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Abstract

Deep convolutional neural networks have shown outstanding performance in the task of semantically segmenting images.
Applying the same methods on 3D data still poses challenges due to the heavy memory requirements and the lack of structured
data. Here, we propose LatticeNet, a novel approach for 3D semantic segmentation, which takes raw point clouds as input.
A PointNet describes the local geometry which we embed into a sparse permutohedral lattice. The lattice allows for fast
convolutions while keeping a low memory footprint. Further, we introduce DeformSlice, a novel learned data-dependent
interpolation for projecting lattice features back onto the point cloud. We present results of 3D segmentation on multiple
datasets where our method achieves state-of-the-art performance. We also extend and evaluate our network for instance and
dynamic object segmentation.

Keywords Semantic segmentation - Instance segmentation - Motion segmentation - Sequence segmentation - 3D point cloud

1 Introduction

Environment understanding is a crucial ability for autonomous
agents. Perceiving not only the geometrical structure of the
scene but also distinguishing between different classes of
objects therein enables tasks like manipulation and inter-
action that were previously not possible. Within this field,
semantic segmentation of 2D images is a mature research
area, showing outstanding success in dense per pixel cate-
gorization on images (Long et al. 2015; Chen et al. 2017,
Lin et al. 2017). However, the task of semantically labelling
3D data is still an open area of research as it poses several
challenges that need to be addressed.
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First, 3D data is often represented in an unstructured
manner—unlike the grid-like structure of images. This raises
difficulties for current approaches which assume a regular
structure upon which convolutions are defined.

Second, the performance of current 3D networks is limited
by their memory requirements. Storing 3D information in a
dense structure is prohibitive for even high-end GPUs, clearly
indicating the need for a sparse structure.

Third, discretization issues caused by imposing a regular
grid onto point clouds can negatively affect the network’s
performance and interpolation is necessary to cope with
quantization artifacts (Tchapmi et al. 2017).

In this work, we propose LatticeNet, a novel approach
for point cloud segmentation which alleviates the previously
mentioned problems. An overview of the input and output of
our method can be seen in Fig. 1. Hence, our contributions
are:

— A hybrid architecture which leverages the strength of
PointNet to obtain low-level features and sparse 3D con-
volutions to aggregate global context,

— A framework suitable for sparse data onto which all com-
mon CNN operators are defined, and

— A novel slicing operator that is end-to-end trainable for
mapping features of a regular lattice grid back onto an
unstructured point cloud.
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Fig. 1T Semantic segmentation: LatticeNet takes raw point clouds as
input and embeds them into a sparse lattice where convolutions are
applied. Features on the lattice are projected back onto the point cloud
to yield a final segmentation

In addition to our Robotics: Science and System con-
ference paper (Rosu et al. 2020) we make the following
additional contributions:

— An extension with discriminative loss that allows Lat-
ticeNet to perform instance segmentation, and

— A network architecture capable of processing temporal
information in order to improve semantic segmentation
and to distinguish between dynamic and static objects
within the scene.

2 Related work
2.1 Semantic segmentation

3D Semantic segmentation approaches can be categorized
depending on data representation upon which they operate.
Point cloud networks The first category of networks operates
directly on the raw point cloud.

From this area, PointNet (Qi et al. 2017a) is one of the
pioneering works. The method processes raw point clouds by
individually embedding the points into a higher-dimensional
space and applying max-pooling for permutation-invariance
to obtain a global scene descriptor. The descriptor can be
used for both classification and semantic segmentation. How-
ever, PointNet does not take local information into account
which is essential for the segmentation of highly-detailed
objects. This has been partially solved in the subsequent
work of PointNet++ (Qi et al. 2017b) which applies Point-
Net hierarchically, capturing both local and global contextual
information.

Chen et al. (2018) use a similar approach but they input
the point responses w.r.t. a sparse set of radial basis functions
(RBF) scattered in 3D space. Optimizing jointly for the extent
and center of the RBF kernels allows to obtain a more explicit
modelling of the spatial distribution.

PointCNN (Li et al. 2018) deals with the permutation
invariance not by using a symmetric aggregation function,
but by learning a K x K matrix for the K input points that
permutes the cloud into a canonical form.
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Voxel networks 3D Convolutions in this category work on
discretized cubic or tetrahedral volume elements.

SEGCloud (Tchapmi et al. 2017) voxelizes the point
cloud into a uniform 3D grid and applies 3D convolutions
to obtain per-voxel class probabilities. A conditional ran-
dom field (CRF) is used to smooth the labels and enforce
global consistency. The class scores are transferred back to
the points using trilinear interpolation. The usage of a dense
grid results in high memory consumption while our approach
uses a permutohedral lattice stored sparsely. Additionally,
their voxelization results in a loss of information due to the
discretization of the space. We avoid quantization issues by
using a PointNet architecture to summarize the local neigh-
borhood.

Rethage et al. (2018) perform semantic segmentation on
a voxelized point cloud and employ a PointNet architecture
as a low-level feature extractor. The usage of a dense grid,
however, leads to high memory usage and slow inference,
requiring various seconds for medium-sized point clouds.

SplatNet (Su et al. 2018) is the work most closely related
to ours. It alleviates the computational burden of 3D convo-
lutions by using a sparse permutohedral lattice, performing
convolutions only around the surfaces. It discretizes the space
in uniform simplices and accumulates the features of the raw
point cloud onto the vertices of the lattice using a splatting
operation. Convolutions are applied on the lattice vertices and
aslicing operation barycentrically interpolates the features of
the vertices back onto the point cloud. A series of splat-conv-
slice operations are applied to obtain contextual information.
The main disadvantage is that splat and slice operations are
not learned and repeated application slowly degrades the
point clouds features as they act as Gaussian filters (Baek and
Adams 2009). Furthermore, storing high-dimensional fea-
tures for each point in the cloud is memory intensive which
limits the maximum number of points that can be processed.
In contrast, our approach has learned operations for splatting
and slicing which brings more representational power to the
network. We also restrict their usage to only the beginning
and the end of the network, leaving the rest of the architecture
fully convolutional.

