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Abstract The impact of human disturbance on colonisation dynamics of vascular epiphytes

is poorly known. We studied abundance, diversity and floristic composition of epiphyte

seedling establishing on isolated and adjacent forest trees in a tropical montane landscape. All

vascular epiphytes were removed from plots on the trunk bases of Piptocoma discolor. Newly

established epiphyte seedlings were recorded after 2 years, and their survival after another year.

Seedling density, total richness at family and genus level, and the number of families and genera

per plot were significantly reduced on isolated trees relative to forest trees. Seedling assem-

blages on trunks of forest trees were dominated by hygrophytic understorey ferns, those on

isolated trees by xerotolerant canopy taxa. Colonisation probability on isolated trees was

significantly higher for plots closer to forest but not for plots with greater canopy or bryophyte

cover. Seedling mortality on isolated trees was significantly higher for mesophytic than for

xerotolerant taxa. Our results show that altered recruitment can explain the long-term impov-

erishment of post-juvenile epiphyte assemblages on isolated remnant trees. We attribute these

changes to a combination of dispersal constraints and the harsher microclimate documented by

measurements of temperature and humidity. Although isolated trees in anthropogenic land-

scapes are considered key structures for the maintenance of forest biodiversity in many aspects,

our results show that their value for the conservation of epiphytes can be limited. We suggest

that abiotic seedling requirements will increasingly constitute a bottleneck for the persistence of

vascular epiphytes in the face of ongoing habitat alteration and atmospheric warming.
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Introduction

Vascular epiphytes are a major element of tropical forest structure and biodiversity. They

are characterised by traits that may reduce their resilience compared to terrestrial herbs:

long generation cycles and sensitivity to atmospheric conditions. These traits are related to

resource limitations (nutrients and water) that appear to characterise the epiphytic habitat

(Benzing 1998; Zotz and Hietz 2001).

Not surprisingly, the majority of studies on vascular epiphyte assemblages have

found pronounced adverse effects of habitat alteration, such as reduced diversity or

floristic composition biased towards generalists and xerophytes (Barthlott et al. 2001;

Krömer and Gradstein 2003; Flores-Palacios and Garcı́a-Franco 2004; Hietz 2005;

Werner et al. 2005). In addition to increased desiccation stress (Hietz 2005), commu-

nity changes following disturbance have repeatedly been attributed to constrained

dispersal (Wolf 2005; Cascante-Marı́n et al. 2006) and, in secondary forests recovering

from clear-cutting, reduced quality of substrate available for colonisation (e.g. lack of

bryophyte mats; Krömer and Gradstein 2003). The importance of dispersal constraints

has been emphasised particularly in the ample literature on non-vascular epiphytes

(Pharo and Zartman 2007). Where epiphyte assemblages survive initial disturbance,

such as in moderately logged forest, forest fragments or on remnant trees, impover-

ishment should proceed gradually due to lowered survival of well-established plants or

reduced establishment. The latter may be caused by limited diaspore rain or seedling

performance.

Many studies have addressed the performance of different life-stages in trees (see e.g.

Hubbell 2001), and the critical role of the early establishment phase for future community

composition is well-established (Lieberman 1996). As with trees, epiphyte dispersal can be

limiting and seedling mortality is high, suggesting that establishment also plays a critical

role for epiphytes. Studies on early epiphyte life-stages incur particular difficulties,

including minute and delicate diaspores, lack of keys to identify seedlings, destructive

access, and extreme spatial heterogeneity of the epiphytic habitat. Our present under-

standing of early life-stages of vascular epiphytes and their role in population dynamics is

largely based on few species of hemi-epiphytic figs, orchids, and bromeliads in intact forest

or green-houses. Consequently, the mechanisms by which aspects of human disturbance

affect epiphytes are unclear.

Isolated trees in an anthropogenic land use matrix (hereafter referred to as ‘ITs’)

constitute keystone structures that offer refuge, enhance connectivity, and provide nuclei of

regeneration (Janzen 1988; Wolf 2005; Manning et al. 2006; Zahawi and Augspurger

2006). Moreover, they offer an excellent model system for the studying of human dis-

turbance effects on epiphytes, being exposed to multiple edge effects, constrained

colonisation, and being easily replicable.

After 10–30 years of isolation in pastures, isolated remnant trees in Ecuador har-

boured post-seedling epiphyte assemblages that were substantially impoverished in terms

of abundance and species richness, and strongly biased to canopy taxa (Werner et al.

