Skip to main content

Advertisement

Log in

Wood-inhabiting bryophyte communities are influenced by different management intensities in the past

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Many studies have underlined the fact that once forest continuity is broken, communities of wood-inhabiting organisms may never be restored to their original status. However, only a few studies have actually presented results from sites that have current old-growth structure, and where the history of human interventions is known. In this study we compared the species richness, nestedness, beta diversity, and composition of bryophytes from living trunks and dead logs of beech (Fagus sylvatica) in seven forest stands in the Czech Republic with old-growth structure and various histories of past human impact. Our analysis showed that these communities are nested and that their beta diversity is lower than random. There was a significant proportion of shared species, and rare species were present only in the most heterogeneous and the least man affected habitats. We found that bryophyte communities of forests with more intensive past management were significantly impoverished in terms of both species richness and composition. Beta diversity was not related to management history and reflected current habitat heterogeneity. The effect of decay stage on species richness and beta diversity was stronger than the site effect. Our results demonstrate that the protection of current natural beech-dominated forests and improvements to their connectivity in fragmented landscapes are crucial for the survival and restoration of the diversity of wood-inhabiting bryophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson MJ (2001) A new method for non parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi:10.1111/j.1442-9993.2001.01070.pp.x

    Google Scholar 

  • Anderson MJ, Crist TO, Chase JM et al (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28. doi:10.1111/j.1461-0248.2010.01552.x

    Article  PubMed  Google Scholar 

  • Andersson LI, Hytteborn H (1991) Bryophytes and decaying wood: a comparison between managed and natural forest. Holarct Ecol 14:121–130

    Google Scholar 

  • Atmar W, Patterson BD (1993) The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96:373–382

    Article  PubMed  Google Scholar 

  • Barbe M, Fenton NJ, Bergeron Y, Vesk P (2016) So close and yet so far away: long-distance dispersal events govern bryophyte metacommunity reassembly. J Ecol 104:1707–1719. doi:10.1111/1365-2745.12637

    Article  Google Scholar 

  • Bauhus J, Puettmann K, Messier C (2009) Silviculture for old-growth attributes. For Ecol Manag 258:525–537. doi:10.1016/j.foreco.2009.01.053

    Article  Google Scholar 

  • Berglund H, Jonsson BG (2003) Nested plant and fungal communities; the importance of area and habitat quality in maximizing species capture in boreal old-growth forests. Biol Conserv 112:319–328. doi:10.1016/S0006-3207(02)00329-4

    Article  Google Scholar 

  • Bohn U, Gollub G, Hettwer C, Neuhäuslová Z, Schlüter H, Weber H (eds) (2003) Map of the natural vegetation of Europe. Bundesamt für Naturschutz, Bonn

    Google Scholar 

  • Borcard D, Gillet F et al (2011) Numerical ecology with R. Springer, New York

    Book  Google Scholar 

  • Box EO, Fujiwara K (2005) Vegetation types and their broad-scale distribution. In: van der Maarel E (ed) Vegetation ecology. Blackwell, Oxford, pp 106–128

    Google Scholar 

  • Brunet J, Fritz Ö, Richnau G (2010) Biodiversity in European beech forests—a review with recommendations for sustainable forest management. Ecol Bull 53:77–94

    Google Scholar 

  • Bruun HH, Moen J, Virtanen R et al (2006) Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J Veg Sci 17:37–46. doi:10.1111/j.1654-1103.2006.tb02421.x

    Article  Google Scholar 

  • Carvalho JC, Cardoso P, Borges PAV et al (2013) Measuring fractions of beta diversity and their relationships to nestedness: a theoretical and empirical comparison of novel approaches. Oikos 122:825–834. doi:10.1111/j.1600-0706.2012.20980.x

    Article  Google Scholar 

  • Chytrý M (2012) Vegetation of the Czech Republic: diversity, ecology, history and dynamics. Preslia 84:427–504

    Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, Hoboken

    Book  Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663. doi:10.1111/jbi.12130

    Article  Google Scholar 

  • Fedrowitz K, Koricheva J, Baker SC et al (2014) Can retention forestry help conserve biodiversity? A meta-analysis. J Appl Ecol 51:1669–1679. doi:10.1111/1365-2664.12289

    Article  PubMed  PubMed Central  Google Scholar 

  • Felton A, Lindbladh M, Brunet J, Fritz Ö (2010) Replacing coniferous monocultures with mixed-species production stands: an assessment of the potential benefits for forest biodiversity in northern Europe. For Ecol Manag 260:939–947. doi:10.1016/j.foreco.2010.06.011

    Article  Google Scholar 

  • Flensted KK, Bruun HH, Ejrnaes R et al (2016) Red-listed species and forest continuity—a multi-taxon approach to conservation in temperate forests. For Ecol Manag 378:144–159. doi:10.1016/j.foreco.2016.07.029

    Article  Google Scholar 

  • Frahm JP (2008) Diversity, dispersal and biogeography of bryophytes (mosses). Biodivers Conserv 17:277–284. doi:10.1007/s10531-007-9251-x

    Article  Google Scholar 

  • Friedel A, Oheimb GV, Dengler J, Härdtle W (2006) Species diversity and species composition of epiphytic bryophytes and lichens—a comparison of managed and unmanaged beech forests in NE Germany. Feddes Repert 117:172–185. doi:10.1002/fedr.200511084

    Article  Google Scholar 

  • Fritz Ö, Gustafsson L, Larsson K (2008a) Does forest continuity matter in conservation?—a study of epiphytic lichens and bryophytes in beech forests of southern Sweden. Biol Conserv 141:655–668. doi:10.1016/j.biocon.2007.12.006

    Article  Google Scholar 

  • Fritz Ö, Niklasson M, Churski M (2008b) Tree age is a key factor for the conservation of epiphytic lichens and bryophytes in beech forests. Appl Veg Sci 12:93–106

    Article  Google Scholar 

  • Gamborg C, Larsen JB (2003) “Back to nature”—a sustainable future for forestry? For Ecol Manage 179:559–571. doi:10.1016/S0378-1127(02)00553-4

    Article  Google Scholar 

  • Hahn K, Fanta J (eds) (2001) Contemporary beech forest management in Europe. NAT-MAN Working Report 1

  • Halme P, Ódor P, Christensen M et al (2013) The effects of habitat degradation on metacommunity structure of wood-inhabiting fungi in European beech forests. Biol Conserv 168:24–30. doi:10.1016/j.biocon.2013.08.034

    Article  Google Scholar 

  • Harmon ME, Franklin JF, Swanson FJ et al (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302

    Article  Google Scholar 

  • Heilmann-Clausen J (2001) A gradient analysis of communities of macrofungi and slime moulds on decaying beech logs. Mycol Res 105:575–596. doi:10.1017/S0953756201003665

    Article  Google Scholar 

  • Heilmann-Clausen J, Aude E, van Dort K et al (2014) Communities of wood-inhabiting bryophytes and fungi on dead beech logs in Europe—reflecting substrate quality or shaped by climate and forest conditions? J Biogeogr. doi:10.1111/jbi.12388

    Google Scholar 

  • Hofmeister J, Hošek J, Brabec M et al (2015a) Value of old forest attributes related to cryptogam species richness in temperate forests: a quantitative assessment. Ecol Indic 57:497–504. doi:10.1016/j.ecolind.2015.05.015

    Article  Google Scholar 

  • Hofmeister J, Hošek J, Holá E, Novozámská E (2015b) Decline in bryophyte diversity in predominant types of central European managed forests. Biodivers Conserv 24:1391–1402. doi:10.1007/s10531-015-0863-2