Mesh networks The connectivity of triangular or quadrilateral
mesh faces enables easy computation of normal vectors and
establishes local tangent planes.

GCNN (Masci et al. 2015) operates on small local patches
which are convolved using a series of rotated filters, followed
by max-pooling to deal with the ambiguity in the patch orien-
tation. However, the max-pooling disregards the orientation.
MoNet (Monti et al. 2017) deals with the orientation ambi-
guity by aligning the kernels to the principal curvature of
the surface. Yet, this does not solve cases in which the local
curvature is not informative, e.g. for walls or ceilings. Tex-
tureNet (Huang et al. 2019) further improves on the idea
by using a global 4-RoSy orientations field. This provides a
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smooth orientation field at any point on the surface which is
aligned to the edges of the mesh and has only a 4-direction
ambiguity. Defining convolution on patches oriented accord-
ing to the 4-RoSy field yields significantly improved results.
Graph networks These methods allow arbitrary topologies
to connect vertices and lift the restriction of triangular or
quadrilateral meshes.

Wang et al. (2018a) and Wu et al. (2019) define a con-
volution operator over non-grid structured data by having
continuous values over the full vector space. The weights of
these continuous filters are parametrized by an multi-layer
perceptron (MLP).

Defferrard et al. (2016) formulate CNNs in the context

of spectral graph theory. They define the convolution in
the Fourier domain with Chebyshev polynomials to obtain
fast localized filters. However, spectral approaches are not
directly transferable to a new graph as the Fourier basis
changes. Additionally, the learned filters are rotation invari-
ant which can be seen as a limitation to the representational
power of the network.
Multi-view networks The convolution operation is well
defined in 2D and hence, there is an interest in casting 3D
segmentation as a series of single-view segmentations which
are fused together.

Pham et al. (2019a) simultaneously reconstruct the scene
geometry and recover the semantics by segmenting sequences
of RGB-D frames. The segmentation is transferred from 2D
images to the 3D world and fused with previous segmenta-
tions. A CREF finally resolves noisy predictions.

Tatarchenko et al. (2018) assumes that the data is sampled
from locally Euclidean surfaces and project the local surface
geometry onto a tangent plane to which 2D convolutions can
be applied. This requires a heavy preprocessing for normal
calculation. In contrast, our approach can deal with raw point
clouds without requiring normals.

2.2 Motion segmentation

For the task of motion segmentation two approaches have
been widely used: Networks either incorporate multiple point
clouds directly or accumulate a sequence of individually seg-
mented point clouds.

Shi et al. (2020) present their U-Net based architec-
ture SpSequenceNet for semantic segmentation on 4D point
clouds. They input two point clouds and generate the output
for the later one with a voxel-based method. They designed
two modules, the Cross-frame Global Attention (CGA) and
the Cross-frame Local Interpolation (CLI) module. The CGA
acts as a teacher that uses the data from P,_; to focus the
network on the important features of P;. The CLI module
fuses information between both point clouds by combining
the spatial and temporal information.

Kernel Point Convolution (KPConv) (Thomas et al.
2019) operates directly on the point clouds by facilitating
convolution weights that are located in Euclidean space.
Points in the vicinity of these kernels are weighted and
summed together to feature vectors. KPConv (Thomas et al.
2019), DarkNet53Seg (Behley et al. 2019) and Tangent-
Conv (Tatarchenko et al. 2018) were previously used for the
segmentation of 4D point clouds by accumulating multiple
clouds of a sequence.

2.3 Instance segmentation

Researchers extended principles from 2D to obtain instances
in 3D which can be roughly categorized in proposal-based
and proposal-free methods.

Proposal-based This type solves the problem in two stages.
The first network stage generates proposals of bounding
boxes for the objects in the scene. A second stage performs
foreground-background segmentation on the points within
the bounding boxes in order to get valid instances.

Yang et al. (2019) present a single-stage method for

instance segmentation that can train both the proposal and
the point-mask prediction network in an end-to-end manner.
Yi et al. (2019) alleviate some of the issues associated with
wrong bounding box predictions by using an analysis-by-
synthesis strategy.
Proposal-free Proposal-free methods tackle instance seg-
mentation without the need of generating object proposals.
They usually rely on predicting point embedding and apply
clustering to recover the instances.

Many proposal-free approaches base their work on the
2D instance segmentation of De Brabandere et al. (2017) in
which pixel embeddings are predicted. There, a discrimina-
tive loss encourages the embeddings that belong to the same
instance to be clustered together while embeddings from dif-
ferent instances should be further apart.

SPGN (Wang et al. 2018b) learns a similarity matrix for
all point pairs, based on which, similar points are merged
to instances. VoteNet (Qi et al. 2019) uses a Hough vot-
ing mechanism where the points predict the offset towards
the object center. A clustering algorithm finally recovers the
object instances.

Neven et al. (2019) alleviate some of the issues associated
with proposal-free methods by allowing also the clustering
algorithm to be part of the training by jointly optimizing the
spatial embeddings and the clustering bandwidth.

Wang et al. (2019) proposed a framework that allows for
semantic and instances to be predicted simultaneously and for
the two tasks to mutually benefit from each other. Similarly,
Pham et al. (2019b) recover both instances and semantics and
apply a CRF to improve the predictions accuracy.

Most of these works utilize a PointNet (Qi et al. 2017a)
or PointNet++ (Qi et al. 2017b) network to predict the point
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embeddings. In our case, we extend LatticeNet in a simi-
lar manner to other proposal-free methods but predict the
embeddings using the lattice convolutions.

