Skip to main content
Log in

An Experimental Apparatus for Transmyocardial Laser Revascularization Based on an Nd:YAG Laser

  • Published:
Biomedical Engineering Aims and scope

We present here the results obtained during the development of an experimental apparatus for transmyocardial laser revascularization based on an Nd:YAG laser. Use of laser irradiation with a wavelength of 1.44 μm was shown to be effective in producing targeted angiogenesis in transmyocardial laser revascularization in experimental studies using a model of ischemic myocardium. The optimum regimes for pulsed Nd:YAG laser irradiation of the myocardium with thermal tissue damage were established. Morphological changes in the transmyocardial laser channels in pig myocardium were studied. The objective of the experiments was to confirm the efficacy of using this apparatus for transmyocardial laser revascularization with an Nd:YAG laser for the treatment of patients with diffuse lesions to the coronary arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bokeriya, L. A., Berishvili, I. I., Buziashvili, Yu. I., et al., “Results of combined transmyocardial laser revascularization of the myocardium (TMLR) and minimally invasive revascularization of the myocardium (MIRM),” in: Current Questions in Cardiovascular Surgery [in Russian], Nizhnii Novgorod (2003).

  2. Andreev, S. N., Belov, S. V., Danyleiko, Yu. K., Denker, B. I., Egorov, A. B., Zhbanov, I. V., Molochkov, A. V., and Salyuk, V. A., “Experimental studies of the efficacy of transmyocardial laser revascularization using an erbium laser,” Biomed. Eng., 53, No. 4, 1-7 (2018).

    Google Scholar 

  3. Bokeriya, L. A., Berishvili, I. I., Aslanidi, I. P., and Vakhromeeva, M. P., Transmyocardial Laser Revascularization: Perfusion, Function and Metabolism of the Myocardium [in Russian], Bakoulev National Center for Cardiovascular Surgery, Russian Academy of Medical Sciences (2004).

  4. Aitkozhin, G. K. and Israilova, V. K., “Transmyocardial laser revascularization of the myocardium − a novel method for the surgical treatment of patients with ischemic heart disease,” Kardiologiya, 42, No. 1 (2002).

    Google Scholar 

  5. Bokeriya, L. A., Berishvili, I. I., Sigaev, I. Yu., et al., “Assessment of myocardial trauma using cardiac markers in patients with ischemic heart disease after transmyocardial laser revascularization,” Annaly Khirurg., No. 5 (2002).

  6. Vincent, J. G., Bardos, R., Kruse, J., and Maass, D., “End stage coronary disease treated with transmyocardial CO2 laser revascularization: A chance for the ‘inoperable’ patient,” Eur. J. Cardiothorac. Surg., 121 (1997).

  7. Baburin, N. V., Galagan, B. I., Danyleiko, Yu. K., Denker, B. I., Zhbanov, I. V., Ivanov, A. D., Lebedeva, T. P., Molochkov, A. V., Osiko, V. V., Salyuk, V. A., and Chikov, V. A., “A 1.54-μm erbium laser surgical apparatus for transmyocardial laser revascularization,” Dokl. Akad. Nauk., 410, No. 5, 1-4 (2006).

    Google Scholar 

  8. Szekely, L., Kreisz, I., Salamon, F., and Kolta, I. M., “Transmyocardial laser revascularization – evidence of enhanced angiogenesis by a new type of laser,” in: The 9th World Congress of the International Society of Cardio-Thoracic Surgeons. Lisbon, Portugal, November 14-17, 1999.

  9. Pushkareva, A. E., Methods for Mathematical Modeling in Biotissue Optics. A Textbook [in Russian], St. Petersburg National Information Technologies, Mechanics, and Optics Research University, St. Petersburg (2008).

  10. Arakcheev, A. G., Danyleiko, Yu. K., Osiko, V. V., Egorov, A. B., and Shilin, L. G., “Identification of the R peak in the ECG leads as an adjunct to transmyocardial laser revascularization surgery,” Biomed. Radioelektron., No. 2 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Belov.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 53, No. 3, May-Jun., 2019, pp. 12-16.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belov, S.V., Danyleiko, Y.K., Egorov, A.B. et al. An Experimental Apparatus for Transmyocardial Laser Revascularization Based on an Nd:YAG Laser. Biomed Eng 53, 167–171 (2019). https://doi.org/10.1007/s10527-019-09901-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-019-09901-4

Navigation