Skip to main content
Log in

The rutin catabolic pathway with special emphasis on quercetinase

  • Review Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The aim of this review is to give a general account on the oxidative microbial degradation of flavonols. Since now 50 years, various research groups have deciphered the way microorganisms aerobically deal with this important class of flavonoids. Flavonols such as rutin and quercetin are abundantly found in vegetal tissues and exudates, and it was thus patent that various microorganisms will bear the enzymatic machinery necessary to cope with these vegetal secondary metabolites. After initial studies focussed on the general metabolic capacity of various microorganisms towards flavonols, the so called rutin catabolic pathway was rapidly established in moulds. Enzymes of the path as well as substrates and products were known at the beginning of the seventies. Then during 30 years, only sporadic studies were focused on this pathway, before a new burst of interest at the beginning of the new century arose with structural, genomic and theorical studies mainly conducted towards quercetinase. This is the goal of this work to relate this 50 years journey at the crossroads of microbiology, biochemistry, genetic and chemistry. Some mention of the potential usefulness of the enzymes of the path as well as micro-organisms bearing the whole rutin catabolic pathway is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Adams M, Jia Z (2005) Structural and biochemical analysis reveal pirins to possess quercetinase activity. J Biol Chem 280:28675–28682

    Article  CAS  PubMed  Google Scholar 

  • Agarwall G, Rajavel M, Gopal B, Srinivasan N (2009) Structure-based phylogeny as a diagnostic for functional characterization of proteins with a cupin fold. PLoS ONE 4:e5736

    Article  Google Scholar 

  • Antonczak S, Fiorucci S, Golebiowski J, Cabrol-Bass D (2009) Theorical investigations of the role played by quercetinase enzymes upon the flavonoids oxygenolysis mechanism. Phys Chem Chem Phys 11:1491–1501

    Article  CAS  PubMed  Google Scholar 

  • Armand-Fraysse D, Lebreton P (1969) Recherches physiologiques sur les champignons III. Transformation métabolique de la rutine par les champignons lignivores. Bull Soc Chim Biol 51:563–578

    CAS  PubMed  Google Scholar 

  • Barney BM, Schaab MR, LoBrutto R, Francisco WA (2004) Evidence for a new metal in a known active site: purification and characterization of an iron-containing quercetin 2,3-dioxygenase from Bacillus subtilis. Protein Expr Purif 35:131–141

    Article  CAS  PubMed  Google Scholar 

  • Barz W (1971) Uber den abbau aromatisher verbindungen durch Fusarium oxysporum Schlecht. Arch Mikrobiol 78:341–352

    Article  CAS  PubMed  Google Scholar 

  • Bowater L, Fairhurst SA, Just VJ, Bornemann S (2004) Bacillus subtilis YxaG is a novel Fe-containing quercetin 2,3-dioxygenase. FEBS Lett 557:45–48

    Article  CAS  PubMed  Google Scholar 

  • Braune A, Gutschow M, Engst W, Blaut M (2001) Degradation of quercetin and luteolin by Eubacterium ramulus. Appl Environ Microbiol 62:5558–5567

    Article  Google Scholar 

  • Brown SB, Rajananda V, Holroyd JA, Evans EGV (1982) A study of the mechanism of quercetin oxygenation by 18O labelling. Biochem J 205:239–244

    CAS  PubMed  Google Scholar 

  • Child JJ, Simpson FJ, Westlake DWS (1963) Degradation of rutin by Aspergillus flavus. Factors affecting production of the enzyme system. Can J Microbiol 9:653–664

    Article  CAS  Google Scholar 

  • Child JJ, Oka T, Simpson FJ, Krishnamurty HG (1971) Purification and properties of a phenol carboxylic acid esterase from Aspergillus flavus. Can J Microbiol 17:1455–1463

    Article  CAS  PubMed  Google Scholar 

  • Clissold PM, Ponting CP (2001) JmjC: cupin metalloenzyme-like domains in jumonji, hairless and phospholipase A2β. Trends Biochem Sci 26:7–9

