Skip to main content

Advertisement

Log in

Ongoing invasions of the African clawed frog, Xenopus laevis: a global review

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

We conducted a literature review on the current status of all known extralimital populations of the African clawed frog, Xenopus laevis, to identify commonality in invasion pathways, lag between discovery and introduction, and whether old populations are in decline. Further, we investigated which locations are vulnerable to future establishment using geospatial data (1,075 native and 124 invasive records) in a Maxent model developed with data from the Worldclim database. We found introductions of X. laevis to be continuous over the last 50 years and invasions to be ongoing on four continents: Asia, Europe, North and South America. Invasion pathways were related to scientific use and the pet trade, with high rates of deliberate release followed by a lag of 2–25 years to first reports. No populations were found to be declining although some have been extirpated. Optimal uninvaded bioclimatic space was identified in central Mexico and southern Australia, while larger suitable areas were found in southern South America and southwestern Europe. Xenopus laevis is a cryptic invasive species that is likely to increase its invasive distribution, through new introductions and by the spread of ongoing invasions. Many more invasive populations are likely to exist than are currently recognised and reducing invasive potential will largely rely on education of those involved with their captive care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexander SS, Bellerby CW (1938) Experimental studies on the sexual cycle of the South African clawed toad (Xenopus laevis). I. J Exp Biol 15:74–81

    Google Scholar 

  • Arao K, Kitano T (2006) Xenopus laevis from Hamamatsu City, Shizuoka Prefecture, Japan. Bull Herpetol Soc Jpn 2006:17–19

    Google Scholar 

  • Avila VL, Frye PG (1978) Feeding behaviour of the African clawed frog (Xenopus laevis Daudin) (Amphibia, Anura, Pipidae); effect of prey type. J Herpetol 12:391–396

    Article  Google Scholar 

  • Balinsky JB (1981) Adaptation of nitrogen-metabolism to hyperosmotic environment in Amphibia. J Exp Zool 215:335–350

    Article  CAS  Google Scholar 

  • Balinsky JB, Cragg MM, Baldwin E (1961) Adaptation of amphibian waste nitrogen excretion to dehydration. Comp Biochem Physiol 3:236–244

    Article  PubMed  CAS  Google Scholar 

  • Balinsky JB, Choritz EL, Coe CGL, Van der Schans GS (1967) Amino acid metabolism and urea synthesis in naturally aestivating Xenopus laevis. Comp Biochem Physiol 22:59–68

    Article  PubMed  CAS  Google Scholar 

  • Beaumont LJ, Hughes L, Poulsen M (2005) Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol Model 186:250–269

    Article  Google Scholar 

  • Beaumont LJ, Gallagher RV, Thuiller W, Downey PO, Leishman MR, Hughes L (2009) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Divers Distrib 15:409–420

    Article  Google Scholar 

  • Beebee TJC, Griffiths RA (2005) The amphibian decline crisis: a watershed for conservation biology? Biol Conserv 125:271–285

    Article  Google Scholar 

  • Bentley PJ (1973) Role of skin in amphibian sodium metabolism. Science 181:686–687

    Article  PubMed  CAS  Google Scholar 

  • Broennimann O, Guisan A (2008) Predicting current and future biological invasions: both native and invaded ranges matter. Biol Lett 4:585–589

    Article  PubMed  Google Scholar 

  • Busby JR (1991) BIOCLIM—a bioclimatic analysis and prediction system. In: Margules CR, Austin MP (eds) Nature conservation: cost effective biological surveys and data analysis. CSIRO, Melbourne, pp 64–68

    Google Scholar 

  • Carreno CA, Nishikawa KC (2010) Aquatic feeding in pipid frogs: the use of suction for prey capture. J Exp Biol 213:2001–2008

    Article  PubMed  Google Scholar 

  • Cheng TL, Rovito SM, Wake DB, Vredenburg VT (2011) Coincident mass extirpation of neotropical amphibians with the emergence of the infectious fungal pathogen Batrachochytrium dendrobatidis. Proceedings of the National Academy of Science, USA

    Google Scholar 

  • Christy MT, Savidge JA, Rodda GH (2007) Multiple pathways for invasion of anurans on a Pacific island. Divers Distrib 13:598–607

