Skip to main content

Advertisement

Log in

Global networks for invasion science: benefits, challenges and guidelines

  • Perspectives and paradigms
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Much has been done to address the challenges of biological invasions, but fundamental questions (e.g., which species invade? Which habitats are invaded? How can invasions be effectively managed?) still need to be answered before the spread and impact of alien taxa can be effectively managed. Questions on the role of biogeography (e.g., how does biogeography influence ecosystem susceptibility, resistance and resilience against invasion?) have the greatest potential to address this goal by increasing our capacity to understand and accurately predict invasions at local, continental and global scales. This paper proposes a framework for the development of ‘Global Networks for Invasion Science’ to help generate approaches to address these critical and fundamentally biogeographic questions. We define global networks on the basis of their focus on research questions at the global scale, collection of primary data, use of standardized protocols and metrics, and commitment to long-term global data. Global networks are critical for the future of invasion science because of their potential to extend beyond the capacity of individual partners to identify global priorities for research agendas and coordinate data collection over space and time, assess risks and emerging trends, understand the complex influences of biogeography on mechanisms of invasion, predict the future of invasion dynamics, and use these new insights to improve the efficiency and effectiveness of evidence-based management techniques. While the pace and scale of global change continues to escalate, strategic and collaborative global networks offer a powerful approach to inform responses to the threats posed by biological invasions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrawal AA, Kotanen PM, Mitchell CE, Power AG, Godsoe W, Klironomos J (2005) Enemy release? An experiment with congeneric plant pairs and diverse above- and belowground enemies. Ecology 86:2979–2989. doi:10.1890/05-0219

    Google Scholar 

  • Ahern J (2013) Urban landscape sustainability and resilience: the promise and challenges of integrating ecology with urban planning and design. Landscape Ecol 28:1203–1212. doi:10.1007/s10980-012-9799-z

    Google Scholar 

  • Avolio ML, Beaulieu JM, Smith MD (2013) Genetic diversity of a dominant C-4 grass is altered with increased precipitation variability. Oecologia 171:571–581. doi:10.1007/s00442-012-2427-4

    PubMed  Google Scholar 

  • Barney JN, Tekiela DR, Barrios-Garcia MN, Dimarco RD, Hufbauer RA, Leipzig-Scott P, Nuñez MA, Pauchard A, Pyšek P, Vítková M, Maxwell BD (2015) Global Invader Impact Network (GIIN): toward standardized evaluation of the ecological impacts of invasive plants. Ecol Evol 5:2878–2889. doi:10.1002/ece3.1551

    PubMed  PubMed Central  Google Scholar 

  • Catford JA, Jansson R, Nilsson C (2009) Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib 15:22–40

    Google Scholar 

  • Colautti RI, Maron JL, Barrett SCH (2009) Common garden comparisons of native and introduced plant populations: latitudinal clines can obscure evolutionary inferences. Evol Appl 2:187–199. doi:10.1111/j.1752-4571.2008.00053.x

    PubMed  Google Scholar 

  • Colautti RI, Franks SJ, Hufbauer RA, Kotanen P, Torchin M, Byers JE, Pyšek P, Bossdorf O (2014a) The Global Garlic Mustard Field Survey (GGMFS): challenges and opportunities of a unique, large-scale collaboration for invasion biology. NeoBiota 21:29–47. doi:10.3897/neobiota.21.5242

    Google Scholar 

  • Colautti RI, Parker JD, Cadotte MW, Pyšek P, Brown CS, Sax DF, Richardson DM (2014b) Quantifying the invasiveness of species. NeoBiota 21:7–27. doi:10.3897/neobiota.21.5310

    Google Scholar 

  • Cronin JT, Bhattarai GP, Allen WJ, Meyerson LA (2015) Biogeography of a plant invasion: plant–herbivore interactions. Ecology 96:1115–1127. doi:10.1890/14-1091.1

    PubMed  Google Scholar 

  • Daehler CD, van Kleunen M, Pyšek P, Richardson DM (2016) EMAPi 2015: highlighting links between science and management of alien plant invasions. NeoBiota 30:1–3. doi:10.3897/neobiota.30.9594

    Google Scholar 

  • Dietz H, Kueffer C, Parks CG (2006) MIREN: a new research network concerned with plant invasion into mountain areas. Mount Res Develop 26:80–81. doi:10.1659/0276-4741(2006)026[0080:MANRNC]2.0.CO;2

  • Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmánek M, Williamson M (eds) (1989) Biological invasions: a global perspective. Wiley, Chichester

    Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139. doi:10.1016/S0169-5347(98)01554-7

    PubMed  CAS  Google Scholar 

  • Eriksen RL, Hierro JL, Eren Ö, Andonian K, Török K, Becerra PI, Montesinos D, Khetsuriani L, Diaconu A, Kesseli R (2014) Dispersal pathways and genetic differentiation among worldwide populations of the invasive weed Centaurea solstitialis L. (Asteraceae). PLoS ONE 9:e114786

    PubMed  PubMed Central  Google Scholar 

  • Fraser LH, Henry HAL, Carlyle CN, White SR, Beierkuhnlein C, Cahill JF Jr, Casper BB, Cleland E, Collins SL, Dukes JS, Knapp AK, Lind E, Long R, Luo Y, Reich PB, Smith MD, Sternberg M, Turkington R (2013) Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Front Ecol Environ 11:147–155. doi:10.1890/110279

    Google Scholar 

  • Fridley JD, Stachowicz JJ, Naeem S, Sax DF, Seabloom EW, Smith MD, Stohlgren TJ, Tilman D, Von Holle B (2007) The invasion paradox: reconciling pattern and process in species invasions. Ecology 88:3–17. doi:10.1890/0012-9658(2007)88[3:TIPRPA]2.0.CO;2

  • Gaziulusoy AI, Ryan C, McGrail S, Chandler P, Twomey P (2016) Identifying and addressing challenges faced by transdisciplinary research teams in climate change research. J Clean Prod 123:55–64. doi:10.1016/j.jclepro.2015.08.049

    Google Scholar 

  • Guarino F, Cicatelli A, Brundu G, Heinze B, Castiglione S (2015) Epigenetic diversity of clonal white poplar (Populus alba L.) populations: could methylation support the success of vegetative reproduction strategy? PLoS ONE 10(7):e0131480. doi:10.1371/journal.pone.0131480

    PubMed  PubMed Central  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. doi:10.1111/j.1461-0248.2005.00792.x

    PubMed  Google Scholar 

  • Guo WY, Lambertini C, Nguyen LX, Li XZ, Brix H (2014) Preadaptation and post-introduction evolution facilitate the invasion of Phragmites australis in North America. Ecol Evol 4:4567–4577. doi:10.1002/ece3.1286

    PubMed  PubMed Central  Google Scholar 

  • Guo WY, Lambertini C, Guo X, Li XZ, Eller F, Brix H (2016) Phenotypic traits of the Mediterranean Phragmites australis M1 lineage: differences between the native and introduced ranges. Biol Invasions 18:2551. doi:10.1007/s10530-016-1236-9

    Google Scholar 

  • He Q, Bertness MD, Altieri AH (2013) Global shifts towards positive species interactions with increasing environmental stress. Ecol Lett 16:695–706

    PubMed  Google Scholar 

  • Hejda M (2013) Do species differ in their ability to coexist with the dominant alien Lupinus polyphyllus? A comparison between two distinct invaded ranges and a native range. NeoBiota 17:39–55

    Google Scholar 

  • Hierro JL, Maron JL, Callaway RM (2005) A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol 93:5–15

    Google Scholar 

  • Hierro JL, Eren Ö, Villarreal D, Chiuffo MC (2013) Non-native conditions favor non-native populations of invasive plant: demographic consequences of seed size variation? Oikos 122:583–590

    Google Scholar 

  • Hui C, Richardson DM (2017) Invasion dynamics. Oxford University Press, Oxford

    Google Scholar 

  • Hulme PE (2003) Biological invasions: winning the science battles but losing the conservation war? Oryx 37:178–193

    Google Scholar 

  • Hulme PE (2006) Beyond control: wider implications for the management of biological invasions. J Appl Ecol 43:835–847

    Google Scholar 

  • Iannone BV, Potter KM, Guo Q, Liebhold AM, Pijanowski BC, Oswalt CM, Fei S (2016) Biological invasion hotspots: a trait-based perspective reveals new sub-continental patterns. Ecography (in press, doi: 10.1111/ecog.01973)

