and

hence contribute to cooling (Hollinger et al. 2010;

Ollinger et al. 2008).

It is important to note that the potential for N

addition to increase above-ground C biomass is

limited in part because only a small portion of added

N is actually taken up by vegetation, and thus only a

small portion of N contributes to C capture by trees

(Nadelhoffer et al. 1999). Recovery in tree biomass

(e.g., foliage, woody tissue, and fine roots) of N that

was experimentally added to forests has been esti-

mated to range between 7–16 % (Nadelhoffer et al.

2004) and 0–45 % (Schlesinger 2009). Nitrogen may

be immobilized in the soil, leached out before

Table 3 Current mean estimates of dC/dN ratio for forest ecosystems in North America

Approach

Carbon sequestration

[kg C year-1

(kg N year-1)-1]

Above

ground

Below

ground

Total Scale of application Authors

Empirical field data; correlation between NEP

and total N depositiona
– – 68–177 Chronosequences in boreal

and temperate forests of

Eurasia and North America

Magnani et al. (2007)

as re-evaluated by

Sutton et al. (2008)c

Meta-analysis of 9 U.S. studies measuring the

effects of N addition on total ecosystem

carbon (EC); only included studies of which

control and treatment sites experienced the

same climatic, soil and vegetation conditions

– – 24.5 U.S. forests Liu and Greaver

(2009)c

Modeled values of N stimulation of above

ground C accumulation based on

measurements of tree growth along an N

deposition gradientb; below ground values

calculated using a biometric relationship

61 12 73 24 common tree species

occurring in Northeastern

forest in the US

Thomas et al. (2010)c

Synthesis of 14 forest studies (conducted from

1983 to 2010) including observed

measurements and modeled values

25 15 41 Mostly European sites,

several North American

sites

Butterbach-Bahl et al.

(2011)

a N deposition values from the EMEP model for the year 2000
b N deposition values did not include several chemical species found in dry N deposition and organic N deposition
c These studies were not included in the value reported for Butterbach-Bahl et al. (2011)
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biological assimilation, or, upon the addition of N,

another factor may become limiting to growth (e.g.,

water or other nutrients).

N effects on carbon storage in soils

While N deposition may stimulate productivity and

facilitate significant C storage aboveground (LeBauer

and Treseder 2008; Xia and Wan 2008), similar trends

have not been as clearly observed in soils. With greater

productivity, N addition generally increases above-

ground litter inputs (LeBauer and Treseder 2008; Liu

and Greaver 2010; Xia and Wan, 2008), and improves

the chemical quality of that litter (i.e., lower lignin: N

ratios and greater labile C inputs to surface soils; (Berg

and Laskowski 2006). In contrast, N addition

decreases fine root production, root respiration (Jans-

sens et al. 2010), and mycorrhizal abundance (Tre-

seder 2004). Although these patterns are not consistent

across meta-analyses (Liu and Greaver 2010), they

support the idea that higher plant productivity asso-

ciated with N deposition shifts litter production

aboveground as plant investment for nutrient acquisi-

tion declines (Aerts and Chapin 2000).

The biochemistry of litter inputs, and especially

litter lignin content, influences the effect of N addition

on soil C storage. For example, Waldrop et al. (2004)

report significant soil C losses with N addition in a

sugar maple forest delivering high quality litter, and

significant soil C gains with N addition in a nearby

oak-dominated forest with lower quality litter. Simi-

larly, root lignin content affects soil C storage in

grassland ecosystems receiving elevated CO2 and N

addition (Dijkstra et al. 2004). Concurrently, N addi-

tion is also known to influence changes in plant species

composition (Clark and Tilman 2008). The extent to

which climate, N addition, and their interactions may

drive changes in species composition that simulta-

neously alter the quantity and quality of litter inputs

have been little explored in the literature (but see Aerts

and Bobbink 1999).