    Article  Google Scholar 

  • Crayon JJ (2005) Species account: Xenopus laevis. In: Lannoo MJ (ed) Amphibidan declines: the conservation status of United States species. University of California Press, Berkeley, pp 522–525

    Google Scholar 

  • Cunningham AA, Garner TWJ, Aguilar-Sanchez V, Banks B, Foster J, Sainsbury AW, Perkins M, Walker SF, Hyatt AD, Fisher MC (2005) Emergence of amphibian chytridiomycosis in Britain. Vet Rec 157:386–387

    PubMed  CAS  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2003) Infectious disease and amphibian population declines. Divers Distrib 9:141–150

    Article  Google Scholar 

  • Du Preez LH, Kunene N, Hanner R, Giesy JP, Solomon KR, Hosmer A, Van der Kraak GJ (2009) Population-specific incidence of testicular ovarian follicles in Xenopus laevis from South Africa: a potential issue in endocrine testing. Aquat Toxicol 95:10–16

    Article  PubMed  CAS  Google Scholar 

  • Duffey E (1964) The terrestrial ecology of Ascension Island. J Appl Ecol 1:219–251

    Article  Google Scholar 

  • Duffus ALJ, Cunningham AA (2010) Major disease threats to European amphibians. Herpetol J 20:117–127

    Google Scholar 

  • Eggert C, Fouquet A (2006) A preliminary biotelemetric study of a feral invasive Xenopus laevis population in France. Alytes 23:144–149

    Google Scholar 

  • Elepfandt A, Eistetter I, Fleig A, Gunther E, Hainich M, Hepperle S, Traub B (2000) Hearing threshold and frequency discrimination in the purely aquatic frog Xenopus laevis (Pipidae): measurement by means of conditioning. J Exp Biol 203:3621–3629

    PubMed  CAS  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342

    Article  Google Scholar 

  • Evans BJ, Morales JC, Picker MD, Melnick DJ, Kelley DB (1998) Absence of extensive introgression between Xenopus gilli and Xenopus laevis laevis (Anura : Pipidae) in southwestern Cape Province, South Africa. Copeia 1998:504–509

    Article  Google Scholar 

  • Evans BJ, Kelley DB, Tinsley RC, Melnick DJ, Cannatella DC (2004) A mitochondrial DNA phylogeny of African clawed frogs: phylogeography and implications for polyploid evolution. Mol Phylogenet Evol 33:197–213

    Article  PubMed  CAS  Google Scholar 

  • Evans BJ, Greenbaum E, Kusamba C, Carter TF, Tobias ML, Mendel SA, Kelley DB (2011) Description of a new octoploid frog species (Anura: Pipidae: Xenopus) from the Democratic Republic of the Congo, with a discussion of the biogeography of African clawed frogs in the Albertine Rift. J Zool 283:276–290

    Article  Google Scholar 

  • Faraone FP, Lillo F, Giacalone G, Lo Valvo M (2008) The large invasive population of Xenopus laevis in Sicily (Italy). Amphib-Reptil 29:405–412

    Article  Google Scholar 

  • Fitzpatrick MC, Hargrove WW (2009) The projection of species distribution models and the problem of non-analogous climate. Biodivers Conserv 18:2255–2261

    Article  Google Scholar 

  • Flower SS (1936) Further notes on the duration of life in animals—II amphibians. Proc Zool Soc Lond 1936:369–394

    Google Scholar 

  • Fouquet A (2001) Des clandestins aquatiques. Zamenis 6:10–11

    Google Scholar 

  • Fouquet A, Measey GJ (2006) Plotting the course of an African clawed frog invasion in Western France. Anim Biol 56:95–102

    Article  Google Scholar 

  • Frost DR (2011) Amphibian species of the world: an online reference. Version 5.5 (31 January, 2011). Electronic Database accessible at http://research.amnh.org/vz/herpetology/amphibia/ Accessed on 25 June 2011

  • Garner TWJ, Perkins MW, Govindarajulu P, Seglie D, Walker S, Cunningham AA, Fisher MC (2006) The emerging amphibian pathogen Batrachochytrium dendrobatidis globally infects introduced populations of the North American bullfrog, Rana catesbeiana. Biol Lett 2:455–459

    Article  PubMed  Google Scholar 

  • Garner TWJ, Stephen I, Wombwell E, Fisher MC (2009) The amphibian trade: bans or best practice? EcoHealth 6:148–151