    Article  CAS  PubMed  Google Scholar 

  • Das S, Rosazza JPN (2006) Microbial and enzymatic transformations of flavonoids. J Nat Prod 69:499–508

    Article  CAS  PubMed  Google Scholar 

  • Dunwell JM (1998) Cupins: a new superfamily of functionally-diverse proteins that include germins and plant seed storage proteins. Biotechnol Genet Eng 15:1–32

    CAS  Google Scholar 

  • Dunwell JM, Gane PJ (1998) Microbial relatives of the seed storage proteins of higher plants: conservation of motifs in a functionally diverse superfamilly of enzymes. J Mol Evol 46:147–154

    Article  CAS  PubMed  Google Scholar 

  • Dunwell JM, Khuri S, Gane PJ (2000) Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol Mol Biol Rev 64:153–179

    Article  CAS  PubMed  Google Scholar 

  • Dunwell JM, Culham A, Carter CE, Sosa-Aguirre CR, Goodenough PW (2001) Evolution of functional diversity in the cupin superfamily. Trends Biochem Sci 26:740–746

    Article  CAS  PubMed  Google Scholar 

  • Dunwell JM, Purvis A, Khuri S (2004) Cupins: the most functionally diverse protein superfamily? Phytochemistry 65:1–17

    Article  Google Scholar 

  • Fiorucci S, Golebiowski J, Cabrol-Bass D, Antonczak S (2004) Oxygenolysis of flavonoid compounds: DFT description of the mechanism for quercetin. ChemPhysChem 5:1726–1733

    Article  CAS  PubMed  Google Scholar 

  • Fiorucci S, Golebiowski J, Cabrol-Bass D, Antonczak S (2006) Molecular simulations reveal a new entry site in quercetin 2,3-dioxygenase. A pathway for dioxygen. Proteins 64:845–850

    Article  CAS  PubMed  Google Scholar 

  • Fiorucci S, Golebiowski J, Cabrol-Bass D, Antonczak S (2007) Molecular simulations bring new insights into flavonoid/quercetinase interaction mode. Proteins 67:961–970

    Article  CAS  PubMed  Google Scholar 

  • Fittipaldi M, Steiner RA, Matsushita M, Dijkstra BW, Groenen EJJ, Huber M (2003) Single-crystal EPR study at 95 Hz of the type 2 copper site of the inhibitor-bound quercetin 2,3-dioxygenase. Biophys J 85:4047–4054

    Article  CAS  PubMed  Google Scholar 

  • Fusetti F, Schröter KH, Steiner RA, van Noort PI, Pijning T, Rozeboom HJ, Kalk KH, Egmond MR, Dijkstra BW (2002) Crystal structure of the copper-containing quercetin 2,3-dioxygenase from Aspergillus japonicus. Structure 10:259–268

    Article  CAS  PubMed  Google Scholar 

  • Gallego MV, Pinaga F, Ramon D, Valles S (2001) Purification and characterization of an α-L-rhamnosidase from Aspergillus terreus of interest in wine making. J Food Sci 65:204–209

    Article  Google Scholar 

  • Gopal B, Madan LL, Betz SF, Kossiakoff AA (2005) The crystal structure of a quercetin 2,3-dioxygenase from Bacillus subtilis suggests modulation of enzyme activity by a change in the metal ion at the active site(s). Biochemistry 44:193–201

    Article  CAS  PubMed  Google Scholar 

  • Haluk JP, Metche M (1970) Transformation microbiologique de la quercetine par Aspergillus niger Van Tieghem. Bull Soc Chim Biol 52:667–676

    CAS  PubMed  Google Scholar 

  • Hattori S, Noguchi I (1959) Microbial degradation of rutin. Nature 184:1145–1146

    Article  CAS  PubMed  Google Scholar 

  • Hay GW, Westlake DWS, Simpson FJ (1961) Microbial decomposition of rutin. Can J Microbiol 7:921–931