2005; Nöske et al. 2008). The purpose of this study was to examine the role of estab-

lishment in such long-term community alterations at the same study site, using an

experimental approach. Specifically, we examined: (1) if seedling establishment is

reduced on ITs, (2) to what extent colonisation patterns mirror the biased floristic

composition observed on ITs after prolonged isolation, and (3) potential factors for

altered establishment.
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Methods

Study site

Field work was done at 1800–2000 m a.s.l. in the surroundings of Estación Cientı́fica San

Francisco (ECSF) near Podocarpus National Park in southeastern Ecuador (3� 580S,

79� 040 W). The natural vegetation of slopes and ravines is moist montane forest with a

canopy height of 15–25 m (Homeier et al. 2008). The area fosters a remarkably rich

epiphytic and terrestrial flora (Homeier and Werner 2007; Lehnert et al. 2007).

Mean annual temperature at 1950 m is 15.5�C, mean annual precipitation is 2200 mm

(Emck 2007). A moderate rainy season typically extends from March to July. On average,

1 month with \100 mm of rain occurs during the driest part of the year, from October to

February (R. Rollenbeck, pers. comm.). Shorter dry spells of 1–2 weeks, typically induced

by westerly foen winds, occur more frequently (Emck 2007). Fog is uncommon at this

elevation (Rollenbeck et al. in press).

Data collection

Sampling focused on the bases of tree trunks. Since trunk bases are a distinctive growth site

and usually host only limited subsets of epiphyte communities, they are not representative

of entire trees or even vegetation types. However, unlike tree crowns they offer easy non-

destructive access and relatively homogenous growth conditions in terms of microclimate,

substrate orientation and inclination, and availability of secondary substrates (e.g. non-

vascular epiphytes, dead organic matter).

During December 2003–January 2004, we removed all vascular epiphytes from the

trunk base of 93 individuals of Piptocoma discolor (Asteraceae), 48 isolated in pastures

and 45 in adjacent enclosed forest.

Piptocoma discolor is locally common on slopes and in ravines of both forest and

cleared pasture land. The species is characterised by fast growth (Homeier 2004) and its

fissured, spongy bark apparently promotes the growth of epiphytic bryophytes and vascular

plants. Root bases rarely extend beyond 0.2 m in height. All ITs had established in pas-

tures, as evident from their architecture (short trunks, divaricated crowns).

Epiphytes were removed from cylindrical plots 0.5–2.25 m in trunk height, minimising

substrate damage. Total plot area was 84.4 (ITs) and 90.4 m2 (forest), respectively. Trees

were revisited after 3–6 months to remove rare resprouting fragments of creeping plants

that were overlooked during initial removal. After 2 years, all vascular epiphyte seedlings

colonising these plots were recorded and identified. Accidental epiphytes, fern gameto-

phytes and plants establishing in knotholes were omitted. Seedlings on ITs were marked

with coated steel nails and their survival was recorded after 1 year.

Identification of seedlings was based on years-long local field experience. Young

sporophytes of Vittariaceae and Dryopteridaceae (Elaphoglossum) species are easily

confounded and we may have slightly overestimated the former. Seedlings of the closely

related bromeliad genera Tillandsia and Vriesea are indistinguishable. Since they also

share similar ecological requirements, we made no attempt to separate them (combined as

‘Tillandsia’ in the following). For the same reasons, Pecluma and Serpocaulon (Polypo-

diaceae) were combined as ‘Pecluma’.

For each plot we recorded percentage cover of lichens and bryophytes, DBH, canopy

openness, and, for IT plots, distance to enclosed forest. Canopy openness was measured

with a spherical densiometer (Lemmon 1957), distance to forest by means of ArcGIS 9
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(ESRI, Redlands, CA, USA.) and a geo-referenced aerial photograph. We logged air

temperature and relative humidity at 2 m of height by sequentially running data loggers

(Onset Hobo Pro, Pocasset, MA, USA) on pairs of ITs and forest trees (n = 9) during

January 2004–March 2005. On average, logger pairs ran for 2 months (62 days ± 26). The

months of November–March (2.4 ± 0.5 loggers/month) are overrepresented at the cost of

April–October (1.1 ± 0.2).

Data analysis

Because the number of taxonomic units increases nonlinearly with area, we downsized all plots

to 1 m2 prior to the analysis of taxa density (the number of taxa per plot). We did this by taking

into account those plants growing on the lowest and highest 0.5 m2 of each plot cylinder, in

order to avoid bias of the resulting sub-samples from skewed vertical distribution patterns.

