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Abstract The need to predict flow and heat transfer problems requires a flexible
and fast tool able to simulate complex geometries without increasing the complexity
of the flow solver architecture. Here we use a finite volume code that uses a direct
solver with pressure correction. A new immersed boundary method (IBM) is used for
a geometry consisting of a square body in a flow. The method is applied to flow cases
with and without heat transfer. The obstacle simulated in the domain is implemented
by local forcing of the flow with a procedure that adjusts locally the shear stress at the
position of the object in conjunction with a non-penetration condition on the body
walls. This approach has already been successfully applied by Breugem and Boersma
(Phys. Fluids 17:15, 2005). We extend it for the case of heat transfer between body
and flow. Comparison with other methods has been carried out as well. However, the
proposed method can not be simply extended to immersed boundaries not aligned
with the grid.

Keywords Immersed boundary · Complex geometry ·
Low Mach number approximation

1 Introduction

Most of the applications of computational fluid dynamics, heat transfer and com-
bustion require modeling of complex geometries. Conventional numerical models
generally use a complex (non-orthogonal) grid structure which requires a substantial
computational effort. In order to retain the advantages of numerical accuracy
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and computational efficiency associated with simple orthogonal grids an immersed
boundary method (IBM) can be used. The IBM can simulate the necessary geometry
by adding extra forces to the momentum equations locally within the grid. In this way
the grid does not have to follow the geometry.

The term ‘immersed boundary method’ was first used by Peskin [2] to simulate
cardiac mechanics and associated blood flow. However, this method presents severe
limitations with respect to numerical stability. Since Peskin introduced his novel
procedure, numerous modifications have been proposed and a number of variants
of the IBM approach now exist [11]. The first successful improvements to Peskin’s
approach, for the case of solid wall treatment, are ascribed to Mohd–Yusof [3],
Verzicco et al. [4] and Fadlun et al. [9]. In these last papers, in order to apply the
forcing to the flow equations, only local information is needed for the computation
of the body force instead of the complete force distribution over the boundary as in
the Peskin approach.

In Fadlun and Verzicco’s methodology, [9], this is equivalent to the use of a
local interpolation of the velocity directly on the walls and apply no-slip and non-
penetration conditions.

Recently, a new method has been used by Breugem and Boersma [10] for
simulation of porous media. In this geometry a grid of cubes mimics a permeable
wall with a certain value of porosity. The cubes are aligned with the Cartesian mesh
and this allows to apply exactly the forcing at their boundaries. In this method the
shear stress on the boundary of the simulated obstacles is replaced in such a way that
the no-slip velocity condition for the tangential component is applied at the wall.
In conjunction, a non-penetration condition is also applied for the perpendicular
velocity components at the boundary.

The main contribution of the present paper is the extension of the Breugem and
Boersma method for heat transfer with a low Mach number model and the study of
the capability of this approach to keep the internal region of an obstacle well isolated
under different conditions. The method is implemented on a simple equidistant grid
where a square obstacle is simulated. A preliminary comparison with the data of
Franke et al. [16] is presented and for the same geometry the L2 norm of the vertical
velocity component is computed as well. Successively, a two dimensional comparison
with the Fadlun and Verzicco approach is carried out, as well as with a conventional
method (iterative solver). Afterwards, we test the method for a three dimensional
laminar incompressible case with varying inflow velocity. We also perform a three
dimensional test for a varying density case with varying heat flux from the cube. In
this last case, although combustion is not considered here, we let the temperature
vary between the common limits of a premixed combustion flame from the ambient
temperature to the adiabatic one [6].

This study is intended as a preliminary step before the application of this new
IBM to reactive flow cases including combustion. In fact, from preliminary tests on
the interaction between a flame front and an obstacle we noted that it is important
that the velocity components inside the body remain small to avoid non-physical
oscillations of velocity, temperature and density in the surroundings of the body.
Therefore, for all tests, we have also looked at the velocity profile inside the body as
a measure for the quality of the method.

The paper is organized in three main sections. In the first section the Low Mach
number system of flow equations is introduced and the theoretical model for the IBM
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is presented. The main characteristics of the numerical discretization are summarized
as well. In the second section results are shown and discussed. They suggest that
this method can be a good candidate for the simulation of flows with or without
heat transfer and for combustion cases as well. The last section contains some
considerations about the advantages and limitations of the proposed method and
the conclusions.