    Article  CAS  PubMed  Google Scholar 

  • Hirooka K, Kunikane S, Matsuoka H, Yoshida K-I, Kunamoto K, Tojo S, Fujita Y (2007) Dual regulation of the Bacillus subtilis regulon comprising the lmrAB and yxaGH operons and yxaF gene by two transcriptional repressors, LmrA and YxaF, in response to flavonoids. J Bacteriol 189:5170–5182

    Article  CAS  PubMed  Google Scholar 

  • Hund H-K, Breuer J, Lingans F, Hüttermann J, Kappel R, Fetzner S (1999) Flavonol 2,4-dioxygenase from Aspergillus niger DSM 821, a type 2 CuII-containing glycoprotein. Eur J Biochem 263:871–878

    Article  CAS  PubMed  Google Scholar 

  • Iacazio G (2005) Increased quercetinase production by Penicillium olsonii using fractional factorial design. Process Biochem 40:379–384

    Article  CAS  Google Scholar 

  • Kaizer J, Balogh-Hergovich E, Czaun M, Csay T, Speier G (2006) Redox and non-redox metal assisted model systems with relevance to flavonol and 3-hydroxyquinolin-4(1H)-one 2,4-dioxygenase. Coord Chem Rev 250:2222–2233

    Article  CAS  Google Scholar 

  • Kooter IM, Steiner RA, Dijkstra BW, van Noort PI, Egmond MR, Huber M (2002) EPR characterization of the mononuclear Cu-containing Aspergillus japonicus quercetin 2,3-dioxygenase reveals dramatic changes upon anaerobic binding of substrates. Eur J Biochem 269:2971–2979

    Article  CAS  PubMed  Google Scholar 

  • Krishnamachari V, Levine LH, Paré PW (2002) Flavonoid oxidation by the radical generator AIBN: a unified mechanism for quercetin radical scavenging. J Agric Food Chem 50:4357–4363

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurty HG, Simpson FJ (1970) Degradation of rutin by Aspergillus flavus. Studies with oxygen 18 on the action of a dioxygenase on quercetin. J Biol Chem 245:1467–1471

    CAS  PubMed  Google Scholar 

  • Kurosawa Y, Ikeda K, Igami F (1973) Alpha-L-rhamnosidase of the liver of Turbo cornutus and Aspergillus niger. J Biochem 73:31–37

    CAS  PubMed  Google Scholar 

  • Mamma D, Kalogeris E, Hatzinikolaou DG, Lekanidou A, Kekos D, Macris BJ, Christakopoulos P (2004) Biochemical characterization of the multi-enzyme system produced by Penicillium decumbens grown on rutin. Food Biotechnol 18:1–18

    Article  CAS  Google Scholar 

  • Manzanares P, de Graaf LH, Visser J (1997) Purification and characterization of an a-L-rhamnosidase from Aspergillus niger. FEMS Microbiol Lett 157:279–283

    Article  CAS  PubMed  Google Scholar 

  • Manzanares P, Orejas M, Ibanez E, Valles S, Ramon D (2000) Purification and characterization of an α-L-rhamnosidase from Aspergillus nidulans. Lett Appl Microbiol 31:198–202

    Article  CAS  PubMed  Google Scholar 

  • Manzanares P, van den Broeck HC, de Graaf LH, Visser J (2001) Purification and characterization of two different α-L-rhamnosidases, RhaA and RhaB, from Aspergillus aculeatus. Appl Environ Microbiol 67:2230–2234

    Article  CAS  PubMed  Google Scholar 

  • Medina ML, Kiernan VA, Francisco WA (2004) Proteomic analysis of rutin-induced secreted proteins from Aspergillus flavus. Fungal Genet Biol 41:327–335

    Article  CAS  PubMed  Google Scholar 

  • Medina ML, Haynes PA, Breci L, Francisco WA (2005) Analysis of secreted proteins from Aspergillus flavus. Proteomics 5:3153–3161