    Article  PubMed  Google Scholar 

  • Glade AA (1988) Libro Rojo de los Vertebrados Terrestres de Chile. Corporación Nacional Forestal, Santiago

  • Green SL (2010) Husbandry. In: Green SL (ed) The laboratory Xenopus sp., CRC Press, Taylor and Francis Group, Boca Raton, p 16–61

  • Green SL, Felt S and Wilson S (2010) South African clawed frogs (Xenopus laevis) in Golden Gate Park, San Francisco. In: Proceedings 17th international conference on aquatic invasive species, San Diego, CA, USA

  • Guo QF, Ricklefs RE (2011) Domestic exotics and the perception of invasibility. Divers Distrib 16:1034–1039

    Article  Google Scholar 

  • Gurdon J (1996) Introductory comments: Xenopus as a laboratory animal. In: Tinsley RC, Kobel HR (eds) The biology of Xenopus. Oxford University Press, Oxford, pp 3–6

    Google Scholar 

  • Gurdon JB, Hopwood N (2000) The introduction of Xenopus laevis into developmental biology: of empire, pregnancy testing and ribosomal genes. Int J Dev Biol 44:43–50

    PubMed  CAS  Google Scholar 

  • Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, Sykes MT (2006) Methods and uncertainties in bioclimatic envelope modeling under climate change. Prog Phys Geogr 30:751–777

    Article  Google Scholar 

  • Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu SQ, Taher L, Blitz IL, Blumberg B, Dichmann DS, Dubchak I, Amaya E, Detter JC, Fletcher R, Gerhard DS, Goodstein D, Graves T, Grigoriev IV, Grimwood J, Kawashima T, Lindquist E, Lucas SM, Mead PE, Mitros T, Ogino H, Ohta Y, Poliakov AV, Pollet N, Robert J, Salamov A, Sater AK, Schmutz J, Terry A, Vize PD, Warren WC, Wells D, Wills A, Wilson RK, Zimmerman LB, Zorn AM, Grainger R, Grammer T, Khokha MK, Richardson PM, Rokhsar DS (2010) The genome of the Western clawed frog Xenopus tropicalis. Science 328:633–636

    Article  PubMed  CAS  Google Scholar 

  • Hewitt J, Power JH (1913) A list of South African Lacertilia, Ophidia and Batrachia in the McGregor Museum, Kimberly; with field-notes on various species. Transact Royal Soc S Afr 3:147–176

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hillman SS, Withers PC, Drewes RC, Hillyard SD (2009) Ecological and environmental physiology of amphibians. Oxford University Press Inc., New York 469 p

    Google Scholar 

  • Iskandar DT (1998) The amphibians of Java and Bali. Research and Development Centre for Biology—LIPI, Bogor, Indonesia, p 117

  • Jaksic FM (1998) Vertebrate invaders and their ecological impacts in Chile. Biodivers Conserv 7:1427–1445

    Article  Google Scholar 

  • Jokumsen A, Weber RE (1980) Hemoglobin-oxygen binding-properties in the blood of Xenopus laevis, with special reference to the influences of estivation and of temperature and salinity acclimation. J Exp Biol 86:19–37

    CAS  Google Scholar 

  • Kats LB, Ferrer RP (2003) Alien predators and amphibian declines: review of two decades of science and the transition to conservation. Divers Distrib 9:99–110

    Article  Google Scholar 

  • King W, Krakauer T (1996) The exotic herpetofauna of Southeast Florida. Q J Fla Acad Sci 29:144–154

    Google Scholar 

  • Kobayashi R, Hasegawa M (2005) Can the African clawed frog Xenopus laevis become established in Japan?-An inference from recent distribution records in the Kanto plain. Bull Herpetol Soc Jpn 2005:169–173

    Google Scholar 

  • Kobel HR, Loumont C, Tinsley RC (1996) The extant species. In: Tinsley RC, Kobel HR (eds) The biology of Xenopus. Oxford University Press, Oxford, pp 9–34

    Google Scholar 

  • Kokuryo Y (2009) A survey of feral populations of African clawed toad in Shizuoka Prefecture. Bull Herpetol Soc Jpn 2009:103–106