Analysis of taxa density at the genus level allowed us to classify plants as either

hygrophytic, mesophytic or xerotolerant based on their vertical stratification in the local

natural forest (Werner et al. 2005, F. Werner unpubl. data). At family level, several taxa

locally are heterogeneous in this respect (Table 1). We applied individual-based rarefac-

tion with 10,000 iterations to compare total species richness between treatments (Gotelli

and Entsminger 2006).

Because parametric assumptions could not be matched, we analysed between-group

differences of continuous variables through resampling using PC-Ord 4.25 (McCune and

Mefford 1999). We used multi-response permutation procedure (MRPP; Mielke et al.

1982), one-factorial and on squared euclidean distance, applying a weighing factor

C ¼ ni � 1=R ni � 1ð Þð Þ which results in a MRPP statistic equivalent to a two-sample t-test

or one-way ANOVA F-test (Mielke et al. 1982). A, the chance-corrected within-group

agreement, is a sample size-independent measure of ‘effect-size’. When all items are

identical within groups, then the observed A = 1 is the highest possible value for A. If

heterogeneity within groups equals expectation by chance, then A = 0. If there is less

agreement within groups than expected by chance, then A \ 0.

Seedling densities on ITs were zero-truncated, so we used incidence data of 1 m2 sub-

plots to test for effects of canopy openness, distance to forest and bryophyte cover on

epiphyte establishment. Data were analysed by means of a randomisation test (10,000

iterations), after separating IT plots into two equal-sized groups (higher and lower values

of canopy openness, distance and bryophyte cover, respectively). Seedling mortality on ITs

was analysed by means of the same randomisation procedure. Due to a low number of

observations, we grouped seedling genera as either commonly ([5% of all epiphyte

individuals) or uncommonly (\0.5%) found as post-juveniles on local ITs (Werner et al.

2005) to test if seedling survivorship is coupled with abundance of post-juveniles.

Where appropriate, multiple tests of significance were corrected for a table-wide false

discovery rate (FDR) of P \ 0.05 according to Benjamini and Hochberg (1995).

Results

Mean temperature was 16.4�C ± 0.8 SD (ITs) and 15.3�C ± 0.6 (forest), mean relative

humidity was 87.6% ± 2.1 and 96.3% ± 2.8, respectively. Hourly means differed sig-

nificantly (P \ 0.05; Wilcoxon test) from 7:00 to 18:00 h (Tmean), and for the entire day

(RHmean), respectively. Differences in hourly means peaked at 10:00–11:00 a.m. (3.3�C)

and 11:00–12:00 a.m. (19.8%; Fig. 1).
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Table 1 Epiphyte seedling densities (individuals/m2) on forest trees (n = 45 plots) vs. isolated trees (ITs;
n = 48)

