Skip to main content

Advertisement

Log in

Success factors and future prospects of Ponto–Caspian peracarid (Crustacea: Malacostraca) invasions: Is ‘the worst over’?

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Ponto–Caspian peracarids (amphipods, isopods, mysids and cumaceans) represent one of the most successful groups of aquatic invaders comprising several high-impact species, such as Chelicorophium curvispinum, Dikerogammarus villosus, or Hemimysis anomala. In the present study we made the first attempt to compare biological traits and the environmental preferences of invasive and non-invasive members of the group based on both literature and field data (Joint Danube Survey 3, 2013) with the goal of identifying factors linked to invasion success and drawing conclusions on future invasion risks. Both datasets indicated substrate preference as an important factor in spontaneous range expansion; all invasive species are lithophilous, whereas the majority of non-invasives are psammo-pelophilous. The remaining seven presently non-invasive lithophilous species deserve special attention when considering potential future invaders; however, due to their rarity and possible negative interactions with earlier colonists we consider the probability of their expansion in the foreseeable future as low. Their potential expansion could most likely be of minor consequence anyway, since no considerable functional novelty can be attributed to them in addition to species already present. In this limited context (regarding habitats dominated by hard substrates and not considering the potential further spread of already invasive species) it might be justified to conclude that ‘the worst is over’. Nevertheless, impending navigation development projects both in the Danube–Main–Rhine and Dnieper–Pripyat–Bug–Vistula systems might favour the future spread of non-lithophilous species, which might imply a new invasion wave of Ponto–Caspian peracarids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anonymous (2016a) Danube region strategy projects: waterway inftrastructure. http://www.danube-navigation.eu/projects-ideas. Accessed 28 Nov 2016

  • Anonymous (2016b) Commission on the development of the E-40 waterway on the Dnieper–Vistula section. http://e40restoration.eu/en. Accessed 28 Nov 2016

  • Arbaciauskas K (2002) Ponto–Caspian amphipods and mysids in the inland waters of Lithuania: history of introduction, current distribution and relations with native malacostracans. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe. Distribution, impacts and management. Kluwer Academic Publishers, Dordrecht, pp 104–115

    Google Scholar 

  • Băcescu M (1951) Crustacea: Cumacea. Editura Academiei Republicii Populare Romîne, Bucureşti

    Google Scholar 

  • Băcescu M (1954) Crustacea: Mysidacea. Editura Academiei Republicii Populare Romîne, Bucureşti

    Google Scholar 

  • Bernerth H, Tobias W, Stein S (2005) Faunenwandel im Main zwischen 1997 und 2002 am Beispiel des Makrozoobenthos. Faunistisch-ökologische Untersuchungen des Forschungsinstitutes Senckenberg im hessischen Main. Hessisches Landesamt für Umwelt und Geologie, Wiesbaden, pp 15–87

    Google Scholar 

  • Bij de Vaate A, Jażdżewski K, Ketelaars HAM et al (2002) Geographical patterns in range extension of Ponto–Caspian macroinvertebrate species in Europe. Can J Fish Aquat Sci 59:1159–1174. doi:10.1139/f02-098

    Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008a) Forward selection of explanatory variables. Ecology 89:2623–2632. doi:10.1890/07-0986.1

    PubMed  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008b) Modelling directional spatial processes in ecological data. Ecol Model 215:325–336. doi:10.1016/j.ecolmodel.2008.04.001

    Google Scholar 

  • Bondar C (1983) Zum Eindringen des Wassers des Schwarzen Meeres in die Donau-Arme. Hidrobiol Bucur 17:217

    Google Scholar 

  • Borcard D, Legendre P (2012) Is the mantel correlogram powerful enough to be useful in ecologicalanalysis? A simulation study. Ecology 93:1473–1481. doi:10.1890/11-1737.1

    PubMed  Google Scholar 

  • Borza P (2011) Revision of invasion history, distributional patterns, and new records of Corophiidae (Crustacea: Amphipoda) in Hungary. Acta Zool Acad Sci Hung 57:75–84

    Google Scholar 

  • Borza P (2014) Life history of invasive Ponto–Caspian mysids (Crustacea: Mysida): a comparative study. Limnologica 44:9–17. doi:10.1016/j.limno.2013.06.001