3 Notation

Throughout this paper, we use bold upper-case characters
to denote matrices and bold lower-case characters to denote
vectors.

The vertices of the d-dimensional permutohedral lattice
aredefined asatuple v = (¢,, Xy), withe, € Z@+h denoting
the coordinates of the vertex and x,, € R" representing the
values stored at vertex v. The full lattice containing n vertices
is denoted with V = (C, X), with C € Z"*@+D representing
the coordinate matrix and X € R"*? the value matrix.

The points in a cloud are defined as a tuple p = (gp, f p),
with g, € R¢ denoting the coordinates of the point and
f, R4 representing the features stored at point p (color,
normals, etc.). The full point cloud containing m points is
denoted by P = (G, F) with G € R”*? being the positions
matrix and F € R”* /4 the feature matrix. The feature matrix
F can also be empty in which case f; is set to zero.

For motion segmentation we define a sequence of point
clouds as Py.y = (Po, P1, ..., Py) with P, = (G, F). We
define a timestep as processing one cloud of this sequence.

We denote with /), the set of lattice vertices of the simplex
that contains point p. The set /), always contains d+1 vertices
as the lattice tessellates the space in uniform simplices with
d + 1 vertices each. Furthermore, we denote with J, the
set of points p for which vertex v is one of the vertices of
the containing simplices. Hence, these are the points that
contribute to vertex v through the splat operation.

We denote with S the splatting operation, with ) the slic-
ing operation, with Y the deformable slicing, with P the
PointNet module, with Dg and Dp the distribution of the
point positions and the points features, respectively, and with
G the gathering operation.

4 Permutohedral lattice

The d-dimensional permutohedral lattice is formed by pro-
jecting the scaled regular grid (d 4+ 1)Z?*! along the vector
1=1[1,..., 1] onto the hyperplane H;: p-1 = 0.

The lattice tessellates the space into uniform d-dimensional
simplices. Hence, for d = 2 the space is tessellated with tri-
angles and for d = 3 into tetrahedra. The enclosing simplex
of any point can be found by a simple rounding algorithm
(Baek and Adams 2009).

Due to the scaling and projection of the regular grid, the
coordinates ¢, of each lattice vertex sum up to zero. Each
vertex has 2(d + 1) immediate neighboring vertices. The
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coordinates of these neighbors are separated by a vector of
form+[—1,...,-1,d,—1,...,—1] € Z4+".

The vertices of the permutohedral lattice are stored in a
sparse manner using a hash map in which the key is the
coordinate ¢, and the value is x,. Hence, we only allocate
the simplices that contain the 3D surface of interest. This
sparse allocation allows for efficient implementation of all
typical operations in CNNs (convolution, pooling, transposed
convolution, etc.).

The permutohedral lattice has several advantages w.r.t. stan-
dard cubic voxels. The number of vertices for each simplex is
given by d 4 1 which scales linearly with increasing dimen-
sion, in contrast to the 24 for standard voxels. This small
number of vertices per simplex allows for fast splatting and
slicing operations. Furthermore, splatting and slicing create
piece-wise linear outputs as they use barycentric interpola-
tion. In contrast, standard quantization in cubic voxels create
piece-wise constant outputs, leading to discretization arte-
facts.

Spatial correspondences between lattice vertices are given
by design and the hashmap: If the hashmap stays the same
for the whole sequence, spatially identical lattice vertices of
different point clouds are always mapped to the same entries.
This is visualized in Fig. 9 where features from two different
time-steps are fused together.

5 Method

The input to our method is a point cloud P = (G, F) con-
taining coordinates and per-point features.

We define the scale of the lattice by scaling the positions
G as Gy = G/o, where o € R is the scaling factor. The
higher the sigma the less number of vertices will be needed
to cover the point cloud and the coarser the lattice will be.
For ease of notation, unless otherwise specified, we refer to
G; as G as we usually only need the scaled version.

5.1 Common operations on permutohedral lattice

In this section, we will explain in detail the standard oper-
ations on a permutohedral lattice that are used in previous
works (Su et al. 2018; Gu et al. 2019).

Splatting refers to the interpolation of point features onto the
values of the lattice V using barycentric weighting (Fig. 3a).
Each point splats onto d+ 1 lattice vertices and their weighted
features are summed onto the vertices.

Convolving operates analogously to standard spatial convo-
lutions in 2D or 3D, i.e. a weighted sum of the vertex values
together with its neighbors is computed. We use convolu-
tions that span over the 1-hop ring around a vertex and hence
convolve the values of 2(d + 1) + 1 vertices (Fig. 2).
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Fig.2 Convolution: The neighboring vertices of a lattice are convolved
similarly to standard 2D convolutions. If a neighbor is not allocated in
the sparse structure, we assume that it has a value of zero

Slicing is the inverse operation to splatting. The vertex val-
ues of the lattice are interpolated back for each position with
the same weights used during splatting. The weighted con-
tributions from the simplexes d + 1 vertices are summed
up (Fig. 5a).

5.2 Proposed operations on permutohedral lattice

The operations defined in Sect. 5.1 are typically used in a cas-
cade of splat-conv-slice to obtain dense predictions (Su et al.
2018). However, splatting and slicing act as Gaussian kernel
low-pass filtering on encoded information (Baek and Adams
2009). Their repeated usage at every layer is detrimental to
the accuracy of the network. Additionally, splatting acts as a
weighted average on the feature vectors where the weights are
only determined through barycentric interpolation. Includ-
ing the weights as trainable parameter allows the network to
decide on a better interpolation scheme. Furthermore, as the
network grows deeper and feature vectors become higher-
dimensional, slicing consumes increasingly more memory,
as it assigns the features to the points. Since in most cases
|P| > |V], it is more efficient to store the features only in
the lattice vertices.

To address these limitations, we propose four new opera-
tors on the permutohedral lattice which are more suitable for
CNNs and dense prediction tasks.