Forest ITs

Mean ± SD Mean ± SD A P Ecol.
req.a

Disp.
modeb

Araceae 0.08 ± 0.23 – ± – 0.055 \0.01* H-M A

Anthurium 0.07 ± 0.20 – ± – 0.043 \0.05* H-M A

Philodendron 0.02 ± 0.13 – ± – 0.001 \0.5 H A

Aspleniaceae (Asplenium) 1.90 ± 3.71 – ± – 0.112 \0.0001* H W

Blechnaceae (Blechnum) 0.01 ± 0.03 – ± – 0.001 \0.5 H W

Bromeliaeae 0.03 ± 0.14 0.22 ± 0.45 0.061 \0.01 H-X W

Guzmania 0.01 ± 0.05 – ± – 0.001 \0.5 H-M W

Tillandsiac 0.03 ± 0.14 0.22 ± 0.45 0.067 \0.005* M-X W

Cyclanthaceae (indet.) 0.02 ± 0.11 – ± – 0.001 \0.5 H A

Dryopteridaceae (Elaphoglossum) 0.36 ± 0.73 0.06 ± 0.24 0.065 \0.005* H-M W

Ericaceae (indet.) 0.01 ± 0.08 – ± – 0.001 \0.5 M A

Grammitidaceae 0.06 ± 0.19 0.10 ± 0.27 -0.005 \0.5 H-M W

Melpomene 0.03 ± 0.14 0.10 ± 0.27 0.014 \0.5 M W

Micropolypodium 0.02 ± 0.11 – ± – 0.001 \0.5 H-M W

Alansmia 0.01 ± 0.09 – ± – 0.001 \0.5 H W

Hymenophyllaceae 0.31 ± 0.49 – ± – 0.169 \0.0001* H-M W

Hymenophyllum 0.16 ± 0.35 – ± – 0.086 \0.001* H-M W

Trichomanes 0.16 ± 0.38 – ± – 0.074 \0.005* H W

Orchidaceae 0.04 ± 0.15 – ± – 0.019 \0.1 H-X W

Dichaea 0.03 ± 0.14 – ± – 0.012 \0.5 H W

Indet. 0.01 ± 0.03 – ± – 0.001 \0.5 n.a. W

Piperacae (Peperomia) 0.29 ± 0.71 – ± – 0.072 \0.0001* H-M A

Polypodiaceae 0.69 ± 1.44 0.14 ± 0.34 0.057 \0.005* H-X W

Campyloneurum 0.01 ± 0.09 – ± – 0.001 \0.5 H-M W

Peclumad 0.65 ± 1.43 – ± – 0.090 \0.0001* H W

Pleopeltis 0.02 ± 0.13 0.14 ± 0.34 0.040 \0.05* X W

Urticaceae (Pilea) 0.02 ± 0.12 – ± – 0.012 \0.5 H G

Vittariaceae 2.39 ± 5.51 – ± – 0.080 \0.0005* H W

Polytaenia 1.93 ± 5.04 – ± – 0.062 \0.0005* H W

Radiovittaria 0.06 ± 0.27 – ± – 0.020 \0.05* H W

Vittaria 0.39 ± 2.47 – ± – 0.002 \0.1 H W

* Significant after FDR correction at P \ 0.05
a Ecological requirements: H = hygrophytic and shade-tolerant; M = mesophytic and moderately light-
demanding; X = xerotolerant and light-demanding; classifications are based on vertical stratification pat-
terns in local forest (Werner et al. 2005; F. Werner, unpubl. data)
b Dispersal modes: W = wind-dispersed; A = animal-dispersed; G = gravity-dispersed
c May include Vriesea spp
d May include Serpocaulon spp
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Lichen cover was significantly higher on the stem bases of ITs versus forest trees

(A = 0.703, P \ 0.0001), whereas bryophyte cover was lower (A = 0.273, P \ 0.0001;

Table 2).

Overall, the IT plots yielded 48 seedlings from 4 genera (bromeliads: Tillandsia; ferns:

Elaphoglossum, Melpomene, Pleopeltis) in 4 families, the forest plots 533 seedlings from

24 genera in 13 families (Fig. 2; Table 1).

Although forest seedlings were composed of anemochorous (91%), zoochorous (8%)

and barochorous taxa (1%), seedlings on ITs comprised exclusively anemochorous taxa.

The underrepresentation of zoochorous relative to anemochorous taxa on ITs was signif-

icant (P \ 0.0001; randomisation test).

Density of seedlings was significantly smaller on ITs relative to forest trees (A = 0.238,

P \ 0.0001), averaging 0.51 seedlings per m2 ± 0.72 SD compared to 6.21 ± 7.21 on

forest plots. The number of both families and genera encountered on 1 m2 sub-plots was

also smaller, each measuring 0.40 ± 0.64 on ITs, whereas forest sub-plots harboured

1.69 ± 1.35 families and 1.73 ± 1.42 genera per m2, respectively. These differences were

highly significant (A = 0.274, P \ 0.0001 and A = 0.269, P \ 0.0001, respectively).

Total richness in epiphyte families and genera was significantly lower on ITs. Richness

of the forest sample rarefied to the size of the IT sample (48 individuals) was 7.92 ± 1.22

Fig. 1 Mean daily course of air temperature and relative humidity at 2 m height under the crowns of
isolated trees (solid lines) and forest trees (stippled lines). Data are from 9 pairs of loggers sequentially set
over the course of ca. 1 year

Table 2 Characteristics of plots on forest trees (n = 45) and isolated trees (ITs; n = 48)

Forest ITs

Mean ± SD Mean ± SD A P

Host DBH (cm) 37.88 ± 13.49 34.18 ± 12.34 0.010 0.172

Plot size (m2) 2.01 ± 0.74 1.76 ± 0.60 0.023 0.074

Canopy openness (%) 17.03 ± 4.47 68.08 ± 15.65 0.828 \0.0001

Distance to forest (m) – 189 ± 117 – –

Lichen cover (%) 9.03 ± 8.32 47.50 ± 15.45 0.703 \0.0001

Bryophyte cover (%) 38.94 ± 20.63 17.55 ± 13.40 0.273 \0.0001
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families (95% CI = 6–10 families) and 10.35 ± 1.54 genera (95% CI = 8–14 genera)

(Fig. 3).