    Article  Google Scholar 

  • Hokkanen PJ, Kouki J, Komonen A (2009) Nestedness, SLOSS and conservation networks of boreal herb-rich forests. Appl Veg Sci 12:295–303. doi:10.1111/j.1654-109X.2009.01031.x

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363. doi:10.1002/bimj.200810425

    Article  PubMed  Google Scholar 

  • Jonsson BG, Kruys N, Ranius T (2005) Ecology of species living on dead wood—lessons for dead wood management. Silva Fenn 39:289–309

    Article  Google Scholar 

  • Kaplan JO, Krumhardt KM, Zimmermann N (2009) The prehistoric and preindustrial deforestation of Europe. Quat Sci Rev 28:3016–3034. doi:10.1016/j.quascirev.2009.09.028

    Article  Google Scholar 

  • Király I, Nascimbene J, Tinya F, Ódor P (2013) Factors influencing epiphytic bryophyte and lichen species richness at different spatial scales in managed temperate forests. Biodivers Conserv 22:209–223. doi:10.1007/s10531-012-0415-y

    Article  Google Scholar 

  • Kolb A, Diekmann M (2004) Effects of environment, habitat configuration and forest continuity on the distribution of forest plant species. J Veg Sci 15:199–208. doi:10.1111/j.1654-1103.2004.tb02255.x

    Article  Google Scholar 

  • Král K, McMahon SM, Janík D et al (2014a) Patch mosaic of developmental stages in central European natural forests along vegetation gradient. For Ecol Manag 330:17–28. doi:10.1016/j.foreco.2014.06.034

    Article  Google Scholar 

  • Král K, Valtera M, Janík D et al (2014b) Spatial variability of general stand characteristics in central European beech-dominated natural stands—effects of scale. For Ecol Manag 328:353–364. doi:10.1016/j.foreco.2014.05.046

    Article  Google Scholar 

  • Kučera J, Váňa J, Hradílek Z (2012) Bryophyte flora of the Czech Republic: updated checklist and red list and a brief analysis. Preslia 84:813–850

    Google Scholar 

  • Laaka-Lindberg S, Korpelainen H, Pohjamo M (2006) Spatial distribution of epixylic hepatics in relation to substrate in a boreal old-growth forest. J Hattori Bot Lab 100:311–323

    Google Scholar 

  • Larsen JB (1995) Ecological stability of forests and sustainable silviculture. For Ecol Manag 73:85–96. doi:10.1016/0378-1127(94)03501-M

    Article  Google Scholar 

  • Leuschner C, Meier IC, Hertel D (2006) On the niche breadth of Fagus sylvatica: soil nutrient status in 50 Central European beech stands on a board range of bedrock types. Ann For Sci 63:355–368

    Article  CAS  Google Scholar 

  • Lindenmayer DB, Franklin JF, Lõhmus A et al (2012) A major shift to the retention approach for forestry can help resolve some global forest sustainability issues. Conserv Lett 5:421–431. doi:10.1111/j.1755-263X.2012.00257.x

    Article  Google Scholar 

  • Löbel S, Snäll T, Rydin H (2006) Metapopulation processes in epiphytes inferred from patterns of regional distribution and local abundance in fragmented forest landscapes. J Ecol 94:856–868. doi:10.1111/j.1365-2745.2006.01114.x

    Article  Google Scholar 

  • Madžule L, Brūmelis G, Tjarve D (2011) Structures determining bryophyte species richness in a managed forest landscape in boreo-nemoral Europe. Biodivers Conserv 21:437–450. doi:10.1007/s10531-011-0192-z

    Article  Google Scholar 

  • Mežaka A, Brūmelis G, Piterāns A (2012) Tree and stand-scale factors affecting richness and composition of epiphytic bryophytes and lichens in deciduous woodland key habitats. Biodivers Conserv 21:3221–3241. doi:10.1007/s10531-012-0361-8