Distribute is defined as the list of features that each lattice
vertex receives. However, they are not summed as done by
splatting:

x, =S(P,V) = Z bpuf )y, 1)

pedy

where X, is the value of lattice vertex v and b, is the barycen-
tric weight between point p and lattice vertex v.

Instead, our distribute operators D¢ and D concatenate
coordinates and features of the contributing points:

Xy = 7D(Dvg§ va), (2)

o

(a) Splat (b) Distribute

Fig. 3 Splat and Distribute operations: Splatting uses barycentric
weighting to add the features of points onto neighboring vertices. The
naive summation can be detrimental to the network as splatting acts as
a Gaussian filter. Distributing stores all the features of the contributing
points, causing no loss of information and allows further processing by
the network

D,, = D(P, V) =g, — i, | p € Iy}, 3)
vaZDF(PvV):{fp|per}s 4
1
Bo="—7 D & (5)
[/l
pedy

where D,, € RV*? and D, € RM*/4 are matrices con-
taining the distributed coordinates and features, respectively,
for the contributing points into a vertex v. The matrices are
concatenated and processed by a PointNet P to obtain the
final vertex value x,,. Fig. 3 illustrates the difference between
splatting and distributing.

Note that we use a different distribute function for coordi-
nates then for point features. For coordinates, we subtract the
mean of the contributing coordinates. The intuition behind
this is that coordinates by themselves are not very informa-
tive w.r.t. the potential semantic class. However, the local
distribution is more informative as it gives a notion of the
geometry.

Downsampling refers to a coarsening of the lattice, by reduc-
ing the number of vertices. This allows the network to
capture more contextual information. Downsampling con-
sists of two steps: creation of a coarse lattice and obtaining
its values. Coarse lattices are created by repeatedly divid-
ing the point cloud positions by 2 and using them to create
new lattice vertices (Barron et al. 2015). The values of
the coarse lattice are obtained by convolving over the finer
lattice from the previous level (Fig. 4). Hence, we must
embed the coarse lattice inside the finer one by scaling
the coarse vertices by 2. Afterwards, the neighbors vertices
over which we convolve are separated by a vector of form
+[-1,....—1,d,—1,...,—1] € Z%*! The downsam-
pling operation effectively performs a strided convolution.

Upsampling follows a similar reasoning. The fine vertices
need first to be embedded in the coarse lattice using a
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Fig.4 Coarsen: Downsampling of the lattice is performed by embed-
ding the coarse lattice in the finer one and convolving over the neighbors.
This effectively performs a strided convolution. Transposed convolution
is performed in an analogous manner by embedding a fine lattice into a
coarse one

division by 2. Afterwards, the neighboring vertices over
which we convolve are separated by a vector of form
+[-0.5,...,-0.5,d/2, 0.5, ..., —0.5]. The careful reader
will notice that in this case, the coordinates of the neigh-
boring vertices may not be integer anymore; they may have
a fractional part and will, therefore, lie in the middle of a
coarser simplex. In this case we ignore the contribution of
this neighboring vertices and only take the contribution of
the center vertex. The upsampling operation effectively per-
forms a transposed convolution.

DeformSlicing While the slicing operation ) barycentrically
interpolates the values back to the points by using barycentric
coordinates:

fp=Y(P.V)=>"bpx,

vel)

(6)

we propose the DeformSlicing Y which allows the network
to directly modify the barycentric coordinates and shift the
position within the simplex for data-dependent interpolation:

Fr=IP. V)= by + Abpy)x,.

vel,

(N

Here, Abp, are offsets that are applied to the original
barycentric coordinates. A parallel branch within our net-
work first gathers the values from all the vertices in a simplex
and regresses the Ab,:

q, = G(P,V)= {bpvxp |V €1} },
Ab, = F(qp),

®)
©)

where ), is a set containing the weighted values of all
the vertices of the simplex containing p and the prediction
Ab, = { Abpy | v € I, }is aset of offsets to the barycentric
coordinates towards the d + 1 vertices. With a slight abuse
of notation—due to the fact that the vertices of a simplex are
always enumerated in a consistent manner, we can regard
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(a) Slice (b) DeformSlice

Fig.5 Slice and DeformSlice: Slicing barycentrically interpolates the
vertex values back onto a point. DeformSlice allows for the network to
directly affect the interpolated value by learning offsets of the barycen-
tric coordinates

b, and q, as vectors in RUTD and RU*TDv  respectively,
and cast the prediction of offsets as a fully connected layer
followed by a non-linearity:

Ab, = F(qp) =o0(qp - W+ D). (10)

However, this prediction has the disadvantage of not being
permutation equivariant; therefore, permutation of the ver-
tices would not imply the same permutation in the barycentric
offsets:

F(rqp) #nF(qp). (1D

where 7 is the set of all permutations of the d 4 1 vertices.

It is important for our prediction to be permutation equiv-
ariant because the vertices may be arranged in any order and
the barycentric offsets need to keep a consistent preference
towards a certain vertexes’ features, regardless of its position
within a simplex.

In order for the prediction of the offsets to be consis-
tent with permutations of the vertices, we take inspiration
from the work of Ravanbakhsh et al. (2016) and Zaheer et al.
(2017) of equivariant layers and design F as:

Abpv =o((b+ (bpvxv - ilne%X{bded}) - W), (12)
4

Ab, = F(qp) ={Abpy |vE T}, (13)

where W € RU*! is a weight matrix and b € R corre-
sponds to a scalar bias. In other words, we subtract from
each weighted vertex the maximum of the weighted values
of all the other vertices in the simplex. Since the max opera-
tion is invariant to permutations of the input, the regression
of the offsets is equivariant to permutations of the vertices.

The difference between the slicing and our DeformSlicing
is visualized in Fig. 5
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6 Segmentation methods

Due to the flexibility of LatticeNet various segmentation
methods can be implemented. In this section, we detail the
methods used for each one.