    Google Scholar 

  • Borza P, Boda P (2013) Range expansion of Ponto–Caspian mysids (Mysida, Mysidae) in the River Tisza: first record of Paramysis lacustris (Czerniavsky, 1882) for Hungary. Crustaceana 86:1316–1327. doi:10.1163/15685403-00003229

    Google Scholar 

  • Borza P, Csányi B, Huber T et al (2015) Longitudinal distributional patterns of Peracarida (Crustacea, Malacostraca) in the River Danube. Fundam Appl Limnol 187:113–126. doi:10.1127/fal/2015/0769

    Google Scholar 

  • Cărăuşu S, Dobreanu E, Manolache C (1955) Amphipoda forme salmastre şi de apă dulce [Freshwater and brackish water Amphipoda]. Editura Academiei Republicii Populare Romîne, Bucureşti

    Google Scholar 

  • Cristescu ME, Hebert PD (2005) The“Crustacean Seas” an evolutionary perspective on the Ponto Caspian peracarids. Can J Fish Aquat Sci 62:505–517. doi:10.1139/f04-210

    Google Scholar 

  • Dediu II (1966) Répartition et caractéristique écologique des Mysides des bassins des rivièrs Dniestr et Pruth. Rev Roum Biol Zool 11:233–239

    Google Scholar 

  • Dediu II (1980) Amphipody presnykh i solonovatykh vod Yugo-Zapada SSSR [Amphipods of fresh and brackish waters of the South-West of USSR]. Shtiintsa, Kishinev

    Google Scholar 

  • Devin S, Beisel J-N (2007) Biological and ecological characteristics of invasive species: a gammarid study. Biol Invasions 9:13–24. doi:10.1007/s10530-006-9001-0

    Google Scholar 

  • Dick JT, Platvoet D, Kelly DW (2002) Predatory impact of the freshwater invader Dikerogammarus villosus (Crustacea: Amphipoda). Can J Fish Aquat Sci 59:1078–1084. doi:10.1139/f02-074

    Google Scholar 

  • Dudich E (1927) Új rákfajok Magyarország faunájában—Neue Krebstiere in der Fauna Ungarns. Arch Balatonicum 1:343–387

    Google Scholar 

  • Dudich E (1930) A Jaera Nordmanni Rathke, egy új víziászka a magyar faunában [Jaera Nordmanni Rathke, a new aquatic isopod in the Hungarian fauna]. Állattani Közlemények 27:120

    Google Scholar 

  • Filinova EI, Malinina YA, Shlyakhtin GV (2008) Bioinvasions in macrozoobenthos of the Volgograd Reservoir. Russ J Ecol 39:193–197. doi:10.1134/S1067413608030077

    Google Scholar 

  • Gallardo B, Aldridge DC (2015) Is Great Britain heading for a Ponto–Caspian invasional meltdown? J Appl Ecol 52:41–49. doi:10.1111/1365-2664.12348

    Google Scholar 

  • Grabowski M, Bacela K, Konopacka A (2007a) How to be an invasive gammarid (Amphipoda: Gammaroidea)—comparison of life history traits. Hydrobiologia 590:75–84. doi:10.1007/s10750-007-0759-6

    Google Scholar 

  • Grabowski M, Jażdżewski K, Konopacka A (2007b) Alien Crustacea in polish waters—Amphipoda. Aquat Invasions 2:25–38. doi:10.3391/ai.2007.2.1.3

    Google Scholar 

  • Grabowski M, Rewicz T, Bacela-Spychalska K et al (2012) Cryptic invasion of Baltic lowlands by freshwater amphipod of Pontic origin. Aquat Invasions 7:337–346. doi:10.3391/ai.2012.7.3.005

    Google Scholar 

  • Grigorovich IA, MacIsaac HJ, Shadrin NV, Mills EL (2002) Patterns and mechanisms of aquatic invertebrate introductions in the Ponto–Caspian region. Can J Fish Aquat Sci 59:1189–1208. doi:10.1139/f02-088

    Google Scholar 

  • Gruner HE (1965) Die Tierwelt Deutschlands und der angrenzenden Meeresteile nach ihren Merkmalen und ihrer Lebensweise, Teil 51. Krebstiere oder Crustacea, V. Isopoda, 1. Lieferung. Fischer Verlag, Jena

  • Hayes KR, Barry SC (2008) Are there any consistent predictors of invasion success? Biol Invasions 10:483–506. doi:10.1007/s10530-007-9146-5