ITs further differed substantially in seedling composition from forest trees. The xero-

tolerant genera Pleopeltis and Tillandsia were significantly more abundant on IT plots than

on forest plots, whereas numerous hygrophytic and mesophytic taxa were significantly less

abundant (Table 1). For instance, the fern families Aspleniaceae and Vittariaceae which

dominated forest plots were entirely absent from ITs.

Seedling density on IT plots was negatively related to distance to forest and canopy

openness, and positively related to bryophyte cover (Fig. 4). The likelihood of colonisation

Fig. 2 Density of epiphyte seedlings on isolated trees (ITs) and in forest after 24 months of colonisation
(means and standard errors)

Fig. 3 Individual-based rarefaction (10,000 iterations) of generic richness in the forest (grey line) and on
isolated trees (black line). Dotted lines reflect the respective 95% confidence intervals for the forest sample
as determined from the 0.025 and 0.975 frequency values in the simulated data
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(1 m2 sub-plots) differed significantly regarding distance to forest (P = 0.026), but not for

canopy openness or bryophyte cover (P = 0.086 and P = 0.230, respectively).

During the third year of study, seedling mortality on ITs averaged 25%. Seedlings of

genera that are commonly found in post-seedling stages on ITs suffered significantly lower

mortality than seedlings of genera that are uncommon (P = 0.040). Among the former

genera (Pleopeltis and Tillandsia) only 18% of plants died, whereas the latter genera

(Elaphoglossum and Melpomene) exhibited 43% of mortality (Table 3).

Discussion

Post-juvenile assemblages of vascular epiphytes on remnant trees at our site are substan-

tially less abundant (by 85%) and diverse (80% of species per tree) 10–30 years after their

isolation in pastures (Werner et al. 2005). This impoverishment strongly affects meso-

phytic and hygrophytic species, whereas xerotolerant canopy taxa remain relatively well-

represented. The compositional skew of post-juvenile assemblages was mirrored by the

Fig. 4 Effects of distance to
forest, canopy openness and
bryophyte cover on seedling
densities on isolated trees (means
and standard errors). Bars reflect
the seedling density on each 24
plots of higher or lower predictor
values, respectively, with ranges
and means as follows: distance to
forest low: 10–129 m (mean 92),
high: 132–432 (287); canopy
openness low: 22–72% (57),
high: 72–92 (79); bryophyte
cover low: 3–13% (7.4), high:
15–58 (28). Note that the shown
data was standardised to 1 m2

plot size and binarised prior to
significance testing

Table 3 Establishment and mortality of seedlings, and the representation of their respective (sub-)adult
stages on isolated trees (ITs)

Genus Seedlings Post-juvenilesa

n Mortality (%/a) Rel. abundance on ITs (% of ind.) Abundance ratio ITs/forest trees

Elaphoglossum 5 60.0 0.13 0.0002

Melpomene 9 33.3 0.25 0.0001

Pleopeltisb 15 6.7 7.0b 1.10

Tillandsiac 19 26.3 46.6 0.34

a Calculated from Werner et al. (2005) after exclusion of one outlier species (Dryadella werneri)
b Note: abundant creepers tend to be underestimated by the ‘stand’ concept employed by Werner et al.
(2005)
c Including Vriesea spp
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patterns of seedling establishment we observed on ITs after 2 years. Seedlings of meso-

phytic and hygrophytic taxa were restricted to few individuals in the genera

Elaphoglossum and Melpomene, whereas the great majority of seedlings were from the

xerotolerant genera Pleopeltis and Tillandsia (Fig. 2).

Seedlings of animal-dispersed taxa were relatively scarce even in forest plots, reflecting

the domination of the local epiphyte flora by wind-dispersed taxa (Homeier and Werner

2007; Lehnert et al. 2007). Moreover, endozoochorous seeds have a low probability for

attaching to near-vertical surfaces such as trunks. The absence of animal-dispersed taxa

from ITs intuitively suggests stronger dispersal constraints in zoochory versus anemoch-

ory. However, since animal-dispersed taxa locally share relatively high humidity

requirements (Werner et al. 2005; F. Werner, unpubl. data), increased desiccation stress on

ITs (Fig. 1) may cause a similar pattern.