6.1 Semantic segmentation

Semantic segmentation uses the default U-Net architecture
described in the Network Architecture section. It is trained
with an equal part combination of cross entropy loss and
Lovasz loss (Berman et al. 2018). The Lovasz loss acts as a
surrogate for the intersection-over-union score and is espe-
cially useful for dealing with class imbalance.

6.2 Instance segmentation

Our instance segmentation network follows the work of
other proposal-free methods like (De Brabandere et al.
2017). We use LatticeNet to predict for each 3D point p;
in the point cloud an embedding x;. A discriminative loss
encourages closeness in embeddings space for points of the
same instance while promoting distance between different
instances. Finally, we apply mean-shift clustering on the
points in embeddings space. Points belonging to the same
cluster are defined as an Instances.

This discriminative loss can be expressed with three terms:

— Variance term: The intra-cluster pull force that draws the
embeddings towards the mean embedding.

— Distance term: An inter-cluster push force that forces the
clusters to be far apart from each other in embedding
space.

— Regularization term: A small force that pulls the cluster
centers towards the origin in order to keep the activations
bounded.

The full loss is then defined as:

c Ne

1 1
Loar = = Y — > e = xill = 8,1 (14)
C <= N.
c=1 i=1
1 €& 2
Laiss = e 2o 2 [280 = ey — ey (15)
(C_l)c =lcp=1
A=1Cp=
CAFCB
1 C
Lreg == D _lltel (16)
c=1
L=a-Lyy+B-Laist +y - Lreg an

We define C as the number of clusters in the ground truth,
N, as the number of elements in cluster c, x; as the embedding

vector for point p; and u. as the mean or cluster center for
cluster c. The 8y and §4 are the margins for the variance and
distance loss respectively. We seta = f = 1 and y = 0.001

A visualization of the pipeline for instance segmentation
can be seen in Fig. 6.

6.3 Motion segmentation

Motion segmentation distinguishes between dynamic and
static objects within a point cloud. For this, the network needs
temporal information. We extend the original LatticeNet U-
Net architecture with a recursive architecture that can process
a sequence of point clouds Py, at times ¢,z —1,...,f —n
and learn to distinguish for example between a moving car
and a parked car.

The dynamic objects are considered as additional classes.
Hence, we use the same loss as in the case of semantic seg-
mentation. We also explore multiple ways to perform the
fusion of temporal information which we detail in the Net-
work Architecture section.

7 Network architecture

Input to our network is a point cloud P which may contain
per-point features stored in F. The output is class probabilities
for each point p. In the recurrent network the input is an
ordered set of point clouds Ps., and the output are class
probabilities for the last point cloud of the sequence. Moving
and static objects are considered as different semantic classes.

Our network architecture has a U-Net structure (Ron-
neberger et al. 2015) and is visualized in Fig. 7 together with
the used individual blocks.

The first layers distribute the point features onto the
lattice and use a PointNet to obtain local features. After-
wards, a series of ResNet blocks (He et al. 2016a), followed
by repeated downsampling, aggregates global context. The
decoder branch mirrors the encoder architecture and upsam-
ples through transposed convolutions. Finally, a DeformSlic-
ing propagates lattice features onto the original point cloud.
Skip connections are added by concatenating the encoder
feature maps with matching decoder features.

7.1 Temporal fusion

Incorporating temporal information for motion prediction
over a sequence of point clouds relies on fusing information
between multiple time-steps. For this purpose, the feature
vectors of the timesteps + — 1 and ¢ are passed through a
Temporal Fusion block, as shown in Fig. 8. This fusion con-
sists of a concatenation of both feature vectors and a linear
layer followed by a non-linearity (Fig. 9). Each new time-
step allocates additional vertices in the lattice corresponding
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Fig. 6 Instance segmentation: LatticeNet takes raw point clouds as input and embeds them into a sparse lattice where convolutions are applied.
Features on the lattice are projected onto a 2D space where clustering is performed. The clusters define the instances of each object type in the

original cloud

to newly explored areas in the map. For correct fusion, the
features from the previous time-step need to be zero-padded
so that the sizes match.

Additionally, we performed experiments with a single
Temporal Fusion block in the network and max-pooling over
both feature vectors instead of the linear layer, but found
that three Temporal Fusion blocks achieved overall superior
results (Fig. 10).

It should be noted that our approach for temporal fusion
relies on a sequence of clouds that are transformed into a
common coordinate frame. The required scan poses for trans-
formation can be obtained e.g. from GPS or SLAM.

8 Implementation

Our lattice is stored sparsely on a hash map structure, which
allows for fast access of neighboring vertices. Unlike (Su
et al. 2018), we construct the hash map directly on the GPU,
saving us from incurring an expensive CPU to GPU memory
copy.

For memory savings, we implemented the DeformSlice
and the last linear classification layer in one fused operation,
avoiding the storage of high-dimensional feature vectors for
each point in the point cloud.

All of the lattice operators containing forwards and back-
wards passes are implemented on the GPU and exposed to
PyTorch (Paszke et al. 2017).

Following recent works (He et al. 2016b; Huang et al.
2017), all convolutions are pre-activated using Group Nor-
malization (Wu and He 2018) and a ReLU unit. We chose
Group Normalization instead of the standard batch normal-
ization due to greater stability for small batch sizes. We use
the default of 32 groups.

The models were trained using the Adam optimizer with
a learning rate of 0.001 and a weight decay of 1074. The
learning rate was reduced by a factor of 10 when the loss
plateaued.
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Fig.7 Architecture: Our model follows a U-Net structure. For ease of
representation, blocks which are repeated one after another are indicated
with a multiplier on the right side of the operation

We share the PyTorch implementation of LatticeNet at
https://github.com/AIS-Bonn/lattice_net.