    Article  CAS  PubMed  Google Scholar 

  • Merkens H, Fetzner S (2008) Transcriptional analysis of the queD gene coding for quercetinase of Streptomyces sp. FLA. FEMS Microbiol Lett 287:100–107

    Article  CAS  PubMed  Google Scholar 

  • Merkens H, Sielker S, Rose K, Fetzner S (2007) A new monocupin quercetinase of Streptomyces sp. FLA: identification and heterologous expression of the queD gene and activity of the recombinant enzyme towards different flavonols. Arch Microbiol 187:475–487

    Article  CAS  PubMed  Google Scholar 

  • Merkens H, Kappl R, Jakob RP, Schmid FX, Fetzner S (2008) Quercetinase QueD of Streptomyces sp. FLA, a monocupin dioxygenase with a preference for nickel and cobalt. Biochemistry 47:12185–12196

    Article  CAS  PubMed  Google Scholar 

  • Mills ENC, Jenkins J, Marigheto N, Belton PS, Gunning AP, Morris VJ (2002) Allergens of the cupin superfamily. Biochem Soc Trans 30:925–929

    Article  CAS  PubMed  Google Scholar 

  • Monti D, Pisvejcova A, Kren V, Lama M, Riva S (2004) Generation of an a-L-rhamnosidases library and its application for the selective derhamnosylation of natural products. Biotechnol Bioeng 87:763–771

    Article  CAS  PubMed  Google Scholar 

  • Narikawa T, Karaki Y, Shinoyama H, Fujii T (1998) Rutin degradation by culture filtrates from Penicillia. Nippon Nogeik Kaishi 72:473–479

    CAS  Google Scholar 

  • Narikawa T, Shinoyama H, Fujii T (2000) A β-rutinosidase from Penicillium rugulosum IFO 7242 that is a peculiar flavonoid glycosidase. Biosci Biotechnol Biochem 64:1317–1319

    Article  CAS  PubMed  Google Scholar 

  • Neznanov N, Kondratova A, Chumakov KM, Neznanova L, Kondratov R, Banerjee AK, Gudkov AV (2008) Quercetinase pirin makes poliovirus replication resistant to flavonoid quercetin. DNA Cell Biol 27:191–198

    Article  CAS  PubMed  Google Scholar 

  • Noguchi I (1963) The degradation of flavonols by Pullularia fermentans var. candida. Bot Mag Tokyo 76:191–198

    CAS  Google Scholar 

  • Oka T, Simpson FJ (1971) Quercetinase: a dioxygenase containing copper. Biochem Biophys Res Commun 43:1–5

    Article  CAS  PubMed  Google Scholar 

  • Oka T, Simpson FJ (1972) Degradation of rutin by Aspergillus flavus. Quercetinase: isolation of a low molecular weight form containing less carbohydrate. Can J Microbiol 18:1171–1175

    Article  CAS  PubMed  Google Scholar 

  • Oka T, Simpson FJ, Child JJ, Mills SC (1971) Degradation of rutin by Aspergillus flavus. Purification of the dioxygenase, quercetinase. Can J Microbiol 17:111–118

    Article  CAS  PubMed  Google Scholar 

  • Oka T, Simpson FJ, Krishnamurty HG (1972) Degradation of rutin by Aspergillus flavus. Studies on specificity, inhibition and possible reaction mechanism of quercetinase. Can J Microbiol 18:493–508

    Article  CAS  PubMed  Google Scholar 

  • Omori T, Shiozawa K, Sekiya M, Minoda Y (1986) Formation of 2,4,6-trihydroxy-carboxylic acid and 2-protocatechuoylphloroglucinol carboxylic acid from rutin by bacteria. Agric Biol Chem Tokyo 50:779–780