  • Jarnevich CS, Simpson A, Graham JJ, Newman GJ, Bargeron CT (2015) Running a network on a shoestring: the Global Invasive Species Information Network. Manage Biol Invasions 6:137–146. doi:10.3391/mbi.2015.6.2.04

    Google Scholar 

  • Jeschke JM, Aparicio LG, Haider S, Heger T, Lortie CJ, Pyšek P, Strayer DL (2012) Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 14:1–20. doi:10.3897/neobiota.14.3435

    Google Scholar 

  • Joshi J, Vrieling K (2005) The enemy release and EICA hypothesis revisited: incorporating the fundamental difference between specialist and generalist herbivores. Ecol Lett 8:704–714

    Google Scholar 

  • Katsanevakis S, Roy HE (2015) Alien species related information systems and information management. Manage Biol Invasions 6:115–117. doi:10.3391/mbi.2015.6.2.01

    Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Google Scholar 

  • Kolar CS, Lodge TS (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204

    PubMed  Google Scholar 

  • Kowarik I, Starfinger U (2009) Neobiota: a European approach. NeoBiota 8:21–28

    Google Scholar 

  • Kueffer C (2010) Transdisciplinary research is needed to predict plant invasions in an era of global change. Trends Ecol Evol 25:619–620

    PubMed  Google Scholar 

  • Kueffer C (2016) A year without flying: the importance of virtual networking, The Mountain Blogs, Mountain Research Institute. Posted 22 January 2016. http://www.blogs-mri.org/a-year-without-flying/. Accessed 31 Aug 2016

  • Kueffer C, Pyšek P, Richardson DM (2013) Integrative invasion science: model systems, multi-site studies, focused meta-analysis, and invasion syndromes. New Phytol 200:615–633. doi:10.1111/nph.12415

    PubMed  Google Scholar 

  • Kühn I, Kowarik I, Kollmann J, Starfinger U, Bacher S, Blackburn TM, Bustamante RO, Celesti-Grapow L, Chytrý M, Colautti RI, Essl F, Foxcroft LC, García-Berthou E, Gollasch S, Hierro J, Hufbauer RA, Hulme PE, Jarošík V, Jeschke JM, Karrer G, Mack RN, Molofsky J, Murray BR, Nentwig W, Osborne B, Pyšek P, Rabitsch W, Rejmánek M, Roques A, Shaw R, Sol D, van Kleunen M, Vilà M, von der Lippe M, Wolfe LM, Penev L (2011) Open minded and open access: introducing NeoBiota, a new peer-reviewed journal of biological invasions. NeoBiota 9:1–12. doi:10.3897/neobiota.9.1835

    Google Scholar 

  • Latombe G, Pyšek P, Jeschke JM, Blackburn TM, Bacher S, Capinha C, Costello MJ, Fernández M, Gregory RD, Hobern D, Hui C, Jetz W, Kumschick S, McGrannachan C, Pergl J, Roy HE, Scalera R, Squires ZE, Wilson JRU, Winter M, Genovesi P, McGeoch MA (2016) A vision for global monitoring of biological invasions. Biol Cons. doi:10.1016/j.biocon.2016.06.013

    Article  Google Scholar 

  • Lee Y, Kotanen PM (2015) Differences in herbivore damage and performance among Arctium minus (burdock) genotypes sampled from a geographic gradient: a common garden experiment. Biol Invasions 17:397–408

    Google Scholar 

  • Lindenmayer D, Hobbs RJ, Montague-Drake R, Alexandra J, Bennett A, Burgman M, Cale P, Calhoun A, Cramer V, Cullen P, Driscoll D, Fahrig L, Fischer J, Franklin J, Haila Y, Hunter M, Gibbons P, Lake S, Luck G, MacGregor C, McIntyre S, Mac Nally R, Manning A, Miller J, Mooney H, Noss R, Possingham HP, Saunders D, Schmiegelow F, Scott M, Simberloff D, Sisk T, Tabor G, Walker B, Wiens J, Woinarski J, Zavaleta E (2008) A checklist for ecological management of landscapes for conservation. Ecol Lett 11:78–91

    PubMed  Google Scholar 

  • Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536

    Google Scholar 

  • Lopezaraiza-Mikel ME, Hayes RB, Whalley MR, Memmott J (2007) The impact of an alien plant on a native plant-pollinator network: an experimental approach. Ecol Lett 10:539–550

