Skip to main content

Advertisement

Log in

Evidence of a climatic niche shift following North American introductions of two crane flies (Diptera; genus Tipula)

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Ecological niche models assume a species niche should be conserved over space and time. Increasingly, studies have determined that niche shifts may occur during biological invasion events. The aim of this study is to examine niche conservation for two invasive crane flies, Tipula oleracea Linnaeus and Tipula paludosa Meigen, after introductions into North America. These species have broadly sympatric invasive distributions but differ in time since introduction and dispersal abilities. As these factors may impact the area accessible to dispersal, I examined the impact of background area delineation on conclusions of niche conservation. Results indicated that alternative delineations of accessible area (i.e., background area) had no affect on measures of niche equivalence. Neither Tipula species was found to be occupying invasive niche space equivalent to that of their native ranges. Niche dissimilarity was found for both species, with results strongly impacted by the choice of background area. T. paludosa introductions displayed a niche shift across both invasive introductions when the model area drew climatic information from an area that buffered occurrences by 40 km. The eastern T. oleracea introduction displayed a niche shift when background information was drawn from within a 400 km buffered area. This study suggests that invasive populations may be displaying a niche shift when evaluated against one scale of background but conserved when evaluated against another scale. Dispersal limitations for T. oleracea in its eastern introduction and anthropogenic habitat associations for T. paludosa across both invasive introductions are indicated as causes for the observed niche shifts. The results of this study highlight the importance of carefully delineating the area accessible to invasive species in studies of niche conservation. Furthermore, it indicates that examining several spatial extents of background areas can be beneficial when examining niche conservation for species in non-equilibrium states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ackerly DD (2003) Community assembly, niche conservatism, and adaptive evolution in changing environments. Int J Plant Sci 164:S165–S184

    Article  Google Scholar 

  • Alexander CP (1942) Family Tipulidae. In: the diptera or true flies of connecticut. Part VI. Conn State Geol Nat Hist Surv Bull 64:196–509

    Google Scholar 

  • Alexander JM, Edwards PJ (2010) Limits to the niche and range margins of alien species. Oikos 119:1377–1386

    Google Scholar 

  • Anderson RP, Raza A (2010) The effect of the extent of study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J Biogeogr 37:1378–1393

    Article  Google Scholar 

  • Asche P, O’Connor P, Chandler PJ, Stubbs AE, Vane–Wright RI, Alexander KNA (2007) The craneflies (Diptera) of Ireland. Part 5 Tipulidae. Bull Ir Biogeogr Soc 31:296–357

    Google Scholar 

  • Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher S, Peterson AT, Soberón J, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distributional modeling. Ecol Model 222:1810–1819

    Article  Google Scholar 

  • Beaumont LJ, Gallagher RV, Thuiller W, Downey PO, Leishman MR, Hughes L (2009) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Divers Distrib 15:409–420

    Article  Google Scholar 

  • Beirne BP (1971) Pest insects of annual crop plants in Canada. Mem Entomol Soc Can 78:1–124

    Article  Google Scholar 

  • Blackshaw RP, Coll C (1999) Economically important leatherjackets of grassland and cereals: biology, impact and control. Integr Pest Manage Rev 4:143–160

    Article  Google Scholar 

  • Blackshaw RP, Perry JN (1994) Predicting leatherjacket population frequencies in Northern Ireland. Ann Appl Biol 124:213–219

    Article  Google Scholar 

  • Brodo FA (1994) The subgenus Tipula (Tipula) in Finland and Estonia. Entomol Fennica 5:49–52

    Google Scholar 

  • Broennimann O, Guisan A (2008) Predicting current and future biological invasions: both native and invaded ranges matter. Biol Lett 4:585–589

    Article  PubMed  Google Scholar 

  • Broennimann O, Treier UA, Müller–Schärer H, Thuiller W, Petersen AT, Guisan A (2007) Evidence of niche shift during biological invasion. Ecol Lett 10:701–709

    Article  CAS  PubMed  Google Scholar 

  • Butterfield J (1976) The response of development rate to temperature in the univoltine cranefly, Tipula subnodicornis Zetterstedt. Oecologia 25:89–100