    Google Scholar 

  • Kraus F (2009) Alien reptiles and amphibians: a scientific compendium and analysis—Springer Series in Invasion Ecology 4. Springer Science & Business Media B.V., Netherlands

    Google Scholar 

  • Krysko KL, Burgess JP, Rochford MR, Gillette CR, Cueva D, Enge KM, Somma LA, Stabile JL, Smith DC, Wasilewski JA, Kieckhefer GN, Granatosky MC, Nielsen SV (2011) Verified non-indigenous amphibians and reptiles in Florida from 1863 through 2010: outlining the invasion process and identifying invasion pathways and stages. Zootaxa 3028:1–64

    Google Scholar 

  • Lafferty KD, Page CJ (1997) Predation on the endangered tidewater goby, Eucyclogobius newberryi, by the introduced African clawed frog, Xenopus laevis, with notes on the frog’s parasites. Copeia 1997:589–592

    Article  Google Scholar 

  • Lever C (2003) Naturalized reptiles and amphibians of the world. Oxford University Press, New York

    Google Scholar 

  • Lillo F, Marrone F, Sicilia A, Castelli G (2005) An invasive population of Xenopus laevis (Daudin, 1802) in Italy. Herpetozoa 18:63–64

    Google Scholar 

  • Lillo F, Faraone FP, Lo Valvo M (2011) Can the introduction of Xenopus laevis affect native amphibian populations? Reduction of reproductive occurrence in presence of the invasive species. Biol Invasions 13:1533–1541

    Article  Google Scholar 

  • Liu C, Pam M, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  • Lobos G, Garín C (2002) Xenopus laevis (African clawed frog). Behav Herpetol Rev 33:132

    Google Scholar 

  • Lobos G, Jaksic FM (2005) The ongoing invasion of African clawed frogs (Xenopus laevis) in Chile: causes of concern. Biodivers Conserv 14:429–439

    Article  Google Scholar 

  • Lobos G, Measey GJ (2002) Invasive populations of Xenopus laevis (Daudin) in Chile. Herpetol J 12:163–168

    Google Scholar 

  • Lobos G, Cattan P, Lopez M (1999) Antecedentes de la ecología trófica del sapo africano Xenopus laevis en la zona central de Chile. Boletín del Museo Nacional de Historia Natural 48:7–18

    Google Scholar 

  • Loveridge A (1953) Zoological results of a fifth expedition to East Africa. IV. Amphibians from Nyasalandand Tete. Bull Mus Comp Zool 110:325–406

    Google Scholar 

  • Loveridge A (1959) Notes on the present herpetofauna of Ascension Island. Copeia 1959:69–70

    Article  Google Scholar 

  • Luja VH, Rodrıguez-Estrella R (2010) The invasive bullfrog Lithobates catesbeianus in oases of Baja California Sur, Mexico: potential effects in a fragile ecosystem. Biol Invasions 12:2979–2983

    Article  Google Scholar 

  • Mahrdt C, Knefler FT (1972) Pet or pest? The African clawed frog. Environ Southwest 446:2–5

    Google Scholar 

  • Matz E, Bouley DM and Green SL (2005) A field survey of wild Xenopus laevis at Golden Gate Park, San Francisco. In: Proceedings 55th wildlife disease association annual international meeting, Cairns, Australia

  • McCoid MJ, Fritts TH (1980) Notes on the diet of a feral population of Xenopus laevis (Pipidae) in California. Southwestern Nat 25:272–275

    Article  Google Scholar 

  • McCoid MJ, Fritts TH (1995) Female reproductive potential and winter growth of African clawed frogs (Pipidae: Xenopus laevis) in California. Calif Fish Game 81:39–42

    Google Scholar 

  • Measey GJ (1997) The ecology of feral Xenopus laevis, Dissertation. University of Bristol, Bristol

    Google Scholar 

  • Measey GJ (1998a) Diet of feral Xenopus laevis (Daudin) in South Wales, UK. J Zool 246:287–298

    Article  Google Scholar 

  • Measey GJ (1998b) Terrestrial prey capture in Xenopus laevis. Copeia 1998:787–791

    Article  Google Scholar 

  • Measey GJ (2001) Growth and ageing of feral Xenopus laevis (Daudin) in South Wales, UK. J Zool 254:547–555