The rain of wind-dispersed diaspores should decrease geometrically with growing

distance from the source (Madison 1979). Our data revealed a significant effect of distance

to forest on seedling establishment, which shows that diaspore rain was reduced on ITs.

However, the effect of distances to forest on IT seedling densities was rather small (Fig. 4).

Forest vegetation is not necessarily the sole source of diaspores for IT assemblages, as

reproductive adults especially in the genera Pleopeltis and Tillandsia also occur on ITs

(Table 3; Werner et al. 2005). By adding to the diaspore rain from forest sources, such

plants may dilute the effects of dispersal constraints. However, while diaspores originating

from ITs may have weakened the relationship between total seedling density and distance

to forest, they cannot explain the scarcity of hygrophyte seedlings on ITs. Since the studied

ITs formed regrowth, their entire epiphytic flora (including reproducing adults) must have

established in isolation, subjected to the same establishment constraints as seedlings in our

study.

We found that hygrophytic understorey specialists characterised seedling assemblages

of forest plots (e.g. Asplenium, Pecluma, Vittariaceae spp.) but were entirely absent from

ITs (Table 2). Instead, IT seedling assemblages were strongly predominated by xerotol-

erant taxa that were poorly represented in the forest understorey, despite of their common

occurrence in the forest canopy (Werner et al. 2005). A corresponding paucity in under-

storey taxa has been reported from ITs and disturbed forests elsewhere (Barthlott et al.

2001; Krömer and Gradstein 2003; Flores-Palacios and Garcı́a-Franco 2004, 2008; Hietz

2005), and cannot be explained easily by other factors than microclimatic changes (Fig. 1).

ITs can be viewed as forest fragments that are exposed to multiple edge effects,

including increased light levels, wind velocity, temperature, and reduced air humidity

(Laurance 2004). The resulting harsher microclimate strongly affects many organisms,

including epiphytic lichens and bryophytes (Moen and Jonsson 2003; Hylander 2005). In

our study, however, IT plots exposed to higher light levels (greater canopy openness) did

not show a significantly lower probability of colonisation. This may be related to the great

stochasticity inherent to establishment dynamics throughout (Hubbell 2001; Laskurain

et al. 2004), coupled with an unexpectedly low number of observations (only 48 seedlings

in 21 of 48 plots). Moreover, canopy openness is not an ideal measure of exposure.

Although canopy openness is a good proxy for wind penetration, air humidity and tem-

perature in forest understorey, these parameters are presumably little influenced by canopy

properties of solitary trees. Canopy openness thus reflects only one of several major

components of physical edge effects that affect water budgets in plants. The measured

differences in canopy openness between IT plots may further be of negligible relevance for

epiphytes that already perceive even the most shaded IT plots as exceedingly exposed.
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Light levels, temperature and relative humidity were greatly altered around IT trunk

bases (Fig. 1; Table 2), to the point of closely resembling conditions in the upper forest

canopy (F. Werner and C. Gehrig, unpubl. data). Upper canopy conditions on IT trunk

bases were mirrored by abundance patterns of non-vascular epiphytes. Lichens, most of

which are sensitive to excessive humidity, flourished, whereas bryophytes, which favour

constant humidity (Nöske et al. 2008), exhibited low covers (Table 2). Regardless of

diaspore influxes, it seems most unlikely that seedlings of vascular understorey epiphytes

may establish successfully in such a harsh, canopy-like environment. Hietz and Briones

(1998, 2001) showed that vertical stratification of (adult) epiphytic ferns closely reflects

exposure tolerance, being correlated with a wealth of morphological and physiological

traits that influence rates of uncontrolled water loss. Zotz and co-workers could further

demonstrate that water relations are strongly influenced by the surface-volume ratio and

hence plant size in vascular epiphytes (Zotz et al. 2001; Zotz and Hietz 2001).

Mortality rates on ITs were remarkably low (25% on average), despite an unusually dry

year of 2006 (R. Rollenbeck, pers. comm.). Much higher mortality rates—particularly due

to drought—have been found in early epiphyte seedlings elsewhere (Benzing 1978; Larson

1992; Laman 1995; Tremblay 1997; Zotz 1998; Castro Hernández et al. 1999; Hietz et al.