9 Experiments

We evaluate our proposed lattice network on four differ-
ent datasets: ShapeNet (Yi et al. 2016), ScanNet (Dai et al.
2017), SemanticKITTI (Behley et al. 2019) and Pheno4D
(https://www.ipb.uni-bonn.de/data/pheno4d/). For the task
of semantic segmentation and motion segmentation we
report the mean Intersection-over-Union (mloU). For the
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Fig. 8 Recurrent architecture: The features from previous time-steps
are fused in the current time-step at multiple levels of the network. This
allows the network to distinguish dynamic objects from static ones
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Fig.9 Temporal fusion: The features from the previous time-step are
zero-padded in order to account for the new vertices that were allocated
at the current time-step. The features are afterwards concatenated and
passed through a linear layer followed by a non-linearity

task of instance segmentation, we report the Symmetric Best
Dice (SBD) (De Brabandere et al. 2017). SBD measures the
accuracy of the instance segmentation by averaging for each
input label the ground truth label yielding the maximum Dice
score.

We use a shallow model for ShapeNet and Pheno4D and a
deeper model for ScanNet and SemanticKITTI as the datasets
are larger. We augment all data using random mirroring and
translations in space. For ScanNet, we also apply random

color jitter. A video with additional footage of the experi-
ments is available online '.

9.1 Evaluation of segmentation accuracy

ShapeNet part segmentation is a subset of the ShapeNet
dataset (Yi et al. 2016) which contains objects from 16 dif-
ferent categories each segmented into 2—6 parts. The dataset
consists of points sampled from the surface of the objects,
together with the ground truth label of the corresponding
object part. The objects have an average of 2613 points. We
train and evaluate our network on each object individually.
We use the official train/test splits as defined by the dataset
containing a total of 12 137 training objects and 2874 test
objects. The results for our and five competing methods are
gathered in Table 1 and visualized in Fig. 11.

‘We observe that for some classes, we obtain state-of-the-
art performance and for other objects, the IoU is slightly
lower than for other approaches. We ascribe this to the fact
that training one fixed architecture size for each individual
object is suboptimal as some objects like the “cap” have as
few as 55 examples while others like the table have more than
5K. This causes the network to be prone to overfitting on the
easy object or underfitting on the difficult ones. A fair evalua-
tion would require finding an architecture that performs well
for all objects on average. However, due to various issues
with mislabeled ground truths (Su et al. 2018) we deem that
experimentation with more architectures or with different
regularization strengths for individual objects would overfit
the dataset.

ScanNet 3D segmentation Dai et al. (2017) consists of 3D
reconstructions of real rooms. It contains ~ 1500 rooms seg-
mented into 20 classes (bed, furniture, wall, etc.). The rooms
have between 9K and 537K points—on average 145K. We
segment an entire room at once without cropping. We use the
official train/test splits as defined by the dataset containing a
total of 1201 training rooms and 100 test objects. Results are
gathered in Table 2 and visualized in Fig. 12. We obtain an
IoU of 64.0 which is significantly higher than the most similar
related work of SplatNet. It is to be noted that MinkowskiNet
achieves a higher IoU but at the expense of an extremely high
spatial resolution of 2 cm per voxel. In contrast, our approach
allocates lattice vertices so that each vertex covers approxi-
mately 30 points. On this dataset, this corresponds to a spatial
extent of approximately 10 cm.

SemanticKITTI Behley et al. (2019) consists of semanti-
cally annotated LiDAR scans of real urban environments.
The annotation covers a total of 19 classes for single scan
evaluation and a total of 25 classes for multiple scan evalua-
tion. Each scan contains between 82K and 129K points. We
process each scan entirely without any cropping. We use the

1 http://www.ais.uni-bonn.de/videos/RSS_2020_Rosu/.
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Fig.10 Bonn Activity Maps segmentations. Colored meshes are recon-
structed from KinectV2 data using volumetric integration (Nief3ner et al.
2013; Stotko et al. 2019) and semantically segmented using LatticeNet.
Color coding of semantic labels corresponds to the ScanNet dataset (Dai
etal. 2017)

Ground-truth

Prediction

Fig. 11

Fig. 12 ScanNet results. The left image shows the ground truth and the
right one our prediction

official train/validation splits as defined by the dataset. The
test set is not publicly available and testing can only be done
through the benchmark server.

The results for single scan are provided in Table 3 and
visualized in Fig. 13. Our LatticeNet outperforms all other
methods—in case of the most similar SplatNet by more than
a factor of two. It is to be noted that DarkNet53Seg (Behley
etal. 2019), DarkNet21Seg (Behley et al. 2019) and Squeeze-
SegV2 (Wu et al. 2018) are methods that operate on a 2D
image by wrapping the LiDAR scans to 2D using spherical
coordinates. In contrast, our method can operate on general
point clouds, directly in 3D.

@ Springer

For motion segmentation we take as input three point
clouds at consecutive time steps and output the segmentation
for the final, most recent cloud. We overlap this time window
so that every clouds gets to be segmented. For the first few
clouds, the time window is reduced as there are no clouds
from previous time-steps to give as input. The results for the
motion segmentation are provided in Table 4 and visualized
in Fig. 14.

We observe that for motion segmentation we outperform
other approaches except for KPConv (Thomas et al. 2019),
which has higher IoU. However, it is to be noted that KPconv
cannot process a full point cloud at once due to memory
constraints and rather processes sub-clouds centered around
random spheres in the scene. The spheres are chosen ran-
domly in the scene to ensure each point is tested multiple
times by different sphere locations. Finally, a voting scheme
gives the final prediction. In contrast, our approach can
process a full point cloud without requiring neighborhood
searching or partitioning in sub-clouds.