Nitrogen deposition elicits a host of microbial

responses that influence organic matter decomposition

and, ultimately, influence soil C storage. Microbial

responses to N addition include: changes in relative

enzyme activity, microbial substrate use, and micro-

bial community composition (Cusack et al. 2011;

Sinsabaugh and Moorhead 1994). Notably, N addition

accelerates the decomposition of high quality (low

lignin) litter by stimulating cellulose degradation,

which is typically N limited (Berg and Matzner 1997;

Carreiro et al. 2000; Fog 1988; Frey et al. 2004 ,

Saiya-Cork et al. 2002; Sinsabaugh et al. 2002). In

contrast, N addition significantly slows decomposition

of low quality (high lignin) litter because of decreases

in phenol oxidase activity, which reduces rates of

lignin degradation (Fog 1988; Hammel 1997; Sinsab-

augh et al. 2002). This divergent pattern based on litter

quality has significant implications for soil C storage

in systems receiving N deposition. In some systems,

decreases in phenol oxidase activity are attributed to

declines in fungal biomass, declining fungal: bacterial

ratios, and a reduction of Basidiomycetes, or white rot

fungi (Carreiro et al. 2000; Fog 1988; Saiya-Cork

et al. 2002; Sinsabaugh et al. 2002; Frey et al. 2004).

However, fungal declines with N addition are not

ubiquitous in studies reporting changes in microbial

community structure (Saiya-Cork et al. 2002; Nemer-

gut et al. 2008; Ramirez et al. 2010). The effects of N

addition on shifts in microbial community structure

and function and their influence on litter decomposi-

tion are mediated by substrate quality. As a result of

these changes in microbial community structure and

function, rates of litter decomposition generally slow

with N deposition, although the consistency of these

findings is influenced by ambient levels of N deposi-

tion and initial litter chemistry (Fog 1988; Hobbie

2005; Knorr et al. 2005; Janssens et al. 2010). Nota-

bly, rates of N-addition more than 5 kg ha-1 year-1

slow litter decomposition, whereas rates of N depo-

sition less than 5 kg ha-1year-1 may actually accel-

erate leaf litter decomposition (Knorr et al. 2005).

Additionally, N deposition may affect dissolved

organic carbon (DOC) export from soil C (Liu and

Greaver 2010). Across multiple spatial scales, increas-

ing N availability increases DOC export from soils

(Aitkenhead and McDowell 2000). Mechanisms to

explain these patterns are still unresolved, but gener-

ally increased DOC losses result from the combination

of higher aboveground litterfall, decreased microbial

lignin degradation, and soil acidification (Evans et al.

2008; Findlay 2005; Monteith et al. 2007; Sinsabaugh

et al. 2004). Although the acceleration of DOC losses

by N-addition may have little impact on ecosystem C

storage (Aitkenhead and McDowell 2000), these DOC

and Nr inputs have significant consequences for

aquatic ecosystems.
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When combined with observations of higher

aboveground productivity and litterfall, one might

expect significantly greater soil C storage in systems

exposed to N addition, but reported rates of accumu-

lation of C in soils are generally modest. Butterbach-

Bahl et al (2011) estimate that 15 kg C are sequestered

per kg N deposition in forest soils (Table 3). However,

meta-analyses show conflicting results for accumula-

tion of soil C with N-addtion (Janssens et al. 2010; Liu

and Greaver 2010; Nave et al. 2009). Some of the

variation of soil C accumulation reported in these

meta-analyses could result from variation in regional/

ecosystem response to N addition, or the type,

duration, and intensity of N additions.

N effects on total ecosystem carbon storage

It is important to consider both the above and

belowground C pools in terrestrial ecosystems to

understand N effects on total ecosystem C sequestra-

tion. Various approaches, such as modeling, inven-

tory, and static accounting, have been used to estimate

the N-induced C sink for different ecosystems (Hol-

land et al. 1997; Liu and Greaver 2009; Magnani et al.

2007; Thomas et al. 2010). The effect of N on net C

flux (both above and below ground pools) differs

among ecosystems. In general N addition to grasslands

and wetlands does not increase C storage; however N

stimulates more C storage in forests (Liu and Greaver

2009). In grasslands and wetlands N stimulation of

ANPP is offset by other C losses in the system. For

example, Bragazza et al. (2006) investigated peat-

lands across a gradient of N deposition levels and

found higher atmospheric N deposition resulted in

higher C loss by increasing heterotrophic respiration

and DOC leaching. Similarly, Mack et al. (2004)

found N fertilization stimulated soil organic carbon

(SOC) decomposition more than plant production in a

tundra ecosystem, leading to a net loss of ecosystem C.

