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Abstract The invasive red swamp crayfish (Procambarus clarkii) provides a

valuable opportunity for studying the population genetics of invasive species that

disperse rapidly. We analyzed the population genetic structure among 12 popula-

tions of the crayfish in China based on the internal transcribed spacer 1 (ITS1)

region. The ITS1 of 815 bp aligned across 34 haplotypes; the average GC content

was 53.9%. AMOVA showed that intrapopulation variation (95.26%) was much

higher than interpopulation variation (4.74%). Genetic differentiation between the

Taiwan and mainland populations (Fst = 0.160) was moderate, but the Chinese

population (Taiwan and the mainland combined) and an American population were

highly differentiated (0.682 and 0.977, respectively). Gene flow between the Chi-

nese and American populations (Nm = 0.006 and 0.117, respectively) was lower

than that between Taiwan and the mainland (1.536). Phylogenetic trees showed that

three major genealogical clusters matched the sample locations well, suggesting that

genetic differentiation is created largely by geographic isolation.
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Introduction

Population genetic structure provides an understanding of the adaptability of a

species, both potential and evolutionary, and also reflects its population history

(Moreno et al. 2004; Hardesty et al. 2010). Phylogeographic studies show that

habitat has a considerable influence on the population genetic structure, distribution,

and evolution of many animals, especially of alien invasive species (Ellstrand and

Elam 1993; Qu et al. 2005; Yang et al. 2006, 2009; Hardesty et al. 2010; Sassi et al.

2011). Recently, close attention has been paid to biological invasions, and the

increasing invasive rate has become a global problem, as exotic or introduced

species have often caused ecological disaster (Barbaresi et al. 2003; Yue et al. 2008,

2010). Many studies have shown that the molecular variability and population

genetic structure of the keystone invasive species would change in new habitats.

Comparing the genetic structure of introduced populations with native ones will

increase our understanding of genetic differentiation and gene flow (Ellstrand and

Elam 1993; Barbaresi et al. 2003).

The red swamp crayfish, Procambarus clarkii, is a temperate freshwater crayfish

native to the south-central United States and northeastern Mexico (Huner 1988;

Barbaresi et al. 2003). It is strongly adaptive and competitively dominant when

introduced into a suitable habitat, and it can establish itself and become a keystone

species within a short time (Barbaresi et al. 2003; Yue et al. 2010). Because of its

economic importance, it has been introduced into many countries in the world (Yue

et al. 2010). The species was introduced to Nanjing, China, from Japan in 1929.

Since then, it has been spread by humans to the middle and lower reaches of the

Yangtze, Huaihe, and Yellow river plains as a source of food. It has been heavily

exploited as a fishery product and is now used widely in aquaculture in China (Li

et al. 2005; Wang et al. 2009; Cao et al. 2010; Yue et al. 2008, 2010). Red swamp

crayfish have long been recognized as an important species for biological invasion

studies (Barbaresi et al. 2003). The invasive red swamp crayfish is a valuable model

for studying the population genetic consequences of species that disperse rapidly.

Nuclear rDNA sequences have been widely used to estimate the molecular

variability and population genetic structure of many organisms (Vogler and Desalle

1994; Miller et al. 1996; Fabry et al. 1999; Schulenburg et al. 1999). The internal

transcribed spacer 1 (ITS1) region is between the 18S rDNA and 5.8S rDNA genes

(or their homologs) in the nuclear rDNA sequence. It displays a relatively high level

of variant nucleotide positions that are useful markers for molecular evolutionary

studies. These markers are widely used for phylogenetic studies and population

genetic structure analysis, especially at the population and species levels (Harris and

Crandall 2000; Coleman and Vacquier 2002; Coleman 2003; Ji et al. 2003). ITS1

gene sequences within geographic populations are similar and show little variation,

but between different geographic populations they display great variation (Coleman

and Vacquier 2002).

The molecular variability and population genetic structure of the red swamp

crayfish in different rivers and lakes in China may diversify through isolation effects;

however, at present little is known about this. In this study, we present preliminary

results on the molecular variability of the ITS1 region and analyze the population
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genetic structure in different geographic populations of the red swamp crayfish in

China using ITS1 markers. The aim of this study is to describe the molecular

variability and population genetic structure of 12 Chinese populations of the red

swamp crayfish, obtained by comparing their ITS1 sequences, and to outline potential

avenues of dispersal in China.