2 Formulation and Numerical Method

Many heat transfer phenomena and reacting flows, such as for instance the burning
of natural gas, occur at low Mach numbers. In order to study these cases with
direct numerical simulation (DNS), in which all flow scales are resolved, we need a
system of equations that allows for large heat release, large temperature and density
variations and substantial interaction of the reacting interface with the hydrodynamic
flow field, including the effects of turbulence. A low Mach number approximation
is suitable to characterize most of deflagration cases with appreciable advantages
regarding the computational cost, because we do not have to resolve the acoustic
oscillations and the set of equations is similar to the incompressible case, although
the density may vary due to heat release [5]. After an asymptotic analysis, used for
the first time by Rehm and Baum [1], the system of equations can be written in non-
dimensional form. In the following reference quantities are denoted by the subscript
‘0’, while the superscript ‘∗’ denotes dimensional quantities:

ρ = ρ∗

ρ0
, p = p∗

ρ0 RT0
, u = u∗

U0
, T = T∗ − T0

Tf − T0
,

x = x∗

L0
, t = t∗

L0
U0

, ∇ = ∇∗
1

L0

, τ = τ ∗
μ0U0

L0

, μ = μ∗

μ0
, κ = κ∗

κ0
(1)

T0 is the ambient temperature and Tf is the flame adiabatic temperature.
The non-dimensional set of conservation equations, in conservative form, reads:

∂ρ

∂t
+ ∇ · (ρu) = 0 (2)

∂ρu
∂t

+ ∇ · (ρuu) = −∇ p + 1

Re
∇ · τ (3)

∂ρT
∂t

+ ∇ · (ρuT) = 1

RePr
∇ · (κ∇T) (4)

p0 = ρ (1 + τhT) (5)

with τh = Tf −T0

T0
being the specific heat parameter.

We have assumed an open system, thermodynamic pressure, p0, flow properties
and viscosity being constant and we have considered negligible influence of gravity,
negligible influence of viscous dissipation in the energy equation and validity of the
state equation for the ideal gas.
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2.1 The pressure in the low Mach number context

After the asymptotic analysis, once the acoustic effects are neglected, it can be shown
that the static pressure can be written as

P = p0(t) + ˜M2 p(x, y, z, t) (6)

We can interpret p0 as the thermodynamic pressure or as the mean value of the
static pressure and the quantity p is the deviation from the mean pressure [8]. ˜M is
the modified Mach number, ˜M = √

γ M0 with M0 = U0√
γ RT0

. For the 1D case the total
pressure (static plus dynamic) in dimensional units is,

P∗
Tot = P∗(t) + 1

2
ρ∗u∗2 (7)

making the last equation non-dimensional and using (6) we write the total pressure
scaled with the ambient pressure of reference P∞ = ρ0 RT0

PTot = P∗
Tot

P∞
= p0 + ˜M2 p + ρ0U2

0

P∞
1

2
ρu2 (8)

2.2 Numerical method

This section gives an outline of the main aspects of the numerical method we used
for the time integration of the governing equations treated so far, while the details
for the spatial discretization can be found in Appendix. The various quantities are
defined on a staggered grid (Fig. 1).

Fig. 1 2D staggered grid. The
velocities and the mass fluxes
are defined at the edges of the
cells while the scalars are at
the center
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2.2.1 Temporal discretization

Following Treurniet [7], at first we advance the energy (4) (which has been put in
non-conservative form by using the continuity equation in order to have T explicit):

Tn+1 − Tn = �t
[

α (AT + DT)n − β (AT + DT)n−1] (9)

where α = 1.55 and β = 0.55 are modified Adams–Bashforth second order (AB2)
coefficients. One can show that the stability region for this scheme is larger than for
the classical AB2 and comparable to a second order predictor–corrector scheme used
by Treurniet. The operators AT and DT represent the advective and diffusive terms
in (4).