Among terrestrial ecosystems, the response of forests

to N availability has been most intensively studied, but

more data are needed to better characterize other types

of terrestrial ecosystems.

In forests, a wide range of values have been

reported for how much additional C is expected to be

sequestered per unit of N added. Magnani et al. (2007)

published a very high estimate of 725 kg C accumu-

lated per kg N added (dC/dN) to boreal and temperate

forests. However, this estimate was quickly contested

as biologically implausible by Sutton et al. (2008)

who reanalyzed the original data and suggested that 68

dC/dN was more accurate. Since then, attention has

been drawn to the basic stoichiometry constraints for

C sequestration by N at the ecosystem scale (Schle-

singer et al. 2011).

Several studies have evaluated dC/dN ratios in US

forests and a meta-analysis examined the effect of N

fertilization on ecosystem C content (EC), defined as

the sum of C content of vegetation, forest floor and soil

(Liu and Greaver 2010). To avoid possible confounded

variability caused by site conditions, this meta-analysis

only included studies where control and treatment sites

experienced the same climatic, soil and vegetation

conditions. Studies on N effects along a deposition

gradient were not included. Results show that while

there was a great deal of variation in response, overall N

addition increased EC by 6 % for US forest ecosystems.

This study did not find any correlation between the

amount of N addition and the response magnitudes of

EC. On average, forest ecosystems sequestered

24.5 ± 8.7 kg C ha-1 year-1 per kg N ha-1 year-1

(Liu and Greaver 2009). Using a different approach,

Thomas et al. (2010) examined tree growth rates over

an N deposition gradient in US Northeastern forests.

Their results indicate that enhancement of above-

ground C storage averaged 61 kg C ha-1 year-1 per kg

increase in N deposition. When calculating a dC/dN

response ratio using values of N deposition, it is very

important to consider how N deposition is calculated

and whether all relevant chemical species are included.

In Thomas et al. (2010), N deposition was calculated

using estimates of wet NO3
-, wet NH4

?, dry HNO3 gas

and particulate NH4
? and NO3

-; it did not, however,

include other forms of N deposition, such as dry NH3,

NO and NO2, or organic N. Because all forms of N

deposition were not used in the calculation, above

ground dC/dN is likely to be over estimated compared

to N-addition studies. In addition, when a biometric

relationship is applied that assumes below-ground tree

biomass represents roughly 20 % of above-ground

biomass, then enhancement of total tree C would

increase to 73 kg C ha-1 year-1 per kg increase in N

deposition. This approach assumes dC/dN in below-

ground biomass is the same as above ground biomass,

which is often not the case (Table 3), and does not

include other soil pools that affect dC/dN. These

reasons may partially explain why the Thomas et al.

(2010) estimate is larger than the N addition studies.
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Butterbach-Bahl et al. (2011) recently synthesized

and reviewed published dC/dN ratios from studies

conducted in Europe and North America [not includ-

ing Liu and Greaver (2009) or Thomas et al. (2010)]

and found that average total C sequestration was 41 kg

C per kg N addition in forests. Although more research

needs to be done to further refine estimates of dC/dN in

forests, considering the studies summarized in Table 3

and their caveats, the range of values reported in the

literature are between 20–70 kg C ha-1 year-1 per

kg N ha-1 year-1. Key uncertainties in the sensitivity

of ecosystem C sequestration response to N addition

include the form and manner of N input, succession

status of the forest and prior land-use history (Butter-

bach-Bahl et al. 2011).

Three factors could decrease rates of dC/dN

reported for a given forest: N saturation status, stand

age, and availability of other essential nutrients. First,

N will increase NPP of an N-limited system; however

N addition beyond a certain point may lead to

decreases in NPP (Aber et al. 1998). Second, several

studies have shown that NPP declines with stand age

(Gower 2003; Ryan et al. 2004), which could reduce

the potential response to N addition. Furthermore, as

NPP decreases due to age, so too will dC/dN. The

relative effect of saturation and stand age is varied—a

flux study found evidence of nitrogen enhanced

productivity even in an old growth (200–300 years

old) forest (Luyssaert et al. 2007).