Materials and Methods

Sample Collection

Adult red swamp crayfish were collected from the natural waters of China Mainland

and Taiwan (Fig. 1). The mainland population samples were collected from 11

locations: 6 in the Huaihe River basin (Fuyang, Gan’an, Huaibin, Bengbu, Xuyi,

Yingshang), 4 in the Yangtze River basin (Nanjing, Chaohu Lake, Shingjin Lake,

Wangjiang), and 1 in the Yellow River delta, Dongying City, Shandong Province.

Sample numbers from each of the locations ranged from 9 to 24, for a total of 196

adult individuals (Table 1). Each individual collected in the field was stored in

absolute ethanol until DNA extraction. To explore the deeper phylogeographic

relationships among the red swamp crayfish populations across a greater range, we

collected ITS1 sequences for the species that originated in America from GenBank

(accession nos. AF198585–AF198590).

Fig. 1 Sampling locations of the red swamp crayfish used in this study, from three river systems in China
Mainland and from Taiwan. Sites in the Huaihe River: 1 Gan’an, 2 Huaibin, 3 Fuyang, 4 Yingshang,
5 Bengbu, 6 Xuyi. Other population codes as in Table 1
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DNA Extraction, PCR Amplification, and Sequencing

Total DNA was extracted from tail muscle tissue of selected samples using the

proteinase K/SDS method, stored at -20�C, and used as templates in polymerase

chain reactions (PCR). The ITS1 primers (50-CACACCGCCCGTCGCTACTA-30 and

50-ATTTAGCTGCGGTCTTCATC-30) were synthesized by Sangon Biotech (Shang-

hai) Co., Ltd. The PCR amplification was carried out in final volumes of 25 ll

containing 100 ng of template DNA, 2.5 ll 109 reaction buffer, 1 ll 25 mmol/l

MgCl2, 2 ll 2.5 mmol/l dNTPs, 1 ll 10 lmol/l each primer, 0.5 U Taq DNA

polymerase (Trans Taq-T DNA Polymerase), and sterile double-distilled water to

make up the final volume. The following conditions were used for the PCR

amplifications: denaturation for 5 min at 94�C; followed by 35 cycles of denaturation

for 30 s at 94�C, annealing for 30 s at 56.8�C, elongation for 1 min at 72�C; and a final

extension step at 72�C for 10 min. The PCR products were purified and sequenced by

Sangon Biotech (Shanghai) Co., Ltd. All fragments were sequenced in both directions.

Sequence Alignment and Phylogenetic Analysis

The total rDNA ITS1 sequences were edited using the DNAstar program (Madison,

WI, USA). Multiple sequence alignments were made with Clustal X 1.81

(Thompson et al. 1997), then refined manually and checked by visual inspection.

Analysis of molecular variance (AMOVA) was performed to partition the total

phenotypic variance into intra- and interpopulation variances using Arlequin 3.1

Table 1 Study sites and sample size of the red swamp crayfish populations used in this study

Population (N) River system Local

population

Code Sampling site Sample

size

China Mainland

(176)

Yellow River Dongying DY Fuxing Village, Kenli County 18

Huaihe River 97

Fuyang FY Wangjiaba Town 22

Gan’an GA Gan’an Huaihe River Bridge 10

Huaibin HB Huaibin Huaihe River Bridge 15

Xuyi XY Xuyi Huaihe River Bridge 14

Bengbu BB Bengbu Sluice Gate 12

Yingshang YS Lukou Town 24

Yangtze River 61

Nanjing NJ Xuanwu Lake 20

Chaohu

Lake

CH Yicheng 15

Shengjin

Lake

SJ Lianhe Conservation Station 9

Wangjiang WJ Huayang River 17

Taiwan, China (20) Taiwan Taibei TW Jinlong Lake 20

American (6) America AM GenBank acc. nos. AF198585–

AF198590

6
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software (Excoffier et al. 2005). Genetic differentiation was analyzed by calculating

pairwise fixation index (Fst) values among the crayfish geographic populations using

Arlequin software. Gene flow (Nm) was calculated as 1 - Fst/4Fst. Haplotypes were

identified using the Dambe software package (http://en.bio-soft.net/format/dambe.

html) and submitted to GenBank (acc. nos. JQ776599–JQ776632). The DnaSP

software package (http://www.ub.edu/dnasp/) was used to calculate haplotype

diversity (h; Nei 1987) and nucleotide diversity (p; Nei 1982) between populations.

Variable and parsimony informative sites in the sequences were calculated using

Mega 4.0 (http://www.megasoftware.net). Phylogenetic trees were constructed

using neighbor-joining, maximum likelihood, and Bayesian inference algorithms.