    CAS  Google Scholar 

  • Padrn J, Grist KL, Clark JB, Wender SH (1960) Specificity studies on an extracellular enzyme preparation obtained from quercetin grown cells of Aspergillus. Biochem Biophys Res Commun 3:412–416

    Article  Google Scholar 

  • Pang H, Bartlam M, Zeng Q, Miyatake H, Hisano T, Miki K, Wong L, Gao GF, Rao Z (2004) Crystal structure of human pirin. J Biol Chem 279:1491–1498

    Article  CAS  PubMed  Google Scholar 

  • Pietta P-G (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Pillai BVS, Swarup S (2002) Elucidation of the flavonoid catabolism pathway in Pseudomonas putida PML2 by comparative metabolic profiling. Appl Environ Microbiol 68:143–151

    Article  CAS  PubMed  Google Scholar 

  • Puti M, Kalra S (2005) Purification and characterization of naringinase from a newly isolated strain of Aspergillus niger 1344 for the transformation of flavonoids. World J Microbiol Biotechnol 21:753–758

    Article  Google Scholar 

  • Rajavel M, Kulkarni NN, Gopal B (2008) Conformational studies suggest that the double stranded β helix scaffold provides an optimal balance between protein stability and function. Protein Pept Lett 15:244–249

    Article  CAS  PubMed  Google Scholar 

  • Rao JR, Cooper JE (1994) Rhizobia catabolize nod gene-inducing flavonoids via C-ring fission mechanisms. J Bacteriol 176:5409–5413

    CAS  PubMed  Google Scholar 

  • Rao KV, Weisner NT (1981) Microbial transformation of quercetin by Bacillus cereus. Appl Environ Microbiol 42:450–452

    CAS  PubMed  Google Scholar 

  • Rao JR, Sharma ND, Hamilton JTG, Boyd DR, Cooper JE (1991) Biotransformation of the pentahydroxy flavone quercetin by Rhizobium loti and Bradyrhizobium stains (Lotus). Appl Environ Microbiol 57:1563–1565

    CAS  PubMed  Google Scholar 

  • Rose K, Fetzner S (2006) Identification of linear plasmid pAM1 in the flavonoid degrading strain Actinoplanes missouriensi T (DSM 43046). Plasmid 55:249–254

    Article  CAS  PubMed  Google Scholar 

  • Schaab MR, Barney BM, Francisco WA (2006) Kinetic and spectroscopic studies on the quercetin 2,3-dioxygenase from Bacillus subtilis. Biochemistry 45:1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Schneider H, Blaut M (2000) Anaerobic degradation of flavonoids by Eubacterium ramulus. Arch Microbiol 173:71–75

    Article  CAS  PubMed  Google Scholar 

  • Schoefer L, Mohan R, Schwiertz A, Braune A, Blaut M (2003) Anaerobic degradation of flavonoids by Clostridium orbiscindens. Appl Environ Microbiol 69:5849–5854

    Article  CAS  PubMed  Google Scholar 

  • Siegbahn PEM (2004) Hybrid DFT study of the mechanism of quercetin 2,3-dioxygenase. Inorg Chem 43:5944–5953

    Article  CAS  PubMed  Google Scholar 

  • Simpson FJ, Talbot G, Westlake DWS (1960) Production of carbon monoxide in the enzymatic degradation of rutin. Biochem Biophys Res Commun 2:15–18

    Article  CAS  PubMed  Google Scholar 

  • Simpson FJ, Narasimhachari N, Westlake DWS (1963) Degradation of rutin by Aspergillus flavus. The carbon monoxide producing system. Can J Microbiol 9:15–25

    Article  CAS  Google Scholar 

  • Steiner RA, Kalk KH, Dijkstra BW (2002a) Anaerobic enzyme substrate structures provide insight into the reaction mechanism of the copper-dependent quercetin 2,3-dioxygenase. Proc Natl Acad Sci USA 99:16625–16630