Biogeochemical models: C–N interactions,

C storage, and N gas emissions

Modeling N effects on C sequestration

As climate models evolve into models of the behavior

of the entire Earth system, they have expanded beyond

their hydrometeorological heritage to include biogeo-

chemical cycles and atmospheric chemistry. Early

global climate models focused solely on atmospheric

physics; later models incorporated the C cycle in order

to include feedback with atmospheric CO2. Coupled C

cycle-climate models include terrestrial and marine C

fluxes so that changes in atmospheric CO2 concentra-

tion are simulated in response to anthropogenic CO2

emissions (Denman et al. 2007; Friedlingstein et al.

2006). In these models, rising atmospheric CO2

concentration increases land C uptake by stimulating

plant productivity, and this ‘‘CO2 fertilization’’ is a

negative feedback to higher atmospheric CO2 concen-

tration (the concentration-C feedback). Land C loss

through ecosystem respiration increases with warming

in a positive climate feedback (the climate-C feed-

back). Additionally, warming can enhance productivity

(negative feedback) in cold regions, but decrease

productivity (positive feedback) in warm regions,

where greater evaporative demand dries soil. These

predictions for the terrestrial C cycle are found in Earth

system models that do not include C–N biogeochem-

istry. In recent years, some Earth system models have

added some representation of the N cycle as a crucial

regulator of C-cycle dynamics and aspects of atmo-

spheric chemistry, but much work is needed to properly

incorporate representation of N cycling processes in

climate models. Global biogeochemical models of the

terrestrial C and N cycles for the Earth build upon a rich

heritage of terrestrial ecosystem models (Bonan 2008).

They simulate C and N flows among various vegetation

and soil components, N inputs for atmospheric depo-

sition and biological N fixation, and N losses from

denitrification and leaching.

Carbon cycle-climate model simulations of future

climate change predict that nitrogen has an important

effect on future carbon uptake (Sokolov et al. 2008;

Thornton et al. 2009; Zaehle et al. 2010). Limited

mineral N availability restricts the increase in plant

productivity from rising CO2 concentration. Con-

versely, warming increases decomposition of organic

material and N mineralization, stimulating plant

productivity. These findings are generally consistent

with results from free-air CO2 enrichment experiments

and soil warming experiments, though few models

have been directly compared with experimental

manipulations (Melillo et al. 2011).

As mentioned earlier, because N availability

restricts plant productivity in many ecosystems; N

addition from atmospheric N deposition can enhance

C storage. Initial studies of the effect of anthropogenic

N deposition on the C cycle reported that the

additional N in the system increased global terrestrial

C storage from as much as 0.6–1.5 Pg C year-1

(Holland and Lamarque 1997; Townsend et al. 1997)

to as little as 0.25 Pg C year-1 (Nadelhoffer et al.

1999). More recent model simulations support a C sink

of about 0.2 Pg C year-1 (Bonan and Levis 2010; Jain

et al. 2009; Thornton et al. 2009; Zaehle et al. 2011).

These models differ in important ecological and
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biogeochemical processes (e.g., how N affects plant

productivity; below-ground C–N dynamics; and deni-

trification) that determine the amount of N in the

system available for plant use and the magnitude of the

C sink. Model comparison with results from N-depo-

sition gradient analyses (Thomas et al. 2010) or

N-enrichment experiments (Liu and Greaver 2009)

are needed to evaluate the model simulations and to

identify deficiencies in model parameterizations.

Estimates of N-enhanced C storage, whether derived

from observational studies or from models, require

knowledge of N deposition rates. These rates can

differ greatly among studies in the magnitude and

spatial distribution of the deposition, which makes

comparison among studies difficult.