    Google Scholar 

  • Heger T, Trepl L (2003) Predicting Biological Invasions. Biol Invasions 5:313–321. doi:10.1023/B:BINV.0000005568.44154.12

    Google Scholar 

  • Hering D, Moog O, Sandin L, Verdonschot PF (2004) Overview and application of the AQEM assessmentsystem. Hydrobiologia 516:1–20. doi:10.1023/B:HYDR.0000025255.70009.a5

    Google Scholar 

  • Herkül K, Kotta J, Püss T, Kotta I (2009) Crustacean invasions in the Estonian coastal sea. Est J Ecol 58:313–323. doi:10.3176/eco.2009.4.06

    Google Scholar 

  • Hothorn T, Bühlmann P, Dudoit S et al (2006) Survival ensembles. Biostatistics 7:355–373. doi:10.1093/biostatistics/kxj011

    PubMed  Google Scholar 

  • Hou Z, Sket B (2016) A review of Gammaridae (Crustacea: Amphipoda): the family extent, its evolutionary history, and taxonomic redefinition of genera. Zool J Linn Soc 176:323–348. doi:10.1111/zoj.12318

    Google Scholar 

  • Jermacz Ł, Dzierżyńska A, Kakareko T et al (2015a) The art of choice: predation risk changes interspecific competition between freshwater amphipods. Behav Ecol. doi:10.1093/beheco/arv009

    Article  Google Scholar 

  • Jermacz Ł, Dzierżyńska A, Poznańska M, Kobak J (2015b) Experimental evaluation of preferences of an invasive Ponto–Caspian gammarid Pontogammarus robustoides (Amphipoda, Gammaroidea) for mineral and plant substrata. Hydrobiologia 746:209–221. doi:10.1007/s10750-014-1963-9

    Google Scholar 

  • Karatayev AY, Mastitsky SE, Burlakova LE, Olenin S (2008) Past, current, and future of the central European corridor for aquatic invasions in Belarus. Biol Invasions 10:215–232. doi:10.1007/s10530-007-9124-y

    Google Scholar 

  • Ketelaars HA, Lambregts-van de Clundert FE, Carpentier CJ et al (1999) Ecological effects of the mass occurrence of the Ponto–Caspian invader, Hemimysis anomala GO Sars, 1907 (Crustacea: Mysidacea), in a freshwater storage reservoir in the Netherlands, with notes on its autecology and new records. Hydrobiologia 394:233–248. doi:10.1023/A:1003619631920

    Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204. doi:10.1016/S0169-5347(01)02101-2

    Google Scholar 

  • Kolar CS, Lodge DM (2002) Ecological predictions and risk assessment for alien fishes in North America. Science 298:1233–1236. doi:10.1126/science.1075753

    PubMed  CAS  Google Scholar 

  • Komarova TI (1991) Fauna Ukrainy. T. 26. Mizidy (Mysidacea). Naukova Dumka, Kiev

    Google Scholar 

  • Kulhanek SA, Leung B, Ricciardi A (2011) Using ecological niche models to predict the abundance and impact of invasive species: application to the common carp. Ecol Appl 21:203–213. doi:10.1890/09-1639.1

    PubMed  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. doi:10.1007/s004420100716

    PubMed  Google Scholar 

  • Lowry JK, Myers AA (2013) A Phylogeny and Classification of the Senticaudata subord. nov. Crustacea: Amphipoda). Zootaxa 3610:1–80. doi:10.11646/zootaxa.3610.1.1

    PubMed  CAS  Google Scholar 

  • Lyashenko AV, Zorina-Sakharova YY, Makovskiy VV, Sanzhak YO (2012) Modern state of the Ponto–Caspian Complex of the macrofauna of invertebrates in the Lower Reaches of the Danube River within the territory of Ukraine. Hydrobiol J 48:18–37. doi:10.1615/HydrobJ.v48.i4.20

    Google Scholar 

  • Mastitsky SE, Makarevich OA (2007) Distribution and abundance of Ponto–Caspian amphipods in the Belarusian section of the Dnieper River. Aquat Invasions 2:39–44. doi:10.3391/ai.2007.2.1.4

    Google Scholar 

  • Nesemann H, Pöckl M, Wittmann KJ (1995) Distribution of epigean Malacostraca in the middle and upper Danube (Hungary, Austria, Germany). Misc Zool Hung 10:49–68