Neighbor-joining trees were also reconstructed using Mega 4.0 and assessed

through bootstrapping with 1,000 replications. For the maximum likelihood anal-

ysis, the PAUP software (version 4.0b8; http://paup.csit.fsu.edu/) was used, and the

bootstrap values were evaluated via the bootstrap test with 100 iterations. Bayesian

inference of phylogeny was performed using MrBayes 3.1.2 (http://mrbayes.source

forge.net/), and the analyses were run for one million generations until the average

standard deviation of split frequencies was less than 0.01, meaning that convergence

was reached. Chains were sampled every 1,000 generations.

Results

Sequence Variation and Haplotype Distribution

The ITS1 regions from all 196 individuals from the 12 populations were successfully

amplified by PCR. The range of lengths for the ITS1 sequences was 854–881 bp. The

mean total nucleotide composition of the sequences was A 24.0%, C 27.2%, G 26.7%,

and T 22.1%; the average GC content (53.9%) was slightly higher than the AT content

(46.1%). When the 196 sequences were aligned, the 815 bp of the ITS1 regions

contained 319 variable sites and 49 parsimony informative sites.

The 196 ITS1 sequences were screened, and 34 haplotypes were identified. A few

of them showed a wide geographic distribution, but most had a limited geographic

distribution (Table 2). Of the 34 haplotypes, 9 (26.47%) were shared in the Taiwan

population. Two haplotypes (Hap_1, Hap_3) showed a wide geographic distribu-

tion, 6 (Hap_1, Hap_2, Hap_3, Hap_5, Hap_8, and Hap_10) were shared by

different populations, and the others were unique to the corresponding population

(Table 2). Hap_1, scattered across the 12 sample collection sites, was present in 121

sequences (61.73%). Hap_3 was found in 9 populations (Fuyang, Gan’an, Huaibin,

Xuyi, Nanjing, Chaohu Lake, Shingjin Lake, Wangjiang, and Taiwan) and was

present in 31 sequences (15.82%). Hap_5, Hap_8, and Hap_10 were shared between

2 of the populations, and the other haplotypes were found in only one population.

Population Genetic Diversity

Significant divergence was observed across all samples (Fst = 0.047, P \ 0.001;

Nm = 5.069), indicating a low level of geographic population structure in the 12
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populations. AMOVA indicated that a high proportion of the total genetic variance

was attributable to variations within populations (95.26%), whereas only 4.74%

occurred among populations (Table 3). The Fst values were between 0.160 and

0.977, and the Nm values were between 0.006 and 1.536 in each population (Table 4).

Table 2 Shared haplotypes in the ITS1 region based on the complete data set for 12 red swamp crayfish

populations in China

Haplotype Populationa

TW DY FY GA HB XY BB YS NJ CH SJ WJ

Hap_1 10 11 12 5 6 8 11 18 11 11 6 12

Hap_2 1 2

Hap_3 3 4 5 6 2 4 3 2 2

Hap_4 1

Hap_5 4 2

Hap_6 1

Hap_7 1

Hap_8 1 1

Hap_9 1

Hap_10 1 1

Hap_11 1

Hap_12 1

Hap_13 1

Hap_14 1

Hap_15 1

Hap_16 1

Hap_17 1

Hap_18 1

Hap_19 1

Hap_20 1

Hap_21 1

Hap_22 1

Hap_23 1

Hap_24 1

Hap_25 1

Hap_26 1

Hap_27 1

Hap_28 1

Hap_29 2

Hap_30 1

Hap_31 1

Hap_32 1

Hap_33 1

Hap_34 2

a Population codes as in Table 1
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In this study, the red swamp crayfish populations presented a high average

haplotype diversity (h = 0.561 ± 0.001; range 0.419–0.832) and a low average

nucleotide diversity (p = 0.007 ± 0.0004; range 0.0005–0.049). The nucleotide

diversity value of 5 populations (Fuyang, Huaibin, Xuyi, Nanjing, and Taiwan) was

higher than the average value for all 12 populations. The Taiwan population

exhibited the greatest level of variability (h = 0.832 ± 0.075, p = 0.049 ± 0.008),

whereas the lowest level of variability was for the Chaohu Lake population

(h = 0.419 ± 0.113, p = 0.0005 ± 0.0003) (Table 5). In addition, the Taiwan

population exhibited a greater level of genetic variability (h = 0.832 ± 0.075,

Table 3 Analysis of molecular variance (AMOVA) for 12 red swamp crayfish populations in China

Source of variation Degrees of freedom Sum of squares Variance components % Variation

Among populations 11 5.097 0.013 4.74

Within populations 185 47.179 0.256 95.26

Total 196 52.276 0.269 100

Table 4 Population differentiation among the red swamp crayfish populations

Population Taiwan China Mainland American

Taiwan – 1.536 0.117

China Mainland 0.160 – 0.006

American 0.682 0.977 –

Below diagonal Population differentiation (Fst); above diagonal gene flow level (Nm)