A complete understanding of the effects of increased

N deposition on terrestrial C storage and radiative

forcing requires a multi-disciplinary integration of

biogeochemical processes with biogeophysical pro-

cesses (i.e., energy and water fluxes), and with changes

in ecosystem structure and community composition

arising from stand dynamics. For example, a more

productive forest with higher leaf area index resulting

from enhanced N deposition is likely to decrease

surface albedo, warming the climate with a positive

radiative forcing and increasing evapotranspiration

(Bonan 2008). Increased evapotranspiration locally

cools temperature, but can warm global temperature

through increased atmospheric water vapor. The net

effect of changes in C storage, surface albedo, and

evapotranspiration on radiative forcing is largely

unknown for forest ecosystems, and initial estimates

of the forcing are quite speculative (Bonan 2008).

Another possible biogeophysical forcing is manifested

through the effect of foliar N on leaf-, stem-, and

canopy-level traits that alter the overall plant reflec-

tance. Canopy N concentration is strongly and posi-

tively correlated with canopy albedo, suggesting a

possibly significant biogeophysical role of N in the

climate system through solar radiation absorption and

canopy energy exchange (Hollinger et al. 2010; Ollin-

ger et al. 2008). The long-term sustainability of the

N-enhanced C sink is unclear, and carbon uptake may

saturate with future levels of N deposition. The future

potential of C storage in terrestrial ecosystems depends

on trajectories of climate change and land use, which

alter community composition and ecosystem structure.

Redistribution of plant species in response to climate

change alters patterns of C storage, N uptake, and N

mineralization (Metcalfe et al. 2011; Pastor and Post

1988). Enhanced C storage in forest ecosystems arising

from atmospheric N deposition becomes less important

in a warmer climate where droughts and wildfire are

more common. Trajectories of land use (e.g., defores-

tation, reforestation, and afforestation) driven by

socioeconomic needs and policy implementation will

also come into play and have competing biogeophys-

ical and biogeochemical impacts on climate. These

changes in community composition and ecosystem

structure are largely ignored in the current generation

of Earth system models, which build on biogeochem-

ical models rather than models of vegetation dynamics.

Modeling N effects on N2O emissions and other

radiative forcing

The atmospheric chemistry models included in Earth

system models allow for additional biogeochemical

land–atmosphere interactions such as surface N-gas

emission and atmospheric N deposition (Lamarque

et al. 2011). With the addition of N-gas emissions, the

models provide surface N fluxes to atmospheric

chemistry models, and can be used to quantify the

net radiative forcing due to Nr. This forcing includes

the effect of N on terrestrial C storage, the direct

radiative forcing from N2O emissions, and Nr in the

atmosphere and its effects on CH4, tropospheric and

stratospheric O3, and secondary aerosols.

Nitrogen losses associated with nitrification and

denitrification are poorly represented in the biogeo-

chemical component of Earth system models and

present a large uncertainty in global simulations of

climate–N interactions (Schlesinger 2009). Dinitrogen

gas (N2) loss during denitrification is a large term in the

global terrestrial N budget (Galloway et al. 2004;

Houlton and Bai2009; Schlesinger 2009), but there is a

high degree of uncertainty regarding the amount of N2

lost to the atmosphere (see Houlton et al. this issue). A

better understanding and further quantification of

ecosystem N2 flux is needed given that this is the best

possible outcome for minimizing environmental

impacts from excess N. The DayCENT (Del Grosso

et al. 2000) and DeNitrification-DeComposition

(DNDC) (Li et al. 2000) models are two commonly

used approaches to represent nitrification, denitrifica-

tion, and associated N-gas emissions. In addition, the

Environmental Policy Integrated Climate (EPIC)
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(Williams et al. 1996) and Agricultural Policy Envi-

ronmental EXtender (APEX) (Gassman et al. 2009)

simulate these processes for agricultural lands under a

range of farming conditions and activities. These

models have been evaluated for a wide range of

environmental conditions, ecosystem types, and N

inputs (Olander and Haugen-Kozyra 2011), but are

mostly applied at the site or regional scale. Global

terrestrial biogeochemical models for use with Earth

system models may not explicitly simulate denitrifica-

tion and instead include it as a generic N loss term

(Gerber et al. 2010; Melillo et al. 1993; Wang et al.