Subsequently, from the equation of state the density is calculated as:

ρn+1 = p0
(

1 + τhTn+1
) (10)

Then we integrate the momentum equations to an intermediate level indicated
witĥ :

̂(ρu) − (ρu)n

�t
= [

α (Am + Dm)n − β (Am + Dm)n−1] − ∇ pn (11)

Then from the intermediate level ρ̂u we obtain a divergence free quantity (ρu)n+1

with the aid of a pressure correction defined by

(ρu)n+1 − ̂(ρu)

�t
= −∇ p∗ (12)

Applying the divergence on both sides the last equation becomes

∇ · (ρu)n+1 − ∇ · ̂(ρu)

�t
= −∇2 p∗ (13)

Because of conservation of mass we have

∇ · (ρu)n+1 = −∂ρn+1

∂t
(14)

The derivative of the density is calculated with the following second order backward
discretization in time:

∂ρn+1

∂t
= 1

2�t

(

3ρn+1 − 4ρn + ρn−1) (15)

Now substituting (14) in (13) gives the Poisson equation,

∇ · ̂(ρu) + ∂ρn+1

∂t

�t
= ∇2 p∗ (16)

Equation 16 must be solved.
Once this is solved, (12) is used to calculate the mass flux at time level n + 1:

(ρu)n+1 = ̂(ρu) − �t∇ p∗ (17)

And the pressure is updated by adding its calculated correction value:

pn+1 = pn + p∗ (18)
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2.3 Immersed boundary method

The main computational bottleneck in the numerical procedure outlined above is
the solution of (16). For an arbitrary grid this can be done with an iterative solver,
but it is a rather slow procedure, especially in 3D cases. For certain simple grid cases
so-called Fast Poisson solvers exist, which are based on the separable nature of the
Poisson equation. In this paper we have used a method which allows for complex
geometries while still solving a simple Poisson problem. The main idea is to add a
force f to the equation of motion,

∂ρu
∂t

+ ∇ · (ρuu) = −∇ p + 1

Re
∇ · τ + f

where f represents the body force. The force f can be prescribed on a Cartesian
mesh so that the efficiency of the solution procedure on simple grids is maintained [9].

2.4 Fadlun and Verzicco’s method

This was one of the first IBMs applied to a combustion problem but in the in-
compressible case. In [9] a 3D complex geometry is simulated (a IC piston) with
moving boundary. Here we applied the method for a simpler configuration with a
fixed square body in the flow. Moreover, in the framework of a staggered Cartesian
grid, we put the body with one side aligned with the grid. In this way, the normal
components of the velocity can be imposed exactly at the boundary of the object.
The method computes the velocity value of each point closest to the boundary as
linear interpolation between the zero velocity we want to simulate at the wall position
and the velocity of a point further into the flow. The interpolation procedure is
illustrated in Fig. 2a. The velocity vi−1 is known and the value vi is a linearization
between vi−1 and zero. This procedure is equivalent to applying a body force to the
momentum equations locally. The use of this method requires particular care for
the treatment of the corner points because each of them receives the contribution
from two faces (in 2D case) and this must therefore be taken into account in the
interpolation procedure.

2.5 Breugem and Boersma’s stress method

Compared to the method in Section 2.4, this method replaces the stress in the
momentum equations (at first solved without body) to ensure that no-slip conditions
exist at the boundary of the object. Here we show the main idea for a 2D case by
applying the method on one of the walls of a body placed in the flow. In Fig. 2b a
simple case is depicted with a body aligned along the mesh with its sides coinciding
with the mesh points where the normal velocities are defined.

We can imagine to apply a force ft (see Fig. 2b) to have no-slip at the position
of the cross on the north boundary of the body. In this method three velocity
values belonging to the body are involved: vi, j−1, vi+1, j−1, ui, j−1. Looking in the spatial
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a

c

b

Fig. 2 a The Fadlun–Verzicco IB method: the velocity defined one grid point into the flow with
respect to the body wall is a linear interpolation which ensures zero tangential velocity at the
boundary. b The Breugem–Boersma IB method: at the position of the body the original tangential
stress is removed and the new one is added to the momentum in order to impose no-slip at the wall.
This is equivalent to applying a force ft which does not depend on a linear interpolation of velocity
values outside the body but depends on the velocities at the boundary and inside it. c Temperature
treatment for IB methods. The heat flux contained in the diffusive term of the energy equation is
replaced with the correct flux we want to impose. This has also consequences for the convective term
(par. 2.7)

discretization of the momentum (reported in Appendix) we see that these velocity
values are involved in the following terms

vi+ 1
2 , j−1(ρu)i, j− 1

2

�yj
=

1
2

(

vi, j−1 + vi+1, j−1
) · 1

4

[(

ρi, j + ρi+1, j
)

ui, j +
(

ρi, j−1 + ρi+1, j−1
)

ui, j−1
]