Bonn Activity Maps (Tanke et al. 2019) is a dataset for human
tracking, activity recognition and anticipation of multiple
persons. It contains annotations of persons, their trajectories
and activities. The 3D reconstruction of the four kitchen sce-
narios is however of more interest to us. The environments
are reconstructed as 3D colored meshes and have no ground
truth semantic annotations. We trained our LatticeNet on the
ScanNet dataset and evaluate it on the 4 kitchens in order
to provide an annotation for each vertex of the mesh. The
results are shown in Fig. 10. We can observe that our network
generalizes well to unseen datasets, recorded with different
sensors and with different noise properties as the seman-
tic segmentations look plausible and exhibit sharp borders
between classes.

Pheno4D https://www.ipb.uni-bonn.de/data/pheno4d/ is a
spatio-temporal dataset of point clouds of maize and tomato
plants with instance annotations of leaves. We use a shallow
version of LatticeNet to compute per-point embeddings and
cluster them using mean-shift to recover the instances. We
compare with PointNet and PointNet++ as they are popu-
lar methods for computing per-point embeddings. Since the
dataset contains 7 maize and 7 tomato plants, we train on the
first 5 plants for each type and test on the remaining two. The
results are gathered in Table 5. We observe that our method
is capable of computing more meaningful embeddings that
create more distinctive clusters between each plant organ.

9.2 Ablation studies

We perform various ablations regarding our contribution to
judge how much they affect the network’s performance.

DeformSlice We assess the impact that DeformSlice has on
the network by comparing it with the Slice operator which
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Ground truth

LatticeNet

TangentConv

SplatNet

Fig. 13 SemanticKITTI results. We compare the prediction from our
LatticeNet with the results from TangentConv (Tatarchenko et al. 2018)
and SplatNet (Su et al. 2018). We can observe that our approach can

Parking

Tree trunk

number of points. Additionally, the network also effectively makes use
of contextual information in order to correctly predict the parking place
due to the existence of nearby cars

better learn small objects like tree trunks, despite their relatively small

Table 1 Results on ShapeNet part segmentation (Yi et al. 2016)

#Instances 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
Instance Air- Bag Cap Car Chair Ear- Guitar Knife Lamp Laptop Motor- Mug Pistol Rocket Skate- Table
avg. plane phone bike board

PointNet (Qi et al. 2017a) 83.7 83.4 78.782574989.6 73.0 915 859 80.8 953 652 93.081.2 579 728 80.6

PointNet++ (Qi et al. 2017b)  85.1 82.4 79.087.777.390.8 71.8 91.0 859 83.7 953 71.6
SplatNet 3D (Su et al. 2018) 84.6 81.9 83.988.679.590.1 73.5 913 847 845 963 69.7
SplatNet 2D-3D (Su et al. 2018) 85.4 83.2 84.389.180.390.7 755 92.1 &7.1 839 963 756
FCPN (Rethage et al. 2018) 84.0 84.0 82.8 86.488.3833 73.6 934 874 774 91.7 814
Ours 83.9 823 84.879.181.0869 71.0 919 894 84.7 966 772

94.1 81.3 587 764 82.6
95.0 81.7 592 704 813
95.8 83.8 64.0 755 81.8
95.8 87.7 684 83.6 734
95.8 86.0 70.5 793 87.0

Bold signifies the highest mean intersection-over-union (mloU)

We also evaluate a version of DeformSlice which ensures
that the new barycentric coordinates still sum up to one by

Table 2 Results on ScanNet (Dai et al. 2017)

Method mIOU

adding an additional loss term:
PointNet++ (Qi et al. 2017b) 33.9
SplatNet (Su et al. 2018) 39.3 2
TangetConv (Tatarchenko et al. 2018) 43.8 L = L Z Ab pu . (18)
3DMV* (Dai and NieBner 2018) 48.4 1P| peP \vel,
MinkowskiNet42 (5cm) (Choy et al. 2019) 67.9
SparseConvNet (Graham et al. 2018) 725 However, we observe little change after adding this reg-
MinkowskiNet42 (2cm) (Choy et al. 2019)" 73.4 ularization term and hence, use the default version of
Ours 64.0 DeformSlice for the rest of the experiments. The results are

gathered in Table 6.

Distribute and PointNet Another contribution of our work
is the usage of a Distribute operator to provide values to
the lattice vertices which are later embedded in a higher-

Bold signifies the highest mean intersection-over-union (mloU)

does not use learned barycentric interpolation. We evaluate
this on SemanticKITTI, the largest dataset that we are using.

dimensional space by a PointNet-like architecture. The
positions and features of the point cloud are treated sep-

@ Springer



Autonomous Robots (2022) 46:45-60

56

(NOTW) UOTUN-IOAO-UOT}ORSIAIUL UBW JsAYS1Y ) SAYIuSIs pjog

78y 6'IS 88S 09 0ey  9¢c  I'€9 9¢9 L18 ¥'1C [ 991 99T 676 88  0CC ¥'6S 'YL 006 6CS smQ

(610

Te 12 Aoqyeg)

TS 68 0SS L'y 9¢ce T 0V 1°0S £8L 9T LTE Sve S°SC v98 I'v¥8  6°LT 89 YL 816 66V Sag¢GINIE

(610T

Te 12 Aoqyeg)

00S 09¢ €CS (14 9¢e  81¢  9¢9 V8y 9LL 9°¢lL §'9¢ 9T 98l 'S8 6’18  ¥'9C 0°LS ovL v'i6e V¥Ly Sag 1 TIeNEd

(810C T8 30

OYUudYdIBIB])

¢'8C 8'¢e 0O6v '8 ¥'8C 0¢€C I8¢ ¢6F oL 1cl S91 L'c TSI 806 7'e8  vSI yee 6'€9 6'¢8 60F AuODIUSUE],

(810T 'Te 12 npy)

£€9¢ ToT I'ly 6°¢ [I'sc 10c 7T09 8¢¢ 8'1L 0yl 6°L1 S8l tel 818 el LL1 8y 9°L9 988 L6t TABag0z09nbg