    Google Scholar 

  • Nosek JN, Oertel N (1980) Zoologische Untersuchungen an Aufwüchsen in der Donau zwischen Rajka und Budapest. Ann Univ Sci Budapestinensis Rolando Eotvos Nomin Sect Biol 22–23:187–204

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R et al (2016) Vegan: community ecology package. R package version 2.3-5. http://CRAN.R-project.org/package=vegan

  • Pligin YV, Matchinskaya SF, Zheleznyak NI, Linchuk MI (2014) Long-term distribution of alien species of macroinvertebrates in the ecosystems of the Dnieper Reservoirs. Hydrobiol J 50:3–17. doi:10.1615/HydrobJ.v50.i2.10

    Google Scholar 

  • Popescu-Marinescu V, Năstăsescu M (2005) Amphipods (Gammaridae and Corophiidae) from iron gates I and II Dam lakes–Danube (Romania), concerning especially 2002 situation. Trav Muséum Natl D’Histoire Nat Grigore Antipa 48:501–521

    Google Scholar 

  • Pothoven SA, Grigorovich IA, Fahnenstiel GL, Balcer MD (2007) Introduction of the Ponto–Caspian bloody-red mysid Hemimysis anomala into the Lake Michigan basin. J Gt Lakes Res 33:285–292. http://dx.doi.org/10.3394/0380-1330(2007)33[285:IOTPBM]2.0.CO;2

    Google Scholar 

  • Prunescu-Arion E, Elian L (1965) Beitrag zum Studium der Fauna und der Ökologie der Gammariden im rumänischen Abschnitt der Donau. Veröff Arbeitsgemeinschaft Donauforsch 2:65–79

    Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Rachalewski M, Konopacka A, Grabowski M, Bacela-Spychalska K (2013) Echinogammarus trichiatus (Martynov, 1932): a new Ponto–Caspian amphipod invader in Poland with remarks on other alien amphipods from the Oder River. Crustaceana 86:1224–1233. doi:10.1163/15685403-00003228

    Google Scholar 

  • Reinhold M, Tittizer T (1999) Verschleppung von Makrozoen durch Kühlwasserfilter eines Schiffes. Wasser Boden 51:61–66

    Google Scholar 

  • Ricciardi A, MacIsaac HJ (2000) Recent mass invasion of the North American Great Lakes by Ponto–Caspian species. Trends Ecol Evol 15:62–65. doi:10.1016/S0169-5347(99)01745-0

    PubMed  CAS  Google Scholar 

  • Ricciardi A, Avlijas S, Marty J (2012) Forecasting the ecological impacts of the Hemimysis anomala invasion in North America: lessons from other freshwater mysid introductions. J Gt Lakes Res 38:7–13. doi:10.1016/j.jglr.2011.06.007

    Google Scholar 

  • Sebestyén O (1934) A vándorkagyló (Dreissensia polymorpha Pall.) és a szövőbolharák (Corophium curvispinum G. O. Sars forma devium Wundsch) megjelenése és rohamos térfoglalása a Balatonban [Appearance and rapid increase of Dreissensia polymorpha Pall. and Corophium curvispinum G. O. Sars forma devium Wundsch in Lake Balaton]. Magy Biológiai Kutint Munkái 7:190–204

    Google Scholar 

  • Semenchenko V, Vezhnovetz V (2008) Two new invasive Ponto–Caspian amphipods reached the Pripyat River, Belarus. Aquat Invasions 3:445–447. doi:10.3391/ai.2008.3.4.14

    Google Scholar 

  • Semenchenko VP, Son MO, Novitsky RA et al (2015) Alien macroinvertebrates and fish in the Dnieper River basin. Russ J Biol Invasions 6:51–64. doi:10.1134/S2075111715010063

    Google Scholar 

  • Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81–102. doi:10.1146/annurev.ecolsys.110308.120304

    Google Scholar 

  • Strobl C, Boulesteix A-L, Zeileis A, Hothorn T (2007) Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinform 8:25. doi:10.1186/1471-2105-8-25

    Google Scholar 

  • Strobl C, Boulesteix A-L, Kneib T et al (2008) Conditional variable importance for random forests. BMC Bioinform 9:307. doi:10.1186/1471-2105-9-307

