Skip to main content

Advertisement

Log in

Microbial kinetics of Clostridium termitidis on cellobiose and glucose for biohydrogen production

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

To determine Monod kinetics parameters (µmax, Ks, kd and YX/S) of the mesophilic H2 producer Clostridium termitidis grown on glucose and cellobiose by modeling in MATLAB.

Results

Maximum specific growth rates (µmax) were 0.22 and 0.24 h−1 for glucose and cellobiose respectively; saturation constants (Ks) were 0.17 and 0.38 g l−1 respectively and the biomass yields (YX/S) were 0.26 and 0.257 g dry wt g−1 substrate. H2 yields of 1.99 and 1.11 mol H2 mol−1 hexose equivalent were also determined for glucose and cellobiose respectively.

Conclusion

The microbial kinetics of this model microorganism will enhance engineering biofuel production applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alalayah WM, Kalil MS, Kadhum AAH, Jahim J, Zaharim A, Alauj NM, El-Shafie A (2010) Applications of the box-wilson design model for bio-hydrogen production using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). Pak J Biol Sci 13:674–682

    Article  CAS  PubMed  Google Scholar 

  • Atkinson B, Mavituna F (1991) Biochemical engineering and biotechnology handbook. Stockton Press, New York

    Google Scholar 

  • Fang HHP (2010) Environmental anaerobic technology: applications and new developments. Imperial College Press, London

    Book  Google Scholar 

  • Giallo J, Gaudin C, Belaich JP (1985) Metabolism and solubilization of cellulose by Clostridium cellulolyticum H10. Appl Environ Microbiol 49:1216–1221

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hethener P, Brauman A, Garcia JL (1992) Clostridium termitidis sp. nov., a cellulolytic bacterium from the gut of the wood-feeding termite, Nasutitermes lujae. Syst Appl Microbiol 15:52–58

    Article  CAS  Google Scholar 

  • Lal S, Ramachandran U, Zhang X, Munir R, Sparling R, Levin DB (2013) Draft genome sequence of the cellulolytic, mesophilic, anaerobic bacterium Clostridium termitidis strain CT1112 (DSM 5398). Genome Announc 1:e00281–e00283

    PubMed Central  PubMed  Google Scholar 

  • Levin DB, Carere CR, Cicek N, Sparling R (2009) Challenges for biohydrogen production via direct lignocellulose fermentation. Int J Hydrog Energy 34:7390–7403

    Article  CAS  Google Scholar 

  • Lin PY, Whang LM, Wu YR, Ren WJ, Hsiao CJ, Chang SLLS (2007) Biological hydrogen production of the genus Clostridium: metabolic study and mathematical model simulation. Int J Hydrog Energy 32:1728–1735

    Article  CAS  Google Scholar 

  • Linville JL, Rodriguez M, Mielenz JR, Cox CD (2013) Kinetic modeling of batch fermentation for Populus hydrolysate tolerant mutant and wild type strains of Clostridium thermocellum. Bioresour Technol 147:605–613

    Article  CAS  PubMed  Google Scholar 

  • López S, Dhanoa MS, Dijkstra J, Bannink A, Kebreab E, France J (2007) Some methodological and analytical considerations regarding application of the gas production technique. Anim Feed Sci Technol 135:139–156

    Article  Google Scholar 

  • Munir RI, Schellenberg J, Henrissat B, Verbeke TJ, Sparling R, Levin DB (2014) Comparative analysis of carbohydrate active enzymes in Clostridium termitidis CT1112 reveals complex carbohydrate degradation ability. PLoS One 9:e104260

    Article  PubMed Central  PubMed  Google Scholar 

  • Owen WF, Stuckey DC, Healy JB, Young LY, Mccarty PL (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res 13:485–492

    Article  CAS  Google Scholar 

  • Ramachandran U, Wrana N, Cicek N, Sparling R, Levin DB (2008) Hydrogen production and end-product synthesis patterns by Clostridium termitidis strain CT1112 in batch fermentation cultures with cellobiose or α-cellulose. Int J Hydrog Energy 33:7006–7012

    Article  CAS  Google Scholar 

  • Schwarz WH (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56:634–649

    Article  CAS  PubMed  Google Scholar 

  • Shuler ML, Kargı F (2002) Bioprocess engineering: basic concepts, 2nd edn. Prentice Hall PTR, Upper Saddle River

    Google Scholar 

  • Sleat R, Mah RA, Robinson R (1984) Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium cellulovorans sp. nov. Appl Environ Microbiol 48:88–93

    PubMed Central  CAS  PubMed  Google Scholar 

  • Srivastava AK, Volesky B (1990) Updated model of the batch acetone–butanol fermentation. Biotechnol Lett 12:693–698

    Article  CAS  Google Scholar 

  • Warnick TA, Methé BA, Leschine SB (2002) Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol 52:1155–1160

    Article  CAS  PubMed  Google Scholar 

  • Yang XP, Tsao GT (1994) Mathematical-modelling of inhibition-kinetics in acetone-butanol fermentation by Clostridium acetobutylicum. Biotechnol Prog 10:532–538

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Eastern platform of the Biofuel Network. The authors acknowledge the support by Consejo Nacional de Ciencia y Tecnologia de Mexico (CONACYT) and Alianza para la Formacion e Investigacion en Infraestructura para el Desarrollo de Mexico, awarded to Maritza Gomez-Flores.

Supporting information

Supplementary Figure 1—Correlation between dry wt and cellular protein content in Clostridium termitidis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Nakhla.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez-Flores, M., Nakhla, G. & Hafez, H. Microbial kinetics of Clostridium termitidis on cellobiose and glucose for biohydrogen production. Biotechnol Lett 37, 1965–1971 (2015). https://doi.org/10.1007/s10529-015-1891-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1891-4

Keywords

Navigation