2002; Zotz et al. 2005). Moreover, seedling mortality declines drastically with age (Castro

Hernández et al. 1999; Mondragón et al. 1999; Hietz et al. 2002; Zotz et al. 2005), sug-

gesting that many of the seedlings recorded after 2 years had already passed an intense

phase of selection.

Diverging survival rates add further support to the notion that seedling assemblages

were shaped by mortality. The genera Pleopeltis and Tillandsia exhibited lower mortality

than the genera Melpomene and Elaphoglossum. Adults of the former genera locally

abound on ITs, where adults of the latter genera are rarely found (Table 3), suggesting that

seedling mortality differs between epiphyte taxa according to their predisposition for life

under high levels of exposure. This conclusion implicates that diverging rates of seedling

mortality (filtering) shape the composition of post-juvenile assemblages. The fact that post-

juvenile stages of Melpomene and Elaphoglossum favour growth sites with higher moisture

levels than Pleopeltis and Tillandsia further suggests that the tolerance of seedlings to

drought is a major predictor of seedling mortality. For instance, Pleopeltis macrocarpa, a

desiccation-tolerant fern that regionally extends into perarid montane forest (Werner and

Gradstein in press), accounted for almost a third of all seedlings recorded on ITs and

showed the highest survival rate at our site (Table 3). Thus, our results strongly suggest

that both decreased diaspore rain and drought-related seedling mortality reduce seedling

densities on ITs, and that increased physical exposure rather than properties of diaspore

rain shape the floristic composition of IT seedling assemblages.

Caution should be exercised in extrapolating our results to entire trees. In relation to

forest, trunk bases of ITs experience a more strongly altered microclimate than their

crowns (Werner and Gehrig unpubl. data). Moreover, they essentially lack important

microsites such as near-horizontal surfaces, humus accumulations or crotches. Hence,

epiphyte seedling establishment on ITs may be less altered in the canopy than on trunk

bases.

The study of establishment limitations is a key for the understanding of current and

future patterns of epiphyte diversity. Drought inflicts a major challenge for adults of many

epiphyte species (e.g. Zotz and Tyree 1996; Benzing 1998), and seedlings are even more

drought-sensitive (Zotz et al. 2001). Desiccation stress increases with structural forest

disturbance and—in most regions—with atmospheric warming (Laurance 2004; Malhi and
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Phillips 2004). Thus, abiotic seedling requirements may increasingly constitute a bottle-

neck for the persistence of epiphyte populations.

Many if not most vascular epiphyte species require 1–2 decades to reach maturity

(Larson 1992; Benzing 1998; Zotz 1998; Hietz et al. 2002; Schmidt and Zotz 2002). As

many of them cannot be identified in immature state, classic ecological inventories will

invariably record consequences of changing land use and climate only with considerable

time lag. Even experimental approaches with post-seedling life stages (e.g. Nadkarni and

Solano 2002) can only provide limited insight in this regard, since they do not take into

account seedling requirements and may therefore underestimate the sensitivity of species.

Thus, a better understanding of seedling requirements and performance is needed to

construct meaningful climate envelopes, and predict the development of epiphyte com-

munities after habitat modification and with global climate change.

Conclusions

With exception of a few hardy canopy taxa, we found that rates of establishment of

vascular epiphytes on ITs were much smaller than on corresponding forest trees. Thus,

altered recruitment is apt to explain the dramatic and non-random impoverishment of post-

juvenile epiphyte assemblages on remnant trees, which is locally observed after prolonged

isolation in pastures (Werner et al. 2005; Nöske et al. 2008). Although isolated trees in

anthropogenic landscapes are considered key structures for the maintenance of forest

biodiversity in many aspects (Manning et al. 2006), our results suggest that their value for

the conservation of epiphytes can be very limited.

Although we found evidence for seedling establishment on ITs being constrained by

dispersal, the results imply additional establishment limitations. Patterns of floristic

seedling composition and mortality suggest substantial influence of increased desiccation

stress on IT seedling assemblages, which may greatly exceed the influence of dispersal

constraints (compare Snäll et al. 2003). Disentangling the roles of these diversity drivers in

complex anthropogenic landscapes poses methodological difficulties that may have led to

an overestimation of the role of dispersal limitation in epiphytes (Pharo and Zartman 2007;

Werth et al. 2007). Given that establishment constraints are a key for the prediction of

future epiphyte communities, further studies on this matter will yield critical new insights.
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