    Article  CAS  PubMed  Google Scholar 

  • Steiner RA, Kooter IM, Dijkstra BW (2002b) Functional analysis of the copper-dependent quercetin 2,3-dioxygenase. 1. Ligand-induced coordination changes probed by X-ray crystallography: inhibition, ordering effect, and mechanistic insights. Biochemistry 41:7955–7962

    Article  CAS  PubMed  Google Scholar 

  • Steiner RA, Meyer-Klaucke W, Dijkstra BW (2002c) Functional analysis of the copper-dependent quercetin 2,3-dioxygenase. 2. X-ray absorption studies of native enzyme and anaerobic complexes with the substrates quercetin and myricetin. Biochemistry 41:7963–7968

    Article  CAS  PubMed  Google Scholar 

  • Tranchimand S, Tron T, Gaudin C, Iacazio G (2005) Evaluation of phenolics and sugars as inducers of quercetinase activity in Penicillium olsonii. FEMS Microbiol Lett 253:289–294

    Article  CAS  PubMed  Google Scholar 

  • Tranchimand S, Tron T, Gaudin C, Iacazio G (2006) First chemical synthesis of three natural depsides involved in flavonoid catabolism and related to quercetinase catalysis. Synth Commun 36:587–597

    Article  CAS  Google Scholar 

  • Tranchimand S, Ertel G, Gaydou V, Gaudin C, Tron T, Iacazio G (2008) Biochemical and molecular characterization of a quercetinase from Penicillium olsonii. Biochimie 90:781–789

    Article  CAS  PubMed  Google Scholar 

  • van den Bosch M, Swart M, van Gunsteren WN, Canters GW (2004) Simulation of the substrate cavity dynamics of quercetinase. J Mol Biol 344:725–738

    Article  PubMed  Google Scholar 

  • van der Heiden M, Nondmann DH, van der Helm MJ, Verrips CT, Swarthoff T, Smits A (1998) WO1997EP07138 19971210

  • Westlake DWS (1963) Microbial degradation of quercitrin. Can J Microbiol 9:211–220

    Article  CAS  Google Scholar 

  • Westlake DWS, Simpson FJ (1961) Degradation of rutin by Aspergillus flavus. Factors affecting production of the enzyme system. Can J Microbiol 7:33–44

    Article  CAS  PubMed  Google Scholar 

  • Westlake DWS, Spencer JFT (1966) The utilisation of flavonoid compounds by yeast and yeast like fungi. Can J Microbiol 12:165–174

    Article  CAS  PubMed  Google Scholar 

  • Westlake DWS, Talbot G, Blakley ER, Simpson FJ (1959) Microbial decomposition of rutin. Can J Microbiol 5:621–629

    Article  CAS  PubMed  Google Scholar 

  • Westlake DWS, Roxburgh JM, Talbot G (1961) Microbial production of carbon monoxide from flavonoids. Nature 189:510–511

    Article  CAS  PubMed  Google Scholar 

  • Winter J, Moore LH, Dowell VR Jr, Bokkenheuser VD (1989) C-ring cleavage of flavonoids by human intestinal bacteria. Appl Environ Microbiol 55:1203–1208

    CAS  PubMed  Google Scholar 

  • Yoshida K-I, Ohki Y-H, Murata M, Kinehara M, Matsuoka H, Satomura T, Ohki R, Kumano M, Yamane K, Kunamoto K, Fujita Y (2004) Bacillus subtilis LmrA is a repressor of the lmrAB and yxaGH operons: identification of its binding site and functional analysis of lmrB and yxaGH. J Bacteriol 186:5640–5648

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant (no. 10659) from the “Ministère Délégué à l’Enseignement Supérieur et à la Recherche” to Sylvain Tranchimand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Iacazio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tranchimand, S., Brouant, P. & Iacazio, G. The rutin catabolic pathway with special emphasis on quercetinase. Biodegradation 21, 833–859 (2010). https://doi.org/10.1007/s10532-010-9359-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-010-9359-7

Keywords

Navigation