(610 T2 12 ouD)

9'8C ¥'S¢ TLE 4% 8CC TIl L9t 6Ty YL 8L 6'C 0C 67h 0°¢8 SeL (] 69¢ 0cr 808 0€E (WIST)HEDISMONUIIN

Q10T TR 10

68 09 691 00 01 60 00t 8¢l Sov 0 0 6'l 60 LS €79 9°¢ L8l 81y 0cCL 10¢ 10) ++PNUIog

(8102

00 9¢ I'¢C 00 00 00 ¢o6l 6'6 I'IL 00 00 00 00 T8§ £'8¢ 00 70 Iec 9v9 81 Te3o ng)1oNe[ds

(eL10C

Le vc 67l 00 0 0 9Ll 9% 01¢ 80 €0 el ['0 €9% vy V'l 8¢l L'se 919 9Vl Te1910) 19NUIod
ugrs IST[0KD EIRILEIN punoi3

oyjel], 9[0d 90udq -IOJO]N ISI[OADIg UOSIo UIBLIQ], UNIL], UONEBIOSOA

-1} 9[OADIOIONN Q[OAdTg Yoniy,

1) Suping ~1PWQ Sunired Y[EmOpIS peoy nofw

yoeorddy

(6102 "Te 12 A9[yog) [LLIMODULWOS U0 $INSAY € d|qel

pringer

Qs



Autonomous Robots (2022) 46:45-60

57

Table 4 Motion segmentation

ToU results on SemanticKITTI l; %
(Behley et al. 2019) using a = - E
sequence of multiple past scans » i g % g 5
(in %) 5 2 £ £ S =
Approach S kB S 9 B g g
849 21.1 185 16 00 0.0
TangentConv [#1] 453 435 301 64 11 19|+
84.1 200 207 7.5 00 00
DarkNet53Seg [4] (15 378 289 152 141 02 | *1©
88.5 292 227 63 00 0.0
SpSequenceNet [37] 535 01 23 262 412 362| P!
93.7 703 386 21.6 00 0.0
KPConv [43] 694 58 47 675 674 472|°172
91.1 654 231 68 00 00
Ours 548 35 0.6 499 446 643 P2

Shaded cells correspond to the IoU of the moving classes, while unshaded entries are the non-moving classes

Fig. 14 Motion segmentation results on SemanticKITTIL. The moving
car on the road (red) is correctly distinguished from the parked car
(orange) (Color figure online)

arately where the features (normals, color) are distributed
directly. From the positions, we substract the locally aver-
aged position as we assume that the local point distribution
is more important than the coordinates in the global reference
frame. We evaluate the impact of elevating the point features
to a higher-dimensional space and subtracting the local mean
against a simple splatting operator which just averages the
features of the points around each corresponding vertex.

We observe that not subtracting the local mean, and just
using the xyz coordinates as features, heavily degrades the
performance, causing the mloU to drop from 52.9 to 43.0.
This further reinforces the idea that the local point distribu-
tion is a good local feature to use in the first layers of the
network.

Not elevating the point cloud features to a higher-
dimensional space before applying the max-pool operation
also hurts performance but not as severely. In our experi-
ments, we elevate the features to 64 dimensions by using a
series of fully connected layers.

Table 5 Instance segmentation performance on the maize and tomato
plants of the Pheno4D dataset

SBD

Maize Tomato
PointNet (Qi et al. 2017a) 69.7 47.3
PointNet++ (Qi et al. 2017b) 74.8 56.1
LatticeNet (ours) 80.6 74.2

Bold signifies the highest mean intersection-over-union (mloU)

Table 6 Ablation study of the various components of LatticeNet. Var-
ious features are disabled (indicated in red) and the impact to the loU
is evaluated

PointNet elevate
DeformSlice
Offsets zero sum|

IoU
LocalAvg

LN splat
"LN no local avg
LN no elevate
LN slice
LN reg
LatticeNet

Finally, naive application of the splat operation performs
worst with a mere 37.8 mloU.

9.3 Performance
We report the time taken for a forward pass and the maximum

memory used in our shallow and deep network on the first
three evaluated datasets. The performance was measured on
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Table 7 Average time used by

the forward pass and the ShapeNet
maximum memory used during [ms] [GB]
training. An X indicates a SplatNet \ 129 06
method that failed to process the Ours ‘ 9 05

ScanNet SemanticKITTI
[ms] [GB] [ms] [GB]
X X | 2931 89

180 6.5 \ 143 35

whole cloud due to memory

limitations

a NVIDIA Titan X Pascal and the results are gathered in
Table 7.

In the case of motion segmentation, the inference times
and memory used are the same as in the case of a single scan,
as we use the same backbone network to extract features
and the computational cost of fusing the temporal informa-
tion is minimum. However for training, the network requires
more memory with increasing time window due to the back-
propagation through time. This scales linearly with the time
window size and the amount of points in the cloud.

Despite the reduced memory usage compared to SplatNet
and increased speed of execution, there are still memory sav-
ings possible by fusing the Distribute and PointNet operators
into one GPU operation. This is similar to fusing our Deform-
Slice and the classification layer. Additionally, we expect the
network to become even faster as further advances on highly
optimized kernels for convolution on sparse lattices become
available. At the moment, the convolutions are performed by
our custom CUDA kernels. Tighter integration however with
highly optimized libraries like cuDNN (Chetlur et al. 2014)
could be beneficial.

10 Conclusion

We presented LatticeNet, a novel method for point cloud
segmentation. A sparse permutohedral lattice allows us to
efficiently process large point clouds. The usage of PointNet
together with a data-dependent interpolation alleviates the
quantization issues of other methods. Experiments on four
datasets show state-of-the-art results, at a reduced time and
memory budget.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
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