    Article  Google Scholar 

  • Moning C, Müller J (2009) Critical forest age thresholds for the diversity of lichens, molluscs and birds in beech (Fagus sylvatica L.) dominated forests. Ecol Indic 9:922–932. doi:10.1016/j.ecolind.2008.11.002

    Article  Google Scholar 

  • Näslund M (1936) Skogsförsöksanstaltens gallringsförsök i tallskog. Meddelanden från Statens Skogsförsöksanstalt 29:169 (in Swedish with German summary)

    Google Scholar 

  • Nordén B, Appelqvist T (2001) Conceptual problems of ecological continuity and its bioindicators. Biodivers Conserv 10:779–791. doi:10.1023/A:1016675103935

    Article  Google Scholar 

  • Nordén B, Dahlberg A, Brandrud TE et al (2014) Effects of ecological continuity on species richness and composition in forests and woodlands: a review. Ecoscience 21:34–45. doi:10.2980/21-1-3667

    Article  Google Scholar 

  • Ódor P, Standovár T (2001) Richness of bryophyte vegetation in near-natural and managed beech stands: the effects of management-induced differences in dead wood. Ecol Bull 49:219–229

    Google Scholar 

  • Ódor P, van Hees AFM (2004) Preferences of dead wood inhabiting bryophytes for decay stage, log size and habitat types in Hungarian beech forests. J Bryol 26:79–95

    Article  Google Scholar 

  • Ódor P, Heilmann-Clausen J, Christensen M et al (2006) Diversity of dead wood inhabiting fungi and bryophytes in semi-natural beech forests in Europe. Biol Conserv 131:58–71

    Article  Google Scholar 

  • Ódor P, Király I, Tinya F et al (2013) Patterns and drivers of species composition of epiphytic bryophytes and lichens in managed temperate forests. For Ecol Manag 306:256–265. doi:10.1016/j.foreco.2013.07.001

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2016) vegan: community ecology package. R package version 2.4-1. https://CRAN.R-project.org/package=vegan. Accessed 28 Nov 2016

  • Patterson BD, Atmar W (1986) Nested subsets and the structure of insular mammalian faunas and archipelagos. Biol J Linn Soc 28:65–82. doi:10.1111/j.1095-8312.1986.tb01749.x

    Article  Google Scholar 

  • Peters R (1997) Beech forests. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Pharo EJ, Zartman CE (2007) Bryophytes in a changing landscape: the hierarchical effects of habitat fragmentation on ecological and evolutionary processes. Biol Conserv 135:315–325. doi:10.1016/j.biocon.2006.10.016

    Article  Google Scholar 

  • Pícha J (2010) Historický vývoj dřevinné skladby Žofínského pralesa. Bachelor’s thesis, Mendel University in Brno (in Czech)

  • Pícha J (2012) Expanze buku v NPR Žofínský prales. Master’s thesis. Mendel University in Brno (in Czech)

  • Podani J, Schmera D (2011) A new conceptual and methodological framework for exploring and explaining pattern in presence - absence data. Oikos 120:1625–1638. doi:10.1111/j.1600-0706.2011.19451.x

    Article  Google Scholar 

  • Průša E (1985) Státní přírodní rezervace Kohoutov, její ekologie a struktura. Lesnictví 31:989–1016 (in Czech)

    Google Scholar 

  • Qian H (2009) Beta diversity in relation to dispersal ability for vascular plants in North America. Glob Ecol Biogeogr 18:327–332. doi:10.1111/j.1466-8238.2009.00450.x

    Article  Google Scholar 

  • Qian H, Klinka K, Kayahara G (1998) Longitudinal patterns of plant diversity in the North American boreal forest. Plant Ecol 138:161–178. doi:10.1023/A:1009756318848

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed 28 Nov 2016

  • Rambo TR, Muir PS (1998) Bryophyte species associations with coarse woody debris and stand ages in Oregon. Bryologist 101:366–376