    Article  Google Scholar 

  • Measey GJ (2004a) Species account: Xenopus laevis (Daudin 1802). In: Minter LR, Burger M, Harrison JA, Braack H, Bishop PJ, Kloepfer D (eds) Atlas and red data book of the frogs of South Africa, Lesotho and Swaziland. Smithsonian Institution Press, Washington DC

    Google Scholar 

  • Measey GJ (2004b) Xenopus laevis: una perspectiva sobre invasiones globales. In: Solis R, Lobos G, Irirarte A (eds) Antecedentes sobre la biologia de Xenopus laevis y su introduccion en Chile. Maval Ltda, Santiago, pp 3–8

    Google Scholar 

  • Measey GJ, Channing A (2003) Phylogeography of the genus Xenopus in southern Africa. Amphibia-Reptil 24:321–330

    Article  Google Scholar 

  • Measey GJ, Davies SJ (2011) Struggling against domestic exotics at the southern end of Africa. FrogLog 97:28–30

    Google Scholar 

  • Measey GJ, Tinsley RC (1998) Feral Xenopus laevis in South Wales. Herpetol J 8:23–27

    Google Scholar 

  • Meyerson LA, Reaser JK (2002) Biosecurity: moving toward a comprehensive approach. Bioscience 52:593–600

    Article  Google Scholar 

  • Miller K (1982) Effect of temperature on sprint performance in the frog Xenopus laevis and the salamander Necturus maculosus. Copeia 1982:695–698

    Article  Google Scholar 

  • Mitsuoka K, Toda M, Takahashi H, Tanimura N, Ogano D, Kobayashi R (2011) Current status of introduced African clawed frogs in the downstream reaches of the Tone River. Bull Herpetol Soc Jpn 2011:50–51

    Google Scholar 

  • Pascual G, Llorente GA, Richter-Boix AMA (2007) Primera localización de Xenopus laevis en libertad en España. Boletín de la Asociación Herpetológica Española 18:42–43

    Google Scholar 

  • Peeler EJ, Oidtmann BC, Midtlyng PJ, Miossec L, Gozlan RE (2011) Non-native aquatic animals introductions have driven disease emergence in Europe. Biol Invasions 13:1291–1303

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Picker MD (1985) Hybridization and habitat selection in Xenopus gilli and Xenopus laevis in the southwestern cape province. Copeia 1985:574–580

    Article  Google Scholar 

  • Picker MD, De Villiers AL (1989) The distribution and conservation status of Xenopus gilli (Anura, Pipidae). Biol Conserv 49:169–183

    Article  Google Scholar 

  • Reaser JK, Meyerson LA, Von Holle B (2008) Saving camels from straws: how propagule pressure-based prevention policies can reduce the risk of biological invasion. Biol Invasions 10:1085–1098

    Article  Google Scholar 

  • Rebelo R, Amaral P, Bernardes M, Oliveira J, Pinheiro P, Leitao D (2010) Xenopus laevis (Daudin, 1802), a new exotic amphibian in Portugal. Biol Invasions 12:3383–3387

    Article  Google Scholar 

  • Robert J, Abramowitz L, Gantress J, Morales HD (2007) Xenopus laevis: a possible vector of Ranavirus infection? J Wildl Dis 43:645–652

    PubMed  CAS  Google Scholar 

  • Rowlands BW (2001) St Helena and the dependencies of Ascension Island and Tristan da Cunha, including Gough Island. In: Fishpool LDC and Evans MI (eds) Important bird areas in Africa and associated islands: Priority sites for conservation, Pisces Publications and BirdLife International, Newbury and Cambridge, UK

  • Schmeller DS, Loyau A, Dejean T, Miaud C (2011) Using amphibians in laboratory studies: precautions against the emerging infectious disease chytridiomycosis. Lab Anim 45:25–30

    Article  PubMed  CAS  Google Scholar 

  • Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, Hines HB, Kenyon N (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4:125–134

    Article  Google Scholar 

  • Solis R, Lobos G, Walker SF, Fisher M, Bosch J (2011) Presence of Batrachochytrium dendrobatidis in feral populations of Xenopus laevis in Chile. Biol Invasions 12:1641–1646