    Article  Google Scholar 

  • Chefaui RM, Lobo JM (2008) Assessing the effects of pseudo-absences on predictive distribution model performance. Ecol Model 210:478–486

    Article  Google Scholar 

  • Coulson JC, Horobin JC, Butterfield J, Smith GRJ (1976) The maintenance of annual life-cycles in two species of Tipulidae (Diptera); a field study relating development, temperature and altitude. J Anim Ecol 45:215–233

    Article  Google Scholar 

  • Da Mata RA, Tidon R, Côrtes LG, de Marco P, Diniz-Filho JAF (2010) Invasive and flexible: niche shift in the drosophilid Zaprionus indianus (Insecta, Diptera). Biol Invasions 12:1231–1241

    Article  Google Scholar 

  • De Marco P, Jr Diniz-Filho JAF, Bini LM (2008) Spatial analysis improves species distribution modelling during range expansion. Biol Lett 4:577–580

    Article  PubMed  Google Scholar 

  • Dolédec S, Chessel D, Gimaret-Carpentier C (2000) Niche separation in community analysis: a new method. Ecology 81:2914–2927

    Google Scholar 

  • Donald PF, Evens AD (2006) Habitat connectivity and matrix restoration: the wider implications of agri-environment schemes. J Appl Ecol 43:209–218

    Article  Google Scholar 

  • Elith J, Leathwick J (2009) Conservation prioritisation using species distribution models. In: Moilanen A, Wilson KA, Possingham HP (eds) Spatial conservation prioritization: quantitative methods and computational tools. Oxford University Press, Oxford

    Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Perrier S, Guisan A (2006) Novel methods improve prediction of species’ distribution s from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Method Ecol Evol 1:330–342

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Fitzpatrick M, Weltzin J, Sanders N, Dunn R (2007) The biogeography of prediction error: why does the introduced range of the fire ant over–predict its native range? Glob Ecol Biogeogr 16:24–33

    Article  Google Scholar 

  • Fox CJS (1957) Note on occurrence in Cape Breton Island of Tipula paludosa Mg. (Diptera: Tipulidae). Can Entomol 89:288

    Article  Google Scholar 

  • Gelhaus JK (2006) The crane fly Tipula (Tipula) oleracea (Diptera: Tipulidae) reported from Michigan: a new pest of turfgrass for Eastern North America. Great Lakes Entomol 38:97–99

    Google Scholar 

  • Godsoe W (2010) Regional variation exaggerates ecological divergence in niche models. Syst Biol 59:298–306

    Article  PubMed  Google Scholar 

  • Graham CH, Ron SR, Santos JC, Schneider CJ, Moritz C (2004) Integrating phylogenetics and environmental niche models to explore speciation mechanisms in Dendrobatid frogs. Evolution 58:1781–1793

    PubMed  Google Scholar 

  • Hadley M (1971) Pupation and fecundity of Molophilus ater Meigen (Diptera: Tiplidae) in relation to larval weight. Oecologica 7:164–169

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symp Quan Biol 22:415–427

    Article  Google Scholar 

  • Jackson DM, Campbell RL (1975) Biology of the European crane fly, Tipula paludosa Meigen, in Washington (Tipulidae; Diptera). Wash State Univ Tech Bull 81:1–23

    Google Scholar 

  • Jiménez-Valverde A, Lobo JM, Hortal J (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Divers Distrib 14:885–890

    Article  Google Scholar 

  • LaGasa EH, Antonelli AL (2000) 1999 Western Washington Tipula oleracea survey (Diptera: Tipulidae). 1999 Entomology project report. Washington State Department of Agriculture Pub. 034

  • Laughlin R (1960) Biology of Tipula oleracea L.: growth of the larva. Entomol Exp Appl 3:185–197

    Article  Google Scholar 

  • Laughlin R (1967) Biology of Tipula paludosa: growth of the larva in the field. Entomol Exp Appl 10:52–68

    Article  Google Scholar 

  • Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. P Natl Acad Sci USA 104:3883–3888