    PubMed  Google Scholar 

  • Lord J, Whitlatch R (2015) Predicting competitive shifts and responses to climate change based on latitudinal distributions of species assemblages. Ecology 96:1264–1274

    PubMed  Google Scholar 

  • Lu XM, Siemann E, He MY, Wei H, Shao X, Ding J (2015) Climate warming increases biological control agent impact on a non-target species. Ecol Lett 18:48–56

    PubMed  Google Scholar 

  • Lucy FE, Roy H, Simpson A, Carlton JT, Hanson JM, Magellan K, Campbell ML, Costello MJ, Pagad S, Hewitt CL, McDonald J, Cassey P, Thomaz SM, Katsanevakis S, Zenetos A, Tricarico E, Boggero E, Groom QJ, Adriaens T, Vanderhoeven S, Torchin M, Hufbauer R, Fuller P, Carman MR, Conn DB, Vitule JRS, Canning-Clode J, Galil BS, Ojaveer H, Bailey SA, Therriault TW, Claudi R, Gazda A, Dick JTA, Caffrey J, Witt A, Kenis M, Lehtiniemi M, Helmisaari H, Panov VE (2016) INVASIVESNET towards an international association for open knowledge on invasive alien species. Manage Biol Invasions 7:131–139

    Google Scholar 

  • Maron J, Vilà M, Bommarco R, Elmendorf S, Beardsley P (2004) Rapid evolution of an invasive plant. Ecol Monog 2:261-280. http://www.jstor.org/stable/4539056

  • Max-Neef MA (2005) Foundations of transdisciplinarity. Ecol Econ 53:5–16

    Google Scholar 

  • McDougall K, Alexander J, Haider S, Pauchard A, Walsh N, Kueffer C (2011) Alien flora of mountains: global comparisons for the development of local preventive measures against plant invasions. Divers Distrib 17:103–111

    Google Scholar 

  • Meyerson LA, Mooney HA (2007) Invasive alien species in an era of globalization. Front Ecol Environ 5:199–208

    Google Scholar 

  • Meyerson LA, Reaser JK (2003) Biosecurity, bioterrorism, and invasive alien species. Front Ecol Environ 1:307–314

    Google Scholar 

  • Meyerson LA, Viola D, Brown R (2010) Hybridization of invasive Phragmites australis with a native subspecies in North America. Biol Invasions 12:103–111

    Google Scholar 

  • Meyerson LA, Cronin JT, Bhattarai GP, Brix H, Lambertini C, Lučanová M, Rinehart S, Suda J, Pyšek P (2016a) Do ploidy level and nuclear genome size and latitude of origin modify the expression of Phragmites australis traits and interaction with herbivores? Biol Invasions 2016:1–19. doi:10.1007/s10530-016-1200-8

    Google Scholar 

  • Meyerson LA, Cronin JT, Pyšek P (2016b) Phragmites australis as a model organism for studying plant invasions. Biol Invasions 2016:1–11. doi:10.1007/s10530-016-1132-3

    Google Scholar 

  • Mooney HA, Mack RN, McNeely JA, Neville LE, Schei PJ, Waage JK (eds) (2005) Invasive alien species: a new synthesis. Island Press, Washington

    Google Scholar 

  • Nassauer JI, Opdam P (2008) Design in science: extending the landscape ecology paradigm. Landsc Ecol 23:633–644

    Google Scholar 

  • Ndlovu J, Richardson DM, Wilson JRU, Le Roux JJ (2013) Co-invasion of South African ecosystems by an Australian legume and its rhizobial symbionts. J Biogeogr 40:1240–1251

    Google Scholar 

  • Packer JG, Delean S, Kueffer C, Prider J, Abley K, Facelli JM, Carthew SM (2016) Native faunal communities depend on habitat from non-native plants in novel but not in natural ecosystems. Biodiv Conserv 25:503–523

    Google Scholar 

  • Pagad S, Genovesi P, Carnevali L, Scalera R, Clout M (2015) IUCN SSC Invasive Species Specialist Group: invasive alien species information management supporting practitioners, policy makers and decision takers. Manage Biol Invasions 6:127–135

