Skip to main content

Advertisement

Log in

Plant community composition and structural characteristics of an invaded forest in the Galápagos

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Non-native species have invaded habitats worldwide, greatly impacting the structure and function of native communities and ecosystems. To better understand mechanisms of invasion impacts and how to restore highly impacted and transformed ecosystems, studies are needed that evaluate invader effects on both biotic communities and structural characteristics. On Santa Cruz Island in Galápagos we compared biotic (plant species richness, diversity, and community composition) and structural (canopy openness, forest height, and leaf litter) characteristics of a relic forest dominated by an endemic and highly threatened tree and a forest dominated by an invasive tree. The forests are located within the historical distribution of the endemic tree, which now occupies only 1% of its original extent. We found that the invaded forest had 42% lower native plant species richness and 17% less plant diversity than the endemic tree dominated forest. Additionally, with the invader there was 36% greater non-native plant species richness, 37% higher non-native plant diversity, and highly dissimilar plant composition when compared to the endemic-dominated forest. Additionally, the invaded forest had a more open and taller tree canopy and greater leaf litter cover than native forest. The presence of the invasive tree and the associated forest structural changes were the primary factors in models that best explained higher non-native diversity in the invaded forest. Our correlational results suggest that an invasive tree has significantly altered plant assemblage and forest structural characteristics in this unique ecosystem. Experiments that remove the invader and evaluate native plant community responses are needed to identify thresholds for practical restoration of this threatened and biologically unique native forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atkinson R, Trueman M, Guézou A, Paz M, Sanchez J, Silva M (2011) Native gardens for Galápagos—can community action prevent future plant invasions? In: Toral-Granda MV, Cayot L (eds) Galápagos report 2009–2010. Charles Darwin Foundation, Galápagos National Park and Consejo de Gobierno de Galápagos, Puerto Ayora, pp 159–163

    Google Scholar 

  • Bates D, Maechler M, Bolker B (2011) Lme4: linear mixed-effects models using s4 classes. R Package Version 0.999375-42. http://CRAN.R-project.org/package=lme4. Last accessed 20 May 2012

  • Burnham KP, Anderson DR (1998) Model selection and multimodel inference. Springer, Berlin

    Book  Google Scholar 

  • Butchart SHM, Walpole M, Collen B et al (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168. doi:10.1126/science.1187512

    Article  CAS  PubMed  Google Scholar 

  • Castro SA, Daehler CC, Silva L et al (2010) Floristic homogenization as a teleconnected trend in oceanic islands. Divers Distrib 16:902–910. doi:10.1111/j.1472-4642.2010.00695.x

    Article  Google Scholar 

  • Cervera C, Parra-Tabla V (2009) Seed germination and seedling survival traits of invasive and non-invasive cogeneric Ruellia species (Acanthaceae) in Yucatan, Mexico. Plant Ecol 250:285–293

    Article  Google Scholar 

  • Cintrón BB (1990) Cedrela odorata L. Cedro hembra, Spanish cedar. In: Burns RM, Honkala BH (eds) Silvics of North America: 2. Hardwoods. Agriculture handbook 654. U.S. Department of Agriculture, Forest Service, Washington, DC. http://www.na.fs.fed.us/spfo/pubs/silvics_manual/volume_2/vol2_Table_of_contents.htm. Accessed Mar 2016

  • Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183–211

    Article  Google Scholar 

  • de Abreu RCR, Durigan G (2011) Changes in the plant community of a Brazilian grassland savannah after 22 years of invasion by Pinus elliottii Engelm. Plant Ecol Divers 4:269–278. doi:10.1080/17550874.2011.594101

    Article  Google Scholar 

  • de Abreu RCR, de Miranda Santos FF, Durigan G (2014) Changes in plant community of seasonally semideciduous forest after invasion by Schizolobium parahyba at southeastern Brazil. Acta Oecol 54:57–64. doi:10.1016/j.actao.2013.03.013

    Article  Google Scholar 

  • Denslow JS (2003) Weeds in paradise: thoughts on the invasibility of tropical islands. Ann Mo Bot Gard 90:119–127. doi:10.2307/3298531

    Article  Google Scholar 

  • Denslow JS, Space JC, Thomas PA (2009) Invasive exotic plants in the tropical Pacific Islands: patterns of diversity. Biotropica 41:162–170. doi:10.1111/j.1744-7429.2008.00469.x

    Article  Google Scholar 

  • Dornelas M, Gotelli NJ, McGill B et al (2014) Assemblage time series reveal biodiversity change but not systematic loss. Science 344:296–299. doi:10.1126/science.1248484