�yj

−
τyxi, j− 1

2

�yj
= −

μ

Re

(

ui, j−ui, j−1

�yh j
+ vi+1, j−1−vi, j−1

�xhi

)

�yj

contained in the advective and diffusive part of the momentum respectively.
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These then form the terms which must be modified to make the flow ‘feel’ the
body. In order to have non-penetration at the wall and no-slip condition at the
position of the cross (Fig. 2b) vi, j−1 = vi+1, j−1 = 0 and ui, j−1 = −ui, j must hold and
the above terms become,

vi+ 1
2 , j−1(ρu)i, j− 1

2

�yj
= 0

−
τyxi, j− 1

2

�yj
= −

μ

Re

(

2ui, j

�yh j

)

�yj

The last equation expresses the fact that we update the stress term at the points
half a grid cell away from the wall.

This procedure is equivalent to subtracting the old flux term, Fold =
vi+ 1

2 , j−1
(ρu)i, j− 1

2
�yj

−
τyx

i, j− 1
2

�yj
, from the momentum (11) and to adding the new flux term

Fnew = −
μ

Re

(

2ui, j
�yh j

)

�yj
. Therefore a force ft is applied to the flow,

ft = −Fold + Fnew = −
(

vi+ 1
2 , j−1(ρu)i, j− 1

2

�yj

)

− μ

Re

⎡

⎣

(

ui, j+ui, j−1

�yh j

)

−
(

vi+1, j−1−vi, j−1

�xhi

)

�yj

⎤

⎦

(19)

Furthermore, the non-penetration condition at the walls is enforced by imposing a
zero value for the normal component of the mass flux at the intermediate time level,
̂(ρu), and for the related velocity.

This procedure for the stress is also applied to the inner side of the wall.

2.6 Penetration velocity treatment

As it has already been seen in both the IBMs outlined above, the normal component
of the velocity at the boundaries must be as close to zero as possible, because we do
not want normal penetration at the boundary.

Consider (17) again,

(ρu)n+1 = ̂(ρu) − �t∇ p∗ (20)

What we enforce to be zero is the predicted mass flux ̂(ρu) and this means that the
penetration at the wall is of O(−�t∇ p∗). Therefore, it is better to keep both �t and
∇ p∗ small. However, if the pressure correction does not remain small, for instance
due to strong perturbations in the flow, then we have to reduce the time step.

2.7 Temperature treatment

When temperature differences are introduced, (for example in the case of a hot
body placed in the flow), the heat flux between boundaries and the flow can be
well represented with a procedure similar to the stress replacement method for
the momentum equation. In practice, we adjust the heat flux on the walls locally
by modifying the diffusion and convective terms in the energy equation in such a
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way to force the correct flux at the boundary. We write the energy equation in non-
conservative form,

∂T
∂t

+ u∇ · T = 1

ρ

1

RePr
∇ · (κ∇T)

Let us consider the diffusion term at position i (Fig. 2c):

1

ρi

1

RePr
∇ · (κ∇Ti) = 1

ρi

1

RePr

κ
(

Ti+1−Ti
�xi

)

− κ
(

Ti−Ti−1

�xi−1

)

�x

We replace the term κ
(

Ti−Ti−1

�xi−1

)

with the correct flux we want to impose at the
boundary,

κ

(

Ti − Twall

�xi−1/2

)

Similarly one has to replace the flux at (i − 1) as well.
If we use a central differences scheme, we also have to consider the convective

term

(u∇T)i = ui + ui−1

2

[

Ti+1 + Ti

2�xi
− Ti + Ti−1

2�xi

]

as at the wall we want T = Twall then we have to update the convective term in
this way,

(u∇T)i = ui + ui−1

2

[

Ti+1 + Ti

2�xi
− Twall

�xi

]

the same applies to the convective term at the position (i − 1).
This method allows full control of the temperature of a simulated body and it also

allows to solve the heat equation inside the body.