    Google Scholar 

  • Parker JD, Torchin ME, Hufbauer RA, Lemoine NP, Alba C, Blumenthal DM, Bossdorf O, Byers JE, Dunn AM, Heckman RW, Hejda M, Jarošík V, Kanarek AR, Martin LB, Perkins SE, Pyšek P, Schierenbeck K, Schlöder C, van Klinken R, Vaughn KJ, Williams W, Wolfe LM (2013) Do invasive species perform better in their new ranges? Ecology 94:985–994. doi:10.1890/12-1810.1

    PubMed  Google Scholar 

  • Pauls SU, Nowak C, Bálint M, Pfenninger M (2013) The impact of global climate change on genetic diversity within populations and species. Mol Ecol 22:925–946

    PubMed  Google Scholar 

  • Petersen AM, Pavlidis I, Semendeferi I (2014) A quantitative perspective on ethics in large team science. Sci Engin Ethics 20:923–945. doi:10.1007/s11948-014-9562-8

    Google Scholar 

  • Pohl C (2005) Transdisciplinary collaboration in environmental research. Futures 37:1159–1178

    Google Scholar 

  • Pyšek P, Richardson DM (2007) Traits associated with invasiveness in alien plants: where do we stand? In: Nentwig W (ed) Biological invasions, Ecological studies 193. Springer-Verlag, Berlin, pp 97–125

    Google Scholar 

  • Pyšek P, Richardson DM, Jarošík V (2006) Who cites who in the invasion zoo: insights from an analysis of the most highly cited papers in invasion ecology. Preslia 78:437–468

    Google Scholar 

  • Pyšek P, Richardson DM, Pergl J, Jarošík V, Sixtová Z, Weber E (2008) Geographical and taxonomic biases in invasion ecology. Trends Ecol Evol 23:237–244. doi:10.1016/j.tree.2008.02.002

    PubMed  Google Scholar 

  • Pyšek P, Jarošík V, Pergl J, Randall R, Chytrý M, Kühn I, Tichý L, Danihelka J, Chrtek jun J, Sádlo J (2009) The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Divers Distrib 15(5):891–903

    Google Scholar 

  • Pyšek P, Jarošík V, Hulme PE, Kühn I, Wild J, Arianoutsou M, Bacher S, Chiron F, Didžiulis V, Essl F, Genovesi P, Gherardi F, Hejda M, Kark S, Lambdon PW, Desprez-Loustau A-M, Nentwig W, Pergl J, Poboljšaj K, Rabitsch W, Roques A, Roy DB, Shirley S, Solarz W, Vilà M, Winter M (2010) Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc Natl Acad Sci USA 107:12157–12162. doi:10.1073/pnas.1002314107

    PubMed  PubMed Central  Google Scholar 

  • Pyšek P, Manceur AM, Alba C, McGregor KF, Pergl J, Štajerová K, Chytrý M, Danihelka J, Kartesz J, Klimešová J, Lučanová M, Moravcová L, Nishino M, Sádlo J, Suda J, Tichý L, Kühn I (2015) Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96:762–774. doi:10.1890/14-1005.1

    PubMed  Google Scholar 

  • Rapo C, Muller-Scharer H, Vrieling K, Schaffner U (2010) Is there rapid evolutionary response in introduced populations of tansy ragwort, Jacobaea vulgaris, when exposed to biological control? Evol Ecol 24:1081–1099

    Google Scholar 

  • Ravenscroft CH, Whitlock R, Fridley JD (2015) Rapid genetic divergence in response to 15 years of simulated climate change. Glob Change Biol 21:4165–4176

    Google Scholar 

  • Rejmánek M, Richardson DM (2013) Trees and shrubs as invasive alien species—2013 update of the global database. Diversity Distrib 19:1093–1094

    Google Scholar 

  • Ricciardi A, Steiner WWM, Mack RN, Simberloff D (2000) Toward a global information system for invasive species. Bioscience 50:239–244. doi:10.1641/0006-3568(2000)050[0239:TAGISF]2.3.CO;2

  • Richardson DM (2011) Invasion science: the roads travelled and the roads ahead. In: Richardson DM (ed) Fifty years of invasion ecology. The legacy of Charles Elton. Wiley-Blackwell, Oxford, pp 397–407. doi: 10.1002/9781444329988.ch29