    Article  CAS  PubMed  Google Scholar 

  • Ellis EC, Ramankutty N (2008) Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ 6:439–447. doi:10.1890/070062

    Article  Google Scholar 

  • Ellis EC, Klein Goldewijk K, Siebert S et al (2010) Anthropogenic transformation of the biomes, 1700 to 2000. Glob Ecol Biogeogr 19:589–606. doi:10.1111/j.1466-8238.2010.00540.x

    Google Scholar 

  • Ewel JJ, O’Dowd DJ, Bergelson J et al (1999) Deliberate introductions of species: research needs—benefits can be reaped, but risks are high. Bioscience 49:619–630. doi:10.2307/1313438

    Article  Google Scholar 

  • Ewel JJ, Mascaro J, Kueffer C, Lugo AE, Lach L, Gardener MR (2013) Islands: where novelty is the norm. In: Hobbs RJ, Higgs ES, Hall C (eds) Novel ecosystems: intervening in the new ecological world order. Wiley-Blackwell, Chichester, pp 29–44

    Chapter  Google Scholar 

  • Flory SL, D’Antonio CM (2015) Taking the long view on the ecological effects of plant invasions. Am J Bot 102:817–818. doi:10.3732/ajb.1500105

    Article  PubMed  Google Scholar 

  • Frazer GW, Canham CD, Lertzman KP (1999) Gap light analyzer GLA, Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-color fisheye photographs, users manual and program documentation, version 2.0. Simon Fraser University and the Institute of Ecosystem Studies, Burnaby

    Google Scholar 

  • Gardener MR, Trueman M, Buddenhagen C, Heleno RH, Jaeger H, Atkinson R, Tye A (2013) A pragmatic approach to the management of plant invasions in Galápagos. In: Foxcroft LC, Pyšek P, Richardson DM, Genovesi P (eds) Plant invasions in protected areas. Springer, Dordrecht, pp 349–374

    Chapter  Google Scholar 

  • Guézou A, Trueman M, Buddenhagen CE et al (2010) An extensive alien plant inventory from the inhabited areas of Galápagos. PLoS ONE 5:e10276. doi:10.1371/journal.pone.0010276

    Article  PubMed  PubMed Central  Google Scholar 

  • Guézou A, Chamorro S, Pozo P, Guerrero M, Atkinson R, Buddenhagen C, Jaramillo Díaz P, Gardener M (2017) CDF checklist of Galápagos introduced plants. In: Bungartz F, Herrera H, Jaramillo P, Tirado N, Jiménez-Uzcátegui G, Ruiz D, Guézou A, Ziemmeck F (eds) Charles Darwin Foundation Galápagos species checklist—Charles Darwin Foundation, Puerto Ayora, Galápagos. http://darwinfoundation.org/datazone/checklists/introduced-species/introduced-plants/. Accessed 23 May 2017

  • Hamann O (2001) Demographic studies of three indigenous stand-forming plant taxa (Scalesia, Opuntia, and Bursera) in the Galápagos Islands, Ecuador. Biodivers Conserv 10:223–250

    Article  Google Scholar 

  • Hejda M, Pyšek P, Jarošík V (2009) Impact of invasive plants on the species richness, diversity and composition of invaded communities. J Ecol 97:393–403. doi:10.1111/j.1365-2745.2009.01480.x

    Article  Google Scholar 

  • Hobbs RJ, Arico S, Aronson J et al (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15:1–7. doi:10.1111/j.1466-822X.2006.00212.x

    Article  Google Scholar 

  • Hobbs RJ, Higgs E, Harris JA (2009) Novel ecosystems: implications for conservation and restoration. Trends Ecol Evol 24:599–605. doi:10.1016/j.tree.2009.05.012

    Article  PubMed  Google Scholar 

  • Hobbs RJ, Higgs ES, Hall C (2013) Novel ecosystems: intervening in the new ecological world order. Wiley, Chichester

    Book  Google Scholar 

  • INGALA, ORSTOM, PRONAREG (1987) Inventario cartográfico de los recursos naturales, geomorfología, vegetación, hídricos, ecológicos y biofísicos de las islas Galápagos Ecuador. Ingala Edition, Quito

    Google Scholar 

  • Itow S (1995) Phytogeography and ecology of Scalesia (Compositae) endemic to the Galápagos Islands. Pac Sci 49:17–30

    Google Scholar 

  • Itow S (2003) Zonation pattern, succession process and invasion by aliens in species-poor insular vegetation of the Galápagos Islands. Glob Environ Res 7(1):39–58