Table 5 Genetic diversity in the Chinese and American populations of red swamp crayfish

Populationa Diversity Tajima’s

D test
Haplotype (h) Nucleotide (p)

BB 0.506 ± 0.125 0.001 ± 0.0005 0.366

XY 0.681 ± 0.132 0.011 ± 0.008 0.065

FY 0.619 ± 0.077 0.003 ± 0.003 0.320

GA 0.556 ± 0.075 0.0007 ± 0.0004 0.855

HB 0.705 ± 0.074 0.001 ± 0.0007 -0.157

YS 0.442 ± 0.124 0.001 ± 0.001 0.578

NJ 0.621 ± 0.109 0.004 ± 0.003 -1.583

CH 0.419 ± 0.113 0.0005 ± 0.0003 -0.760

WJ 0.419 ± 0.141 0.0013 ± 0.0005 -1.300

DZ 0.556 ± 0.165 0.002 ± 0.001 0.097

DY 0.544 ± 0.018 0.003 ± 0.002 -2.573

ML 0.495 ± 0.041 0.003 ± 0.002 -2.573

TW 0.832 ± 0.075 0.049 ± 0.008 -2.503

AM 0.333 ± 0.046 0.0005 ± 0.0003 -0.933

a Population codes as in Table 1
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p = 0.049 ± 0.008) than the mainland population (h = 495 ± 0.041, p = 0.003 ±

0.002).

Phylogenetic Relationships

The neighbor-joining, maximum likelihood, and Bayesian inference phylogenetic

trees converge on a congruent topology, and genetically the populations cluster into

three major groups (Fig. 2), with significant genealogical clusters or clades

associated with the sample collecting locations. Samples from the Huaihe (Fuyang,

Gan’an, Huaibin, Bengbu, Xuyi, Yingshang), Yangtze River (Nanjing, Chaohu Lake,

Shingjin Lake, Wangjiang), and Yellow River formed the mainland population

cluster, and the Taiwan population formed the second cluster. The Taiwan cluster

formed sister groups with the mainland population, and both of them grouped

together with the American population. Within the mainland population clade, some

geographic populations were irregularly distributed according to the river systems,

but others were well matched (e.g., Chaohu Lake, Wangjiang, Xuyi, and Yingshang).

Discussion

Characterization of the ITS1 Region and Haplotype Distribution

A better understanding of the characteristics of the ITS1 region will provide insights

into the evolution dynamics of organisms. The length of the ITS1 region in the red

swamp crayfish is similar to other crayfish (Harris and Crandall 2000; Campbell et al.

2005; Kan et al. 2007). The GC content has some important functional relevance for

an organism’s genome; for example, it is concerned with coding-sequence length and

NJ
SJ

XY

BB

HB

CH

GA

31/70/0.87

34/77/0.97

60/78/0.90

31/78/1.00

43/77/0.80

94/98/1.00

49/77/0.90

82/89/0.98

FY

Mainland

Taiwan

American

WJ

YS
DY

24/78/1.00

TW

AM

63/75/0.89

Fig. 2 Phylogenetic relationships of geographic populations of the red swamp crayfish based on Nei’s
genetic distance. Numbers at each node are bootstrap values from three analyses (neighbor-joining/
maximum likelihood/Bayesian inference). Population codes as in Table 1
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also correlates with adapting ability (Fullerton et al. 2001; Galtier et al. 2001; Kan

et al. 2007). In the ITS1 region of the red swamp crayfish, the high GC content

(53.9%) is similar to other organisms (Harris and Crandall 2000; Coleman and

Vacquier 2002; Kan et al. 2007). Intra-individual sequence variation in the ITS1

regions of populations from Taiwan and China Mainland was sometimes greater than

interindividual variation in each population, indicating, as might be expected, that

gene flow between the Taiwan and mainland populations was lower (i.e., gene

exchange was restricted) than between individuals in the same population.

Comparisons of the haplotypes revealed contrasting patterns in the 12 population

structures. Hap_1 was found in all geographic populations, suggesting that it is

relatively conservative, primordial, and stable, having adapted strongly to the

environment in the history of evolution. Haplotype variability and molecular

diversity was greatest in the Taiwan population (9 shared haplotypes) compared

with the others, showing that the genetic variability at the population level was not

high. This finding is similar to the results of a microsatellite analysis reported

previously (Yue et al. 2010).

