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At the start of the decade, two publications (Shull et al. 2002; Boehm and Basili
2001) described the start-of-the art in defect reduction. Since then, there has been
considerable research into data mining of defect data; e.g. Menzies et al. (2007). The
data mining work has become less about defect reduction, and more about how to or-
ganize a project’s test resources in order to improve product quality by (say) defining
a procedure such that the modules most likely to contain defects are inspected first
(Menzies et al. 2010).

After a decade of intensive work into data mining to make best use of testing
resources, it is time to ask: what have we learned from all that research? Some of that
research offers success stories with (e.g.)

e Reducing the costs to find defects (Menzies et al. 2010);
e Generalizing defect predictors to other projects (Tosun et al. 2011);
e Tuning those predictors to different business goals (Turhan et al. 2009).

But other research offers the cautions that:

e Defect predictors may not generalize to other projects (Zimmermann et al. 2009);

e Despite much effort on data mining and defects, most of that work achieves similar
conclusions (Lessmann et al. 2008);

e Data mining data is fundamentally less important than discussing those effects with
the users (Fenton et al. 2008).
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The above references sample just a small subset of the research performed this
decade on data mining and software defects. In this special issue we wanted to focus
on research that documents, reviews, and extends this work. Do the insights from the
start of the decade still hold? Has anything extra really been learned in the mean-
while? If we wrote an article "What We Have Learned About Organizing Testing
Resources” in 2010, what would we write in such an article, that has been verified
using publicly available data sets?

Therefore, this special issue aimed to address the research community’s progress
(or lack of progress) in using data mining to organize test resources to fight defects
with verifiable results based on public-domain data sets. This special issue has three
papers whose results verify previous studies:

1. The first paper titled “Applying the Mahalonobis-Taguchi Strategy for Software
Defect Diagnosis” uses a well known technique in other domains for the first time
in the software engineering domain. It is a data driven technique that clusters de-
fective modules. It also gives insights to the most relevant metrics that explain
defective classes at the design and development stages of the product develop-
ment. The technique is more like a heuristic than a classical statistical method, and
the basic idea is that faulty classes do not belong to different population; rather,
each is a unique case. The authors conducted their experiments on 10 different
NASA datasets. The technique promises to be quite useful in practice since it
makes expert-like assumptions about distributions. The data-centric nature of this
approach offers much insight into the relationship between metrics and defects.

2. The second article, titled “An Investigation on the Feasibility of Cross-Project
Defect Prediction”, is another data-driven approach in software defect prediction.
The research in this article focuses on choosing the best training data and offers
significant extensions to previous studies in the literature. The authors confirm
that using cross project data achieves good results since similar projects are the
best indicators of defects. This study further emphasizes that in real life projects
obtaining historical data may be difficult and may not be so meaningful either due
to heterogeneity of the environment. However, obtaining data from other projects
would be relatively easier, and hence produce better results, provided that training
data is carefully selected. Therefore, they emphasize better understanding of data
in constructing effective defect prediction models.

3. The third paper titled “Sample-based Software Defect Prediction with Active and
Semi-supervised Learning” is also a data-driven approach that repeats and con-
firms previous studies in the literature. As with the previous paper, the basic as-
sumption is the lack of historical data . Accordingly, the authors seek to understand
the minimum size requirements for a data set being used to build a good defect
prediction model. They employ various sampling techniques and conclude that
effective defect predictors can be built with smaller data samples. Their proposed
semi-supervised learning model ACoForest performs better than the conventional
machine learning methods, because it inherently learns more from the available
data.

In this special issue we are pleased to observe that recent work in defect pre-
diction studies produce repeatable results and verify the findings of previous studies,
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although they use different datasets, techniques, and experiment designs. Such results
are important since software engineering is a domain with many random factors and
relatively limited data. Nevertheless, in the software domain, remarkably effective
predictors for software products have been generated using data mining methods.
The success of these models seems unlikely considering all the factors involved in
software development:

o For example, organizations can work in different domains, have different process,
and define/ measure defects and other aspects of their product and process in dif-
ferent ways.

o Furthermore, most organizations do not precisely define their processes, products,
measurements, etc.

Nevertheless, it is true that very simple models suffice for generating approxi-
mately correct predictions for software development time, the location of software
defects. One candidate explanation for the strange predictability in software develop-
ment is that, despite all the seemingly random factors influencing software construc-
tion, the net result follows very tight statistical patterns. Building oracles to predict
defects and/or effort via data mining is also an inductive generalization over past
experience.

Going forward, this may lead this community to focus on “how we can use pre-
dictive models to define policies in software development organizations?”, and “how
can we generalize our results to make policies?”. Perhaps descriptions of software
modules only in terms of static code attributes can overlook some important aspects
of software including:

the type of application domain;

the skill level of the individual programmers involved in system development;
contractor development practices;

the variation in measurement practices;

and the validation of the measurements and instruments used to collect the data.

O O O O O

For this reason in order to be able talk about policy making and generalization,
future research might consider augmenting, or even replacing static code measures
with repository metrics such as past faults or changes to code or number of developers
who have worked on the code, etc. In building oracles we have successfully modelled
product attributes (static code metrics, repository metrics, etc.), and process attributes
(organizational factors, experience of people, etc). However, in software development
projects people (developers, testers, analysts) are the most important pillar, but very
difficult to model. It is inevitable that we should move to a model that considers
Product, Process, and People (3Ps). Future models should also be able to proactively
guide practitioners in effective resource allocation to organize testing.
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