3 Computational Results

Three geometries have been used for the computation of a flow over a square
obstacle. The first one (Fig. 3a) is the same two-dimensional configuration used by
Franke [16] and it has been used for a comparison of the method with validated
computational data. The second geometry (Fig. 3b) is also two-dimensional but is
smaller than the first one. It considers a square cylinder placed symmetrically with
respect to the height of the channel. The third geometry (Fig. 3c) is three-dimensional
with a cube (representative for example of a motor vehicle in a tunnel) placed
four grid cells away from the bottom of the channel. The grid resolutions of these
geometries are given in Table 1.

3.1 Comparison with validated computational data

In Franke et al. [16] the Strouhal number, St, and the drag coefficient Cd, are com-
puted for different Reynolds numbers. These results are validated with experimental
data. The geometry consisting of a square cylinder with diameter D placed in a
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Fig. 3 a The Franke 2D
geometry for the computation
of a flow over a square
cylinder. The cylinder is
located along the central line
of the channel. Free-slip
boundary conditions are
applied at the walls. b The 2D
geometry used for the
comparison between the
Fadlun–Verzicco,
Breugem–Boersma and
iterative solver approaches.
The cylinder is located along
the central line of the channel.
Periodic boundary conditions
are applied at the walls. c The
geometry for the 3D flow
cases. The body is a cube of
diameter D located 4 grid cells
above the bottom of the
channel. No-slip conditions are
applied at the walls

a

b

c

channel flow is shown in Fig. 3a. The inflow velocity is unity. Free slip boundary
conditions are applied at the walls.

Firstly, for Re = 10, we compute the L2-norm (Fig. 4) of the vertical velocity
component in one point along the center-line of the channel at a position 4D away
from the back of the body. The values are calculated with respect to the number of
points in the vertical direction by computing the flow for several grid resolutions,
considering the solution on the finest grid as ‘exact’. The method is essentially
accurate to the second order.

In Table 2 some values of St and Cd for different Re numbers are compared with
the data in [16]. The comparison is good. The Strouhal number was calculated by
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Fig. 4 The L2-norm error of
the vertical velocity versus the
number of grid points in
z−direction for the simulation
of a flow past a square
cylinder. Case for
Recylinder = 10

counting the number of periods it takes for the z-velocity component to invert its
sign at a point located 4D past the body along its center line. The drag was calculated
by considering the contribution of all the horizontal forces acting on the cylinder.

3.2 Two dimensional flow: comparison between the IBMs and a standard method

We have performed a 2D simulation of a cylinder in a flow, for the geometry
illustrated in Fig. 3b, by using the methods described in paragraphs 2.4–2.5. The body
is located symmetrically with respect to the z dimension, so that it is exactly aligned
with the center line of the channel. In fact, due to the periodic boundary conditions
for the flow in z−direction the body can have any position along z.

For this case, the density is constant. The inflow mass flux in x-direction is given
(with velocity uin = 1). Zero gradient condition for the pressure is used at the inlet.
At the outlet the pressure is put to zero (or ambient pressure). The Reynolds number
based on the side of the square cylinder is 1,400.

Figure 5 shows a comparison between the new IBM, the Fadlun–Verzicco ap-
proach and a conventional iterative solver without immersed boundary. The aver-
aged values of the velocity component u along the center line of the cylinder are
plotted. The iterative solver was based on the SIP method [12] and it used 100
iterations for each time step to get a divergence of O(10−6) for the cell at the middle
of the front of the body (Fig. 7). It was found (Fig. 5) that the results of new IBM and
iterative solver coincide while for the Fadlun–Verzicco approach the recirculation
length is smaller than for the other methods indicating a larger resistance to the
flow. The velocity profiles have been averaged over a range of 15 shedding periods
between the 25th and the 40th period.