2010). Furthermore, some of the current global models

represent denitrification as a fraction of mineralization

or mineral soil N (Thornton et al. 2009; Yang et al.

2009). Zaehle et al. (2010) developed an advanced

process-oriented formulation of nitrification, denitrifi-

cation, and N-gas emissions based on the DNDC model

structure, which observed a likely contribution of N

addition to C sequestration in forest ecosystems and

concurred with ecosystem field studies. Houlton and

Bai (2009) used a mass-balance approach constrained

by observations of 15N:14N isotope ratios to estimate

NO, N2O, and N2 emissions globally and regionally.

However, the complexity of trace gas biogeochemistry,

the fine-scale spatial heterogeneity of trace gas produc-

tion, and anthropogenic alterations from agricultural

practices makes modeling N-gas emissions an uncertain

aspect of global Earth system model simulations.

In addition, a key aspect of climate–N interactions

not currently considered by Earth system models is the

effect of anthropogenic N on radiative forcing med-

iated through changes in atmospheric chemistry.

Secondary atmospheric aerosols resulting from emis-

sions of NOx and NH3 provide a negative radiative

forcing that cools climate. None of the currently

available Earth system models are able to fully assess

these effects, in part because the current generation of

global terrestrial C–N biogeochemical models used

with Earth system models does not represent N-gas

emissions and the anthropogenic and environmental

drivers of these emissions.

Net effects of C–N interactions on radiative forcing

Reactive N has numerous effects on climate, including

N2O emissions, indirect effects on O3, CH4, and

aerosols, and C sequestration. To compare these

impacts, the effects must be converted to a common

metric. A recent effort in Europe has led to a

continental assessment of the contribution of Euro-

pean emissions of Nr to instantaneous radiative

forcing, expressed as W m-2 (Butterbach-Bahl et al.

2011). Because aerosols have a large effect on short-

term radiative forcing, it was found that the net effect

of cooling from aerosols and C sequestration out-

weighed the warming effect of N2O emissions across

Europe. However, the pathways by which Nr impacts

climate change do not have the same lifetime—

aerosols last for only a few weeks, CH4 on the order of

a decade, and N2O and CO2 persist for more than a

century. While radiative forcing is a measure of the

instantaneous climate change impact, the long-term

climate effects depend heavily on atmospheric lon-

gevity (Penner et al. 2010).

An alternative approach is the global temperature

potential (GTP), which is a measure of the change in

global temperature, after a fixed number of years, due

to a 1 kg pulse of emissions. The GTP can be

calculated on a 20-year basis, to identify Nr impacts

likely to change the rate of climate change in the

coming decades, as well as a 100-year basis, to

understand the long-term magnitude of climate

change. To compare across compounds, the GTP is

normalized by the change in temperature due to a

pulse of CO2 and expressed in common units of kg

CO2 equivalence (CO2e).

The climate change impact of US Nr, on a global

temperature potential basis, is presented in Fig. 1.

Each bar represents the climate change impact, in units

of Tg CO2e, due to US Nr emissions, via the processes

listed on the left. The length of the bar denotes the

range of uncertainty as estimated by a synthesis of the

relevant literature. The impacts from changes in O3,

CH4, and aerosols were calculated as the product of

US emissions and the GTP of those compounds as

calculated by Fuglestvedt et al (2010). For the change

in greenhouse gas fluxes due to N deposition, the dC/

dN values were multiplied by the anthropogenic N

deposition calculated by the Community Multiscale

Air Quality model [CMAQ; Appel et al. (2010)] to

each landcover type. A range of 24–65 was used for

the dC/dN value for forests. The lower value of this

range (24) is from Liu and Greaver (2009) and the

upper end of this range is from Thomas et al. (2010).

The value 65 results from adjusting the Thomas et al.

(2010) value upwards to account for below ground
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biomass and soil C, and downwards, to account for

incomplete measurement of N. For other land cover

types, the ranges reported in Liu and Greaver (2009)

were used. The permanence of enhanced CO2 uptake

on a 20-year and 100-year timescale was estimated

using forestry management data (Heath et al. 2011).

The details of these calculations are described in

Pinder et al. (2012).