    Article  Google Scholar 

  • Samuelsson J, Gustafsson L, Ingelog T (1994) Dying and dead trees: a review of their importance for biodiversity. Swedish Threatened Species Unit, Uppsala

    Google Scholar 

  • Similä M, Kouki J, Martikainen P (2003) Saproxylic beetles in managed and seminatural Scots pine forests: quality of dead wood matters. For Ecol Manag 174:365–381. doi:10.1016/S0378-1127(02)00061-0

    Article  Google Scholar 

  • Snäll T, Hagström A, Rudolphi J, Rydin H (2004) Distribution pattern of the epiphyte Neckera pennata on three spatial scales—importance of past landscape structure, connectivity and local conditions. Ecography (Cop) 27:757–766. doi:10.1111/j.0906-7590.2004.04026.x

    Article  Google Scholar 

  • Standovár T, Kenderes K (2003) A review on natural stand dynamics in beechwoods of East Central Europe. Appl Ecol Environ Res 1:19–46

    Article  Google Scholar 

  • Táborská M, Přívětivý T, Vrška T, Ódor P (2015) Bryophytes associated with two tree species and different stages of decay in a natural fir-beech mixed forest in the Czech Republic. Preslia 87:387–401

    Google Scholar 

  • Ujházyová M, Ujházy K, Chytrý M et al (2016) Diversity of beech forest vegetation in the Eastern Alps, Bohemian Massif and the Western Carpathians. Preslia 88:435–457

    Google Scholar 

  • Vrška T (1998) Prales Salajka po 20 letech (1974-1994). Lesnictví 44:153–181 (in Czech)

    Google Scholar 

  • Vrška T, Hort L, Odehnalová P, Adam D, Horal D (2000) Prales Mionší—historický vývoj a současný stav. J For Sci 46:411–424 (in Czech with English abstract)

    Google Scholar 

  • Vrška T, Hort L, Adam D, Odehnalová P, Horal D (2002) Dynamika vývoje pralesovitých rezervací v ČR I – Českomoravská vrchovina (Polom, Žákova hora)/developmental dynamics of virgin forest reserves in the Czech Republic I—the Českomoravská vrchovina Upland (Polom, Žákova hora Mt.). Academia, Praha (in Czech and English)

  • Vrška T, Šamonil P, Unar P, Hort L, Adam D, Král K, Janík D (2012) Dynamika vývoje pralesovitých rezervací v ČR III—Šumava a Český les (Diana, Stožec, Boubínský prales, Milešický prales)/developmental dynamics of virgin forest reserves in the Czech Republic III—Šumava Mts. and Český les Mts. (Diana, Stožec, Boubín virgin forest, Milešice virgin forest). Academia, Praha (in Czech and English)

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Zerbe S (2002) Restoration of natural broad-leaved woodland in Central Europe on sites with coniferous forest plantations. For Ecol Manag 167:27–42. doi:10.1016/S0378-1127(01)00686-7

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to D. Adam for the preparation of data from stem position maps and S. Kubešová for help with identification of problematic species of bryophytes. David Hardekopf kindly improved the English of the manuscript. The study was supported by the project Deadwood decomposition dynamics in natural temperate forests (GAP504/13-27454S), data were collected in the framework of the project Monitoring of natural forests of the Czech Republic (EHP-CZ02-OV-1-021-2014). Hungarian authors were supported by the National Research, Development and Innovation Office (GINOP 2.3.3-15-2016-00019). Jana Procházková was supported by the scholarship granted by Ostrava city.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Táborská.

Additional information

Communicated by T. G. Allan Green.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 6 kb)

Supplementary material 2 (XLSX 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Táborská, M., Procházková, J., Lengyel, A. et al. Wood-inhabiting bryophyte communities are influenced by different management intensities in the past. Biodivers Conserv 26, 2893–2909 (2017). https://doi.org/10.1007/s10531-017-1395-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-017-1395-8

Keywords

Navigation