    Article  Google Scholar 

  • Soto-Azat C, Clarke BT, Poynton JC, Cunningham AA (2010) Widespread historical presence of Batrachochytrium dendrobatidis in African pipid frogs. Divers Distrib 16:126–131

    Article  Google Scholar 

  • St. Amant JA, Hoover FG (1969) Addition of Misgurnus anguillicaudatus (Cantor) to the California fauna. Calif Fish Game 55:330–331

  • St. Amant JA, Hoover FG, Stewart G (1973) African clawed frog, Xenopus laevis (Daudin), established in California. Calif Fish Game 59:151–153

  • Stebbins RC (1985) A field guide to western reptiles and amphibians, 2nd edn. Houghton Mifflin Company, Boston, MA

    Google Scholar 

  • Swets K (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  PubMed  CAS  Google Scholar 

  • Tinsley RC, McCoid MJ (1996) Feral populations of Xenopus outside Africa. In: Tinsley RC, Kobel HR (eds) The biology of Xenopus. Oxford University Press, Oxford, pp 81–94

    Google Scholar 

  • Tinsley RC, Loumont C, Kobel HR (1996) Geographical distribution and ecology. In: Tinsley RC, Kobel HR (eds) The biology of Xenopus. Oxford University Press, Oxford, pp 33–39

    Google Scholar 

  • Tinsley RC, Minter LR, Measey GJ, Howell K, Veloso A, Núñez H and Romano A (2008) Xenopus laevis. In: IUCN 2011. IUCN red list of threatened species. Version 2011.1. www.iucnredlist.org. Accessed 11 Oct 2011

  • Tobias ML, Viswanathan SS, Kelley DB (1998) Rapping, a female receptive call, initiates male-female duets in the South African clawed frog. Proc Nat Acad Sci USA 95:1870–1875

    Article  PubMed  CAS  Google Scholar 

  • United States Geological Survey (2011) Nonindigenous Aquatic Species Database, Gainesville, FL. http://nas.er.usgs.gov, date of query. Accessed 15 June 2011

  • Van Wilgen NJ, Roura-Pascual N, Richardson DM (2009) A quantitative climate-match score for risk-assessment screening of reptile and amphibian introductions. Environ Manage 44:590–607

    Article  PubMed  Google Scholar 

  • Van Wilgen NJ, Wilson JRU, Elith J, Wintle BA, Richardson DM (2010) Alien invaders and reptile traders: what drives the live animal trade in South Africa? Anim Conserv 13:24–32

    Article  Google Scholar 

  • VanDerWal J, Shoo LP, Graham CH, Williams SE (2009) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol Model 220:589–594

    Article  Google Scholar 

  • Veloso A, Navarro J (1988) Systematic list and geographic distribution of amphibians and reptiles from Chile. Museo Regionale di Scienze Naturali Bollettino (Turin) 6:481–540

    Google Scholar 

  • Vogel G (2008) Proposed frog ban makes a splash. Science 319:1472

    Article  PubMed  CAS  Google Scholar 

  • Walsh PT, Downie JR, Monaghan P (2008) Plasticity of the duration of metamorphosis in the African clawed toad. J Zool 274:143–149

    Article  Google Scholar 

  • Weldon C, Du Preez LH, Hyatt AD, Muller R, Speare R (2004) Origin of the amphibian chytrid fungus. Emerg Infect Dis 10:2100–2105

    Article  PubMed  Google Scholar 

  • Weldon C, De Villiers AL, Du Preez LH (2007) Quantification of the trade in Xenopus laevis from South Africa, with implications for biodiversity conservation. Afr J Herpetol 56:77–83

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank all those colleagues who were able to share and clarify information on reports of extralimital populations of X. laevis. Two anonymous reviewers and Fred Kraus provided constructive feedback which improved the quality of the manuscript. GJM would like to thank the Royal Society (UK), the European Union (HPMF-CT-2001-01407) and NERC (UK) who supplied funding for field-work in Chile, USA, France and UK. We would also like to thank all contributors to the South African Frog Atlas Project for data on X. laevis occurrence in South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Measey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2770 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Measey, G.J., Rödder, D., Green, S.L. et al. Ongoing invasions of the African clawed frog, Xenopus laevis: a global review. Biol Invasions 14, 2255–2270 (2012). https://doi.org/10.1007/s10530-012-0227-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-012-0227-8

Keywords

Navigation