  • Richardson DM, Bond WJ (1991) Determinants of plant distribution: evidence from pine invasions. Am Nat 137:639–668

    Google Scholar 

  • Richardson BJ, Lefroy T (2016) Restoration dialogues: improving the governance of ecological restoration. Restor Ecol 24:668–673. doi:10.1111/rec.12391

    Google Scholar 

  • Richardson DM, Pyšek P (2006) Plant invasions: merging the concepts of species invasiveness and community invasibility. Progr Phys Geogr 30:409–431

    Google Scholar 

  • Richardson DM, Pyšek P (2012) Naturalization of introduced plants: ecological drivers of biogeographic patterns. New Phytol 196:383–396

    PubMed  Google Scholar 

  • Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmánek M (2000) Plant invasions: the role of mutualisms. Biol Rev 75:65–93

    PubMed  CAS  Google Scholar 

  • Richardson DM, Rouget M, Rejmánek M (2004) Using natural experiments in the study of alien tree invasions: opportunities and limitations. In: Gordon MS, Bartol SM (eds) Experimental approaches to conservation biology. University of California Press, Berkeley, pp 180–201

    Google Scholar 

  • Richardson DM, van Wilgen BW, Nunez MA (2008) Alien conifer invasions in South America: short fuse burning? Biol Invasions 10:573–577

    Google Scholar 

  • Richardson DM, Daehler CC, Leishman MR, Pauchard A, Pyšek P (2010) Plant invasions: theoretical and practical challenges. Biol Invasions 12:3907–3911

    Google Scholar 

  • Richardson DM, Carruthers J, Hui C, Impson FAC, Miller JT, Robertson MP, Rouget M, Le Roux JJ, Wilson JRU (2011) Human-mediated introductions of Australian acacias: a global experiment in biogeography. Diversity Distrib 17:771–787

    Google Scholar 

  • Rodríguez-Echeverría S (2010) Rhizobial hitchhikers from Down Under: invasional meltdown in a plant-bacteria mutualism? J Biogeogr 37:1611–1622

    Google Scholar 

  • Rogers WE, Siemann E (2004) Invasive ecotypes tolerate herbivory more effectively than native ecotypes of the Chinese tallow tree Sapium sebiferum. J Appl Ecol 41:561–570

    Google Scholar 

  • Roques A, Fan J-T, Courtial B, Zhang Y-Z, Yart A, Auger-Rozenberg M-A, Denux O, Kenis M, Baker R, Sun J-H (2015) Planting sentinel European trees in Eastern Asia as a novel method to identify potential insect pest invaders. PLoS ONE 10:e0120864

    PubMed  PubMed Central  Google Scholar 

  • Schrey AW, Alvarez M, Foust CM, Kilvitis HJ, Lee JD, Liebl LB, Martin CL, Richards M, Robertson AW (2013) Ecological epigenetics: beyond MS-AFLP. Integr Comp Biol 53(2):340–350. doi:10.1093/icb/ict012

    PubMed  Google Scholar 

  • Simberloff D, Nuñez M, Ledgard NJ, Pauchard A, Richardson DM, Sarasola M, van Wilgen BW, Zalba SM, Zenni RD, Bustamante R, Peña E, Ziller SR (2010) Spread and impact of introduced conifers in South America: lessons from other southern hemisphere regions. Austral Ecol 35:489–504. doi:10.1111/j.1442-9993.2009.02058.x

    Google Scholar 

  • Strayer DL (2012) Eight questions about invasions and ecosystem functioning. Ecol Lett 15:1199–1210. doi:10.1111/j.1461-0248.2012.01817.x

    PubMed  Google Scholar 

  • Suda J, Meyerson LA, Leitch I, Pyšek P (2015) The hidden side of plant invasions: the role of genome size. New Phytol 205:994–1007. doi:10.1111/nph.13107

    PubMed  Google Scholar 

  • Tho BT, Sorrell BK, Lambertini C, Eller F, Brix H (2016) Phragmites australis: how do genotypes of different phylogeographic origin differ from their invasive genotypes in growth, nitrogen allocation and gas exchange? Biol Invasions 18:2563–2576. doi:10.1007/s10530-016-1158-6