    Google Scholar 

  • Itow S, Mueller Dombois D (1988) Population structure, stand-level dieback and recovery of Scalesia pedunculata forest in the Galápagos Islands. Ecol Res 3:333–339

    Article  Google Scholar 

  • Jackson MH (1994) Galápagos, a Natural History. University of Calgary Press, Calgary

    Google Scholar 

  • Jaeger H, Tye A, Kowarik I (2007) Tree invasion in naturally treeless environments: impacts of quinine (Cinchona pubescens) trees on native vegetation in Galápagos. Biol Conserv 140:297–307. doi:10.1016/j.biocon.2007.08.014

    Article  Google Scholar 

  • Jaramillo Díaz P, Guézou A (2013) CDF checklist of galápagos vascular plants. In: Bungartz F, Herrera H, Jaramillo P, Tirado N, Jiménez-Uzcátegui G, Ruiz D, Guézou A, Ziemmeck F (eds) Charles Darwin Foundation Galápagos species checklist, Puerto Ayora, Galápagos. http://www.darwinfoundation.org/datazone/checklists/vascular-plants/. Accessed 03 Jun 2013

  • Lugo AE (1992) Comparison of tropical tree plantations with secondary forests of similar age. Ecol Monogr 62:1–41. doi:10.2307/2937169

    Article  Google Scholar 

  • Lugo AE (2004) The outcome of alien tree invasions in Puerto Rico. Front Ecol Environ 2:265–273. doi:10.2307/3868267

    Article  Google Scholar 

  • Lugo AE, Helmer E (2004) Emerging forests on abandoned land: Puerto Rico’s new forests. For Ecol Manag 190:145–161. doi:10.1016/j.foreco.2003.09.012

    Article  Google Scholar 

  • Lundh JP (2006) The farm area and cultivated plants on Santa Cruz, 1932–1965, with remarks on other parts of Galápagos. Galápagos Res 64:12–25

    Google Scholar 

  • Martínez OJA (2010) Invasion by native tree species prevents biotic homogenization in novel forests of Puerto Rico. Plant Ecol 211:49–64. doi:10.1007/s11258-010-9771-4

    Article  Google Scholar 

  • Martinuzzi S, Lugo AE, Brandeis TJ, Helmer EH (2013) Case study: geographic distribution and level of novelty of Puerto Rican forests. In: Hobbs RJ, Higgs ES, Hall C (eds) Novel ecosystems: intervening in the new ecological world order. Wiley-Blackwell, Chichester, pp 81–88

    Chapter  Google Scholar 

  • Mascaro J (2011) Eighty years of succession in a noncommercial plantation on Hawai’i Island: are native species returning? 1. Pac Sci 65:1–15. doi:10.2984/65.1.001

    Article  Google Scholar 

  • Mascaro J, Becklund KK, Hughes RF, Schnitzer SA (2008) Limited native plant regeneration in novel, exotic-dominated forests on Hawai’i. For Ecol Manag 256:593–606. doi:10.1016/j.foreco.2008.04.053

    Article  Google Scholar 

  • Mascaro J, Hughes RF, Schnitzer SA (2012) Novel forests maintain ecosystem processes after the decline of native tree species. Ecol Monogr 82:221–228. doi:10.1890/11-1014.1

    Article  Google Scholar 

  • Mauchamp A, Atkinson R (2010) Rapid, recent, and irreversible habitat loss: Scalesia forest on the Galápagos Islands. In: Toral-Granda MV, Cayot L (eds) Galápagos report 2009–2010. Charles Darwin Foundation, Galápagos National Park and Consejo de Gobierno de Galápagos, Puerto Ayora, pp 108–112

    Google Scholar 

  • McKinney M (2008) Do humans homogenize or differentiate biotas? It depends. J Biogeogr 35:1960–1961. doi:10.1111/j.1365-2699.2008.02011.x

    Article  Google Scholar 

  • McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453. doi:10.1016/S0169-5347(99)01679-1

    Article  CAS  PubMed  Google Scholar 

  • Miller J, Beltesmeyer B (2016) What’s wrong with novel ecosystems, really? Restor Ecol. doi:10.1111/rec.12378

    Google Scholar 

  • Morse NB, Pellissier PA, Cianciola EN et al (2014) Novel ecosystems in the Anthropocene: a revision of the novel ecosystem concept for pragmatic applications. Ecol Soc. doi:10.5751/ES-06192-190212