Table 1 Grid resolution for
2D and 3D cases x-Points y-Points z-Points

2D case 200 2 140
3D case 200 64 140
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Table 2 Comparison of St and Cd for different Re numbers for square cylinder with validated data

This work Franke et al. [16]
(grid 300 × 180 equidistant) (grid non-equidistant)

Re St Cd Re St Cd

100 0.153 1.61 100 (grid: 88 × 76) 0.154 1.61
150 0.162 1.56 150 (grid: 88 × 76) 0.165 1.56
300 0.138 1.80 300 (grid: 186 × 156) 0.130 1.83

Furthermore, we have checked the new method described in paragraph 2.7, for the
case with temperature and density coupled by the equation of state. The temperature
is set with zero gradient on all boundaries. The body has a small temperature
difference �T = 0.1 with respect to the flow and the flux replacing method is used.
The normal velocity at the wall of the body is of O(10−6 ÷ 10−5) with maximum
penetration at the corner points and with minimum of O(10−7) inside the obstacle
(Fig. 6). In these two dimensional simulations no enforcing of zero velocity has been
applied inside the body. By enforcing it the magnitude of the velocity components
inside the cylinder can vary between 10−7 ÷ 10−9.

In these simulations, with time step being �T = O(10−4), the shedding appeared
earlier for the Fadlun–Verzicco method (around 4,300 time steps) than for the stress
method (around 40,000 time steps). This suggests that the numerical noise produced
by the stress method is much smaller than for the case of the Fadlun–Verzicco
approach.

3.3 Three dimensional flow: body in a laminar flow with periodically
varying inflow conditions

In the following all computations were conducted with the new stress IBM described
in the paragraphs 2.5–7. This case refers to the geometry in Fig. 3c. The body is a
cube of diameter D located symmetrically with respect to the y-direction and 0.2D

Fig. 5 2D square cylinder
case, averaged x-velocity
component versus body
x-center line. Comparison
between Fadlun–Verzicco,
Breugem–Boersma and
iterative solver approaches.
The plots of the last two
methods overlap while the
Fadlun–Verzicco method gives
a smaller recirculation area
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Fig. 6 2D case, time-averaged
x-velocity component versus
x-center line inside the
cylinder for the different IB
methods and the standard
(iterative) one
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Iterative solver
New IBM

Fadlun-Verzicco IBM

(4 grid cells) away from the bottom of the channel. The Reynolds number, based
on the height lz of the box was Re = 2,100. For this test zero gradient condition
for the pressure was used at the inlet, while at the outlet the pressure was put to
zero. The flow was at constant temperature and a varying inflow velocity was applied
defined by

Uinflow = U + 0.1U · sin (2π f · t)

with U = 1. The inflow velocity was varied by 10% of its bulk value with frequency
f . This means f cycles of sinusoidal perturbation occurring in one unit time (of
O(D/U)). We performed tests with three frequencies: 100, 10 and 1. For these three
cases, Figs. 8, 9 and 10 illustrate the x-mass flux component (ρu)x versus time at the
body wall, in the cell adjacent to the center-point of the left body wall (Fig. 7), on

Fig. 7 τxz and mass flux (mx)
vectors at the cell P adjacent
to the center point of a
body wall τ xz

mx

.P

x

z
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Fig. 8 (ρu)x versus time at the
body wall for the inlet mass
flux perturbation of
frequency f = 1
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a range of half time unit. The results show that for the frequencies of 1 and 10 the
mass flux at the body wall responded with the same frequency, on the contrary this
was not the case for the highest frequency of 100. In this case a sort of ‘integral’
effect is noted and the body reacted like if affected by a global perturbation and
the penetration was higher by an order of magnitude: from O(10−6) for the first two
frequency cases to O(10−5) for the highest frequency case. However, for this case,
the penetration was still acceptable. We can expect that for even higher frequencies
the reaction time of the new IBM has a limit: for high frequencies it takes longer
for the velocity field inside the body to adjust itself. In fact, as we have mentioned
above, the penetration velocity depends on both time step and pressure correction
(see (20)) and the higher the frequency of the perturbation becomes the higher the
pressure correction. Therefore, in this case, we have to reduce the time step if we
want small penetration and in particular, if f is the frequency of the perturbation
applied to the system, we must have �t · f � 1.

Fig. 9 (ρu)x versus time at the
body wall for the inlet mass
flux perturbation of
frequency f = 10
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Fig. 10 (ρu)x versus time at
the body wall for the inlet
mass flux perturbation of
frequency f = 100
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3.4 Three dimensional flow: body with varying heat flux

We wanted to prove that with the proposed extension for the heat transfer the
Breugem–Boersma approach is also suitable for combustion problems. In particular,
for premixed flames the interaction of the reacting front with an obstacle produces
sharp temperature gradients at the body boundary. The method must be stable under
these conditions and for an adiabatic obstacle no transport of energy or mass must
take place at the walls to avoid non-physical oscillations of velocity, temperature and
density in the surroundings of the body.