    Article  CAS  Google Scholar 

  • Libungan LA (2006) Vistfræði varmasmiðs (Carabus nemoralis) og folaflugu (Tipula paludosa). BSc Thesis, University of Iceland

  • Lindroth CH (1957) The faunal connections between Europe and North America. Almqvist, Wiksell

    Google Scholar 

  • Lobo JM (2008) More complex distribution models or more representative data? Biodivers Inform 5:14–19

    Google Scholar 

  • Loo WE, MacNally R, Lake PS (2007) Forecasting New Zealand mudsnail invasion range: model comparison using native and invaded ranges. Ecol Appl 17:181–189

    Article  PubMed  Google Scholar 

  • Martínez–Meyer E, Peterson AT (2006) Conservatism of ecological niche characteristics in North American plant species over the Pleistocene–to–Recent transition. J Biogeogr 33:1779–1789

    Article  Google Scholar 

  • Mau–Crimmins TM, Schussman H, Geiger EL (2006) Can the invaded range of a species be predicted sufficiently using only native–range data? Lehmann lovegrass (Eragrostis lehmanniana) in the southwestern United States. Ecol Model 193:736–746

    Article  Google Scholar 

  • McCracken EI, Roster GF, Kelly A (1995) Factors affecting the size of leatherjackets (Diptera: Tipulidae) populations in pastures in the west of Scotland. Appl Soil Ecol 2:203–213

    Article  Google Scholar 

  • Meats A (1975) The developmental dynamics of Tipula paludosa and the relation of climate to its growth pattern, flight season and geographical distribution. Oecologia 19:117–128

    Article  Google Scholar 

  • Medley KA (2010) Niche shifts during the global invasion of Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Global Ecol Biogeogr 19:122–133

    Article  Google Scholar 

  • Myers JH, Iyer R (1981) Phenotypic and genetic characteristics of the European crane-fly, its introduction and spread in Western North America. J Anim Ecol 50:519–532

    Article  Google Scholar 

  • Pearman PB, Guisan A, Broennimann O, Randin CF (2008) Niche dynamics in space and time. Trends Ecol Evol 23:149–158

    Article  PubMed  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Peck DC, Hoebeke ER, Klass C (2006) Detection and establishment of European crane flies Tipula paludosa Meigen and Tipula oleracea L. (Diptera: Tipulidae) in New York: a review of their distribution, invasion history, biology, and recognition. Proc Entomol Soc Wash 108:985–994

    Google Scholar 

  • Peck DC, Olmstead DO, Petersen MJ (2010) Pest status of invasive crane flies in New York turfgrass and the repercussions for regional plant protection. J Integr Pest Manag 1:1–8

    Article  Google Scholar 

  • Petersen MJ, Olmstead DL, Peck DC (2011) Best management practices for invasive crane flies in Northeastern United States sod production. J Integr Pest Manag 2:1–6

    Article  Google Scholar 

  • Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. Q Rev Biol 78:419–433

    Article  PubMed  Google Scholar 

  • Peterson AT (2011) Ecological niche conservatism: a time-structured review of evidence. J Biogeogr 38:817–827

    Article  Google Scholar 

  • Peterson AT, Vieglais DA (2001) Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. Bioscience 51:363–371

    Article  Google Scholar 

  • Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 16:1344–1348

    Article  Google Scholar 

  • Phillips SJ (2008) Transferability, sample selection bias and background data in presence–only modeling: a response to Peterson et al. (2007). Ecography 31:272–278

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Prentis PJ, Wilson JRU, Dormontt EE, Richardson DM, Lowe AJ (2008) Adaptive evolution in invasive species. Trends Plant Sci 13:288–294

    Article  CAS  PubMed  Google Scholar 

  • Pulliam HR (2000) On the relationship between niche and distribution. Ecol Lett 3:349–361

    Article  Google Scholar 

  • Rödder D, Schmidtlein S, Veith M, Lötters S (2010) Alien invasive slider turtle in unpredicted habitat: a matter of niche shift or predictors studied? PLoS ONE 4:e7843

    Article  Google Scholar 

  • Romesburg HC (1985) Exploring, confirming and randomization tests. Comput Geosci 11:19–37