    Google Scholar 

  • Peltzer DA, MacLeod CJ (2014) Weeds and native plant species are negatively associated along grassland and kiwifruit land management intensity gradients. Austral Ecol 39:39–49. doi:10.1111/aec.12043

    Article  Google Scholar 

  • Rentería JL (2012) Towards an optimal management of the invasive plant Rubus niveus in the Galápagos Islands. Ph.D. dissertation, Imperial College London

  • Rentería J, Buddenhagen C (2006) Invasive plants in the Scalesia pedunculata forest at los Gemelos, Santa Cruz, Galápagos. Galápagos Res 64:31–35

    Google Scholar 

  • Restrepo A, Colinvaux P, Bush M et al (2012) Impacts of climate variability and human colonization on the vegetation of the Galápagos Islands. Ecology 93:1853–1866

    Article  PubMed  Google Scholar 

  • Richardson DM, Pyšek P, Rejmánek M et al (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107. doi:10.1046/j.1472-4642.2000.00083.x

    Article  Google Scholar 

  • Rivas-Torres G, Adams D (2017) A conceptual framework for the management of a highly-valued invasive tree in the Galápagos Islands. In: Understanding invasive species at different levels: from the molecular to the landscape, Book 6. Springer, New York (in press)

  • Rivas-Torres G, Rivas M (2017) Novel forests and plant chemical weapons in the Galápagos flora. In: Understanding invasive species at different levels: from the molecular to the landscape, Book 6, Springer, New York (in press)

  • Snell HL, Tye A, Causton CE, Bensted-Smith R (2002) Current status of and threats to the terrestrial biodiversity of Galápagos. In: Bensted-Smith R (ed) A biodiversity vision for the Galápagos Islands. Charles Darwin Foundation and World Wildlife Fund, Puerto Ayora, pp 30–47

    Google Scholar 

  • Stricker KB, Hagan D, Flory SL (2015) Improving methods to evaluate the impacts of plant invasions: lessons from 40 years of research. AoB Plants 7:1–10. doi:10.1093/aobpla/plv028

    Article  Google Scholar 

  • Trueman M (2014) Towards effective management of modified ecosystems in Galápagos. Ph.D. dissertation, The University of Western Australia

  • Trueman M, Standish R, Orellana D, Cabrera W (2014a) Mapping the extent and spread of multiple plant invasions can help prioritise management in Galápagos National Park. NeoBiota 23:1–16. doi:10.3897/neobiota.23.7800

    Article  Google Scholar 

  • Trueman M, Standish RJ, Hobbs RJ (2014b) Identifying management options for modified vegetation: application of the novel ecosystems framework to a case study in the Galápagos Islands. Biol Conserv 172:37–48. doi:10.1016/j.biocon.2014.02.005

    Article  Google Scholar 

  • Wiggins IL, Porter DM, Anderson EF (1971) Flora of the Galápagos Islands. Stanford University Press, Stanford

    Google Scholar 

  • Zavaleta ES, Hobbs RJ, Mooney HA (2001) Viewing invasive species removal in a whole-ecosystem context. Trends Ecol Evol 16:454–459. doi:10.1016/S0169-5347(01)02194-2

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. In: Mixed effects models and extensions in ecology with R. Springer, New York

Download references

Acknowledgements

We thank Wilson Villamar for valuable assistance with fieldwork, and GNP staff Danny Rueda, Christian Sevilla, Alonso Carrión, Galo Quezada and Wilson Cabrera for logistical support. We are also grateful to John Blake, Rob Fletcher, and Mauricio Nuñez-Regueiro for help with data analyses, and Patricia Jaramillo and Heinke Jaeger for their assistance with plant identification. The National Science Foundation funded Quantitative Spatial Ecology, Evolution and Environment QSE3-IGERT program, and Department of Wildlife Ecology and Conservation provided support for GR graduate studies at University of Florida and completion of this work. This work was also supported by the Ecuadorian Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, and the Tropical Conservation and Development Program (UF), which provided scholarships to GR for field work. This study was conducted under permit No. PC-21-12 in compliance with all regulations of the Galápagos National Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Rivas-Torres.

Additional information

Communicated by Daniel Sanchez Mata.

This article belongs to the Topical Collection: Invasive species.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 116 kb)

Supplementary material 2 (DOCX 3958 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivas-Torres, G., Luke Flory, S. & Loiselle, B. Plant community composition and structural characteristics of an invaded forest in the Galápagos. Biodivers Conserv 27, 329–344 (2018). https://doi.org/10.1007/s10531-017-1437-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-017-1437-2

Keywords

Navigation