For this case the Reynolds number, based on the height lz of the box, was
Re = 2100 with inflow velocity on the left side of the domain uin = 1. The time step
�t was of O(10−4). The temperature of the entire body was perturbed with a positive
sine profile Tw = ∣

∣sin
(

2π i�t
T

)∣

∣ where i represents the progressive number of time
steps during the calculation, t is the time and T is the period of the oscillations. Two
frequencies have been applied ( f = 100 and f = 200) with periods of oscillations
T = 0.01 and T = 0.005 respectively. The flow time scale is of O(D/uin) = 0.1
therefore we apply an intense perturbation of the temperature with respect to
the flow.

The positive sine function has the property to go from 0 to 1 that in this model
means from the ambient to the adiabatic flame temperature (here the dimensional
values are 300 and 1,800 K respectively, comparable with a premixed air-methane
flame). Moreover, after one period its change is sharp enough to check if the central
difference scheme suffers of numerical instability for large temperature gradients
in time.

The influence of the different frequencies can be seen on several quantities, in
particular, velocity, mass flux, pressure and boundary layers. We want to know if
we are resolving the momentum and the thermal boundary layers. The ratio of the
thickness of these two boundary layers is governed by the Prandtl number. Because
in all our laminar simulations the Prandtl number was smaller than unity the thermal
boundary layer was thicker than the momentum boundary layer. Therefore we only
have to check if we are resolving the momentum boundary layer. We estimated
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Fig. 11 Averaged z+ along
the top x-center line of the
body for two heat flux
frequency cases ( f = 100 and
f = 200)

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.3  0.31  0.32  0.33  0.34  0.35  0.36  0.37  0.38  0.39  0.4

lower frequency case
higher frequency case

the parameter z+ and the wall shear stress τw at the top face of the body with
the formulae:

τw =
√

τ 2
zx + τ 2

zy

z+ = �zp

ν

√

τw

ρ

where �zp is the distance from the wall and ν is the kinematic viscosity.
If z+ ≤ 5 we have sufficient grid points to resolve the viscous sublayer [13].
The data related to the first frequency case were averaged over 2,000 time steps

while in the second case over 1,000 time steps with �t = O(10−4). In both cases 20
periods were considered. In Fig. 11 plots of the averaged values of z+ are compared
for the two heat flux frequencies cases. These pictures are plotted along the x-axis
center line on the top of the body. We can see that in both cases we have z+ � 5.

Fig. 12 Averaged x-velocity
component, u, inside the body
along its x-center line for two
heat flux frequency cases
( f = 100 and f = 200)
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Fig. 13 x-Mass flux
component (ρu)x versus time
at the body wall for two heat
flux frequencies cases ( f = 100
and f = 200)
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Figure 12 shows the profiles of the averaged x-velocity component, u, inside the
body along its center line. The order of magnitude of u is between O(10−5) and
O(10−4). Fig. 13 shows the x-mass flux component (ρu)x versus time at the wall of
the body (in the grid cell depicted in Fig. 7). The mass flux penetration at the wall is
of O(10−5-10−4) as well.

In Fig. 14 a time interval of an instantaneous plot of the total pressure (8) is shown
as function of time. The values are taken at the yz plane which was 0.6lx away from
the inlet and 0.2lx from the right side of the cube (lx being the x-size of the channel).
The second frequency value for the perturbation of Tw was used in this case. We
note periodic oscillations of the pressure with frequency of O(100) that is half of
the frequency of the imposed heat flux. The picture shows the peaks of pressure
oscillations corresponding to the minimum values of body temperature (when the
sine profile starts a new cycle) but the oscillations do not create instabilities.

Fig. 14 Sample of total
pressure versus time at a
location two diameters past
the body. The peaks
correspond to the moment
when the sinusoidal
perturbation starts a new cycle
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4 Final Considerations and Conclusions

We summarize here the main advantages and limitations of the proposed method.
Our code uses a pressure-correction method. The solution of the momentum

and mass balance equations is satisfied in two steps. First the momentum balance
is satisfied using the pressure at the old time level. Next the velocity is corrected
to satisfy the mass balance. Correction is done with an update of the pressure for