    Google Scholar 

  • Unger E (1918) A Corophium devium előfordulása a Dunában [Occurrence of Corophium devium in the Danube]. Állattani Közlemények 17:148–149

    Google Scholar 

  • Van den Brink FWB, Van der Velde G, Bij de Vaate A (1993) Ecological aspects, explosive range extension and impact of a mass invader, Corophium curvispinum Sars, 1895 (Crustacea: Amphipoda), in the Lower Rhine (The Netherlands). Oecologia 93:224–232. doi:10.1007/BF00317675

    PubMed  Google Scholar 

  • Van Kleunen M, Dawson W, Schlaepfer D et al (2010a) Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecol Lett 13:947–958. doi:10.1111/j.1461-0248.2010.01503.x

    PubMed  Google Scholar 

  • Van Kleunen M, Weber E, Fischer M (2010b) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245. doi:10.1111/j.1461-0248.2009.01418.x

    PubMed  Google Scholar 

  • Vasilenko S, Jaume D (2015) Check-list for Caspian Sea Cumaceans. http://www.zin.ru/projects/caspdiv/caspian_cumaceans.html. Accessed 08 Apr 2015

  • Weinzierl A, Seitz G, Thannemann R (1997) Echinogammarus trichiatus (Amphipoda) und Atyaephyra desmaresti (Decapoda) in der bayerischen Donau. Lauterbornia 31:31–32

    Google Scholar 

  • Williamson M (1999) Invasions. Ecography 22:5–12. doi:10.1111/j.1600-0587.1999.tb00449.x

    Google Scholar 

  • Williamson MH, Fitter A (1996) The characters of successful invaders. Biol Conserv 78:163–170. doi:10.1016/0006-3207(96)00025-0

    Google Scholar 

  • Wittmann KJ (2002) Weiteres Vordringen pontokaspischer Mysidacea (Crustacea) in die mittlere und obere Donau: Erstnachweise von Katamysis warpachowskyi für Ungarn, die Slowakei und Österreich mit Notizen zur Biologie und zum ökologischen Gefährdungspotential. Lauterbornia 44:49–63

    Google Scholar 

  • Wittmann KJ, Theiss J, Banning M (1999) Die Drift von Mysidacea und Decapoda und ihre Bedeutung für die Ausbreitung von Neozoen im Main-Donau-System. Lauterbornia 35:53–66

    Google Scholar 

  • Woynárovich E (1954) Vorkommen der Limnomysis benedeni Czern. im ungarischen Donauabschnitt. Acta Zool Acad Sci Hung 1:177–185

    Google Scholar 

Download references

Acknowledgements

Joint Danube Survey 3 was organized by the International Commission for the Protection of the Danube River (ICPDR). We would like to thank everyone involved in the organization, field work, and evaluation of the survey for their effort. This work was supported by the MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded by the European Union under the 7th Framework Programme, grant Agreement No: 603378. Péter Borza was supported by the Scholarship of the Scholarship Foundation of the Republic of Austria for Post-docs from October 2013 until March 2014 (funding organization: OeAD-GmbH on behalf of and financed by the Scholarship Foundation of the Republic of Austria). We thank Karl J. Wittmann for data on D. pengoi distribution, Michał Grabowski for remarks on amphipod taxonomy, and Ferenc Jordán, Dénes Schmera and two anonymous referees for useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Borza.

Appendix

Appendix

See Fig. 7.

Fig. 7
figure 7

Triplot of the RDA model including six explanatory variables. Samples are not shown for the sake of perspicuity. Black triangles invasive species, white triangles non-invasive species, solid line convex hull for invasive species, dashed line convex hull for non-invasive species. Substrate types (explanation in Table 1): ARG argyllal, LIT lithal, PEL pelal, PPE psammopelal, PSA psammal, PHY phytal. Abbreviations of continuous variables: con conductivity, dis dissolved O2, chl chlorophyll-a, toP total phosphorus. Abbreviations of species names as in Fig. 3 (specimens identified to genus level are not included)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borza, P., Huber, T., Leitner, P. et al. Success factors and future prospects of Ponto–Caspian peracarid (Crustacea: Malacostraca) invasions: Is ‘the worst over’?. Biol Invasions 19, 1517–1532 (2017). https://doi.org/10.1007/s10530-017-1375-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1375-7

Keywords

Navigation