    Google Scholar 

  • Thompson GD, Bellstedt DU, Richardson DM, Wilson JRU, Le Roux JJ (2015) A tree well travelled: global genetic structure of the invasive tree Acacia saligna. J Biogeogr 42:305–314. doi:10.1111/jbi.12436

    Google Scholar 

  • van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245

    PubMed  Google Scholar 

  • van Kleunen M, Dawson W, Essl F, Pergl J, Winter M, Weber E, Kreft H, Weigelt P, Kartesz J, Nishino M, Antonova LA, Barcelona JF, Cabezas FJ, Cárdenas D, Cárdenas-Toro J, Castaño N, Chacón E, Chatelain C, Ebel AL, Figueiredo E, Fuentes N, Groom QJ, Henderson L, Inderjit Kupriyanov A, Masciadri S, Meerman J, Morozova O, Moser D, Nickrent DL, Patzelt A, Pelser PB, Baptiste MP, Poopath M, Schulze M, Seebens H, Shu W, Thomas J, Velayos M, Wieringa JJ, Pyšek P (2015) Global exchange and accumulation of non-native plants. Nature 525:100–103. doi:10.1038/nature14910

    PubMed  Google Scholar 

  • van Wilgen BW, Davies SJ, Richardson DM (2014) Invasion science for society: a decade of contributions from the Centre for Invasion Biology. S Afr J Sci. doi:10.1590/sajs.2014/a0074

    Article  Google Scholar 

  • Walther GR, Gritti ES, Berger S, Hickler T, Tang ZY, Sykes MT (2007) Palms tracking climate change. Global Ecol Biogeogr 16:801–809

    Google Scholar 

  • Wickson F, Carew AL, Russell AW (2006) Transdisciplinary research: characteristics, quandaries and quality. Futures 38:1046–1059. doi:10.1016/j.futures.2006.02.011

    Google Scholar 

  • Wilson JRU, Caplat P, Dickie IA, Hui C, Maxwell BD, Nuñez MA, Pauchard A, Rejmánek M, Richardson DM, Robertson MP, Spear D, Webber BL, van Wilgen BW, Zenni RD (2014) A standardized set of metrics to assess and monitor tree invasions. Biol Invasions 16:535–551. doi:10.1007/s10530-013-0605-x

    Google Scholar 

  • Woodford DJ, Richardson DM, MacIsaac HJ, Mandrak NE, van Wilgen BW, Wilson JRU, Weyl OLF (2016) Confronting the wicked problem of managing biological invasions. Neobiota 31:63–86

    Google Scholar 

  • Zenetos A. (ed.), 2015. Illustrated Guide of Marine Alien species in the Mediterranean for Students and Citizen Scientists. COST1209 Action: Alien Challenge, 22 pp

Download references

Acknowledgements

We gratefully acknowledge the generosity of the University of Sassari, Italy, in hosting the PhragNet 2016 planning meetings and creating the space that facilitated this manuscript. DMR and SC acknowledge support from the DST-NRF Centre of Excellence for Invasion Biology and the Working for Water Programme through their collaborative research project on ‘Integrated management of invasive alien species in South Africa’ and the National Research Foundation of South Africa (Grant 85417 to DMR). SC’s work was supported by the South African National Department of Environment Affairs through its funding of the South African National Biodiversity Institute Invasive Species Programme. HB, CL and FE were supported by the Danish Council for Independent Research | Natural Sciences (Project DFF-4002-00333). JTC, WJA and GPB were supported by NSF grant DEB 1050084 to JTC. LAM was supported by NSF DEB 1049914 to LAM and by the University of Rhode Island, College of Environment and Life Sciences. PP, JC, WYG and HS were supported by long-term research development project RVO 67985939 (The Czech Academy of Sciences), and Project No. 14-15414S (Czech Science Foundation). PP acknowledges support by Praemium Academiae award from The Czech Academy of Sciences. JGP warmly thanks the Institute of Integrative Biology, ETH Zürich for welcoming hospitality and the Environment Institute and Faculty of Sciences, The University of Adelaide for support from Travel Grant 13116630.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmin G. Packer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Packer, J.G., Meyerson, L.A., Richardson, D.M. et al. Global networks for invasion science: benefits, challenges and guidelines. Biol Invasions 19, 1081–1096 (2017). https://doi.org/10.1007/s10530-016-1302-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1302-3

Keywords

Navigation