    Article  Google Scholar 

  • Salmela J (2001) Adult craneflies (Diptera, Nematocera) around springs in southern Finland. Entomol Fennica 12:139–152

    Google Scholar 

  • Schoener TW (1968) Anolis lizards of Bimini: resource partitioning in a complex fuana. Ecology 49:704–726

    Article  Google Scholar 

  • Schulte U, Hochkirch A, Lötters S, Rödder D, Schweiger S, Weimann T, Veith M (2012) Cryptic niche conservatism among evolutionary lineages of an invasive lizard. Glob Ecol Biogeogr 21:198–211

    Article  Google Scholar 

  • Simard L, Brodeur J, Gelhaus J (2006) Emergence of a new turfgrass insect pest on golf courses in Quebec, the European crane fly (Diptera: Tipulidae). Phytoprotection 87:43–45

    Article  Google Scholar 

  • Simova D (1959) Contributions to the knowledge of the Tipulidae and Limoniidae of Macedonia. Fragm Balc Mus Maced Sci Nat 15:125–135

    Google Scholar 

  • Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inform 2:1–10

    Google Scholar 

  • Taschereau É (2007) Écologie saisonnière de la tipule européenne (Diptère : Tipulidae), insecte ravageur des graminées à gazon sur les terrains de golf de la région de Québec. MSc thesis, Universite Laval, Quebec

  • Theowald B (1984) Taxonomie, Phylogenie und Biogeographie der Untergattung Tipula (Tipula) Linnaeus 1758 (Insecta, Diptera, Tipulidae) Tijdschr Entomol 127:33–78

  • Thuiller W, Richardson DM, Pysek P, Midgley GF, Hughes GO, Rouget M (2005) Niche–based modeling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:2234–2250

    Article  Google Scholar 

  • Umble JR, Rao S (2004) Exotic Tipula paludosa and T. oleracea (Diptera: Tipulidae) in the United States: geographic distribution in Western Oregon. Pan Pac Entomol 80:42–52

    Google Scholar 

  • Václavik T, Meentemeyer RK (2012) Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers Distrib 18:73–83

    Article  Google Scholar 

  • Václavik T, Kupfer JA, Meentemeyer RK (2011) Accounting for multi-scale spatial autocorrelation improves performance of invasive species distribution modelling (iSDM). J Biogeogr 39:42–55

    Article  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868–2883

    Article  PubMed  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611

    Article  Google Scholar 

  • Welk E (2004) Constraints in range predictions of invasive plant species due to non–equilibrium distribution patterns: purple loosestrife (Lythrum salicaria) in North America. Ecol Model 179:551–567

    Article  Google Scholar 

  • Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Ann Rev Ecol Evol Syst 36:519–539

    Article  Google Scholar 

  • Wilkinson ATS, MacCarthy HR (1967) The marsh crane fly, Tipula paludosa Mg, a new pest in British Colombia (Diptera: Tipulidae). J Entomol Soc BC 64:29–34

    Google Scholar 

  • Young CW, Onore G, Proano K (1999) First occurrence of Tipula (Tipula) oleracea Linnaeus (Diptera: Tipulidae) in the New World, with biological notes. J Kans Entomol Soc 72:226–232

    Google Scholar 

Download references

Acknowledgments

Valuable information on the geographical distributions of both Tipula species across their invasive ranges was kindly made available by P. Charbonneau, D. Olmstead, S. Gaimari, and S. Rao. Pjtor Oosterbroek and the Zoological Museum Amsterdam provided data on the native ranges of both Tipula species. Comments to an earlier draft of this manuscript were contributed by D. Peck. I thank J. Petersen for support, valuable comments and critique of this research. This work was funded by the USDA Agriculture and Food Research Initiative (AFRI) Biology of Weedy and Invasive Species in Agroecosystems grants program #2010-85320-20424.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Petersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petersen, M.J. Evidence of a climatic niche shift following North American introductions of two crane flies (Diptera; genus Tipula). Biol Invasions 15, 885–897 (2013). https://doi.org/10.1007/s10530-012-0337-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-012-0337-3

Keywords

Navigation