The relative impact of each aspect of Nr depends

strongly on the time frame of interest. On the left side

of Fig. 1, the impacts are compared on a 20-year basis.

Here, the change in O3, CH4, and aerosol concentra-

tions due to NOx contribute substantially to climate

change. But on a 100-year basis, these processes are

negligible. Emissions of NOx in the US contribute to

cooling on a 20-year basis, but have a very little effect

on a 100-year basis. Overall, the cooling effects (i.e., C

sequestration enhanced by N deposition, increased

lifetime of CH4, and greater aerosol burden) are

slightly larger than the warming effect of N2O on a

20-year time frame. The error terms on these estimates

are large, and the range of uncertainty includes the

possibility that the net effect is negligible. But on a

100-year basis, the net impact of Nr appears to be one

of warming. Putting these estimates into a broader

perspective, the modest warming effect US Nr shown

in Fig. 1 is equivalent to less than 10 % of the

warming effect of US emissions of CO2 derived from

fossil fuel combustion.

While the net radiative forcing from the alternation

of the N cycle in the US may be relatively small, there

are many offsetting impacts that occur over different

Tg CO2e ( 20−year GTP )

−600 −200 0 200 400

NOx →
CH4 & O3

NOx →
aerosol

NH3 →
aerosol

N deposition →
CO2 & CH4 flux

NOx → O3 →
CO2 uptake

Sum NH3

Sum NOx

Sum N2O

Total

All
N2O
NOx

NH3

Tg CO2e ( 100−year GTP )

−600 −200 0 200 400

All
N2O
NOx

NH3

Fig. 1 The climate change impacts of US reactive nitrogen

emissions, by chemical species, in common units of equivalent

Tg of CO2 (Tg CO2e) on a 20-year and 100-year GTP basis. The

width of the bar denotes the uncertainty range; the white line is

the best-estimate; and the color shading shows the relative

contribution of NOx and NH3 emissions to nitrogen deposition

(adapted from Pinder et al. 2012)
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time-scales. The long atmospheric half-life of N2O

and uncertainties regarding the permanence of C

sequestration mean that there is a risk that the long-

term net warming effects may be underestimated.

Moreover, the profound effect that excess Nr has on

ecosystem processes and biodiversity suggests that

assumptions about future radiative forcing of C–N

interactions played out in changing terrestrial and

aquatic ecosystems must be considered with caution.

Despite these uncertainties, we can conclude with

confidence that C–N interactions do have important

climatic effects that should be included in future

measurement and modeling efforts to improve under-

standing of biological feedbacks to climate change and

global change processes.

Research needs

Improved quantification of the effects of excess Nr on

radiative forcing will require improvements in our

understanding of atmospheric chemical processes,

rates of total N deposition, responses of ecosystems to

N deposition, and integration of these processes into

Earth system models. We identify a number of

research needs below:

1. The complex nonlinear atmospheric chemistry

involving NO, NO2, O3, OH, and CH4 and how it

will change with climate and changing sources

and sinks requires more research attention to

determine impacts at times scales from days to

decades.

2. The effects of the chemical composition of

aerosols on radiative forcing and cloud formation

are not well known.

3. Improvements are needed in spatially explicit

modeling and measurements of all forms of N

deposition. Estimates of deposition of organic-N

are particularly uncertain.

4. Variation in dC/dN responses of ecosystems and

the factors that control them are poorly under-

stood for both aboveground and belowground

processes. Comparisons between model simula-

tions and results from N addition enrichment

studies, gradient analyses, and other field data are

needed to validate and identify deficiencies in

parameters of both empirical and process-based

models.

5. Biogeochemical models need improvements to

better constrain and reduce uncertainty of esti-

mates of N losses associated with nitrification and

denitrification, especially losses of N2 from

denitrification.

6. Earth system models need improved representa-

tion of C–N–P interactions in ecosystems and

their feedbacks to climate change. This includes

feedbacks between vegetation, water vapor, and

albedo. Most Earth system models also do not yet

include the effects of anthropogenic N on radia-

tive forcing mediated through changes in atmo-

spheric chemistry.
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