Population Genetic Structure

The ability of a population of a species to adapt to the habitat depends mainly on its

genetic diversity and genetic structure (Bazin et al. 2006). Of the total genetic

diversity in the red swamp crayfish populations, 95.26% was attributable to within-

population diversity and the remainder (4.47%) to diversity among populations.

This finding indicated that at low levels of geographic population structure, there

was only a small differentiation among the 12 populations; however, high migration

and breeding rates in red swamp crayfish overcome low genetic diversity,

suggesting that most populations of this species still maintain considerable genetic

diversity (Saccheri et al. 1998; Nichols et al. 2003; Yue et al. 2010).

Significant Fst values across all the samples from the Taiwan and mainland

populations were observed. When we compared our Chinese samples from the

Taiwan and mainland populations (Fst = 0.682) with the American population

(0.977) of red swamp crayfish, we found that the Fst values were highly

differentiated, suggesting that the genetic difference between these two populations

was remarkable. Conversely, the genetic difference between the Taiwan and

mainland populations was moderate (Fst = 0.160). The population pairwise gene

flow values between the Chinese and American populations ranged from 0.006 to

1.536, showing that the gene flow was quite low (Nm = 0.006 and 0.117,

respectively), similar to the genetic structure reported in European populations

(Barbaresi et al. 2003). Gene flow between the Taiwan and mainland populations was

also not high in our samples (Nm = 1.536), possibly because of the long geological

isolation of these crayfish. Low genetic diversity as a result of the founder effect

should be expected for the settled populations, together with a high population

differentiation (Barbaresi et al. 2003). A new population may be distinctive, both

genetically and phenotypically, and peripheral populations often show a high level of

inbreeding within populations (Barbaresi et al. 2003). According to the records, the

red swamp crayfish was introduced into China only once (from Japan to Nanjing in
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1929); therefore, it is unlikely that much gene exchange would have taken place

between the Chinese and American populations (Li et al. 2005; Xia et al. 2009). The

differentiation between the Taiwan and mainland populations was only moderate,

mainly because the two populations are separated by the wide Taiwan Strait, and

their isolation time is shorter than for the Chinese and American populations

(Ibrahim et al. 1996; Li et al. 2005; Yue et al. 2010).

In this study, all the haplotype distribution rates were low, except for Hap_1,

indicating that the molecular variability level was low in the Chinese population. This

finding also suggests that a recent population expansion occurred within a short time

period, so that there was not enough time for genetic variation to accumulate in the

populations. The Taiwan population presents a variability level (h = 0.832 ± 0.075,

p = 0.049 ± 0.008) that is higher than the level of variability in the mainland

population (h = 0.495 ± 0.041, p = 0.003 ± 0.002). It is likely that the population

structure was significantly influenced by geographic barriers (e.g., river, strait) that

limit gene flow and favor interpopulation divergence, as has been found in other

freshwater crustaceans (Hedgecock et al. 1979; Barbaresi et al. 2003; Yue et al. 2010).

It is also likely that the genetic drift and invasion history pattern in each induced

population can play important roles in the populations (Yue et al. 2010). Haplotype

diversity (h) and nucleotide diversity (p) were higher in the Taiwan population than in

the mainland population. Taiwan and China Mainland are separated by the Taiwan

Strait, resulting in a decrease of effective gene flow between the two populations and a

decline in genetic diversity in the Taiwan population. The loss of genetic variation

through genetic drift and the inbreeding effect in small populations are thought to

increase their extinction rate (Nichols et al. 2003; Saccheri et al. 1998). Successful

invasive species such as the red swamp crayfish are generally thought to have high

genetic diversity, which allows them to escape the harmful effects of inbreeding and

adapt to their new environment (Keller and Waller 2002; Spielman et al. 2004).

Phylogenetic Relationship

Although geographic isolation of the populations might have contributed to their

genetic differentiation, it was not the main factor in this study. The present study also

showed a significant correlation between genetic differentiation and geographic

distance between the Chinese and American populations. The phylogenetic analysis

showed that the populations from the Yangtze and Huaihe rivers are relatively close,

and they both cluster with the Yellow River population. This result indicates that the

relationship between the mainland populations is close. The spread of exotic species

by humans is common in freshwater ecosystems, and jump dispersal has also

frequently occurred as a result of human activity (Parker et al. 1999; Suarez et al.

2001; Tiunov et al. 2006). The high dispersal ability and passive dispersal of the red

swamp crayfish would have contributed to the relatively close relationship among

different geographic populations. The small genetic distances between some of the

populations was a bit unexpected because the populations that were sampled belong

to different river systems. The results may indicate that individuals have been

transferred, in the past several decades, to other provinces for culture (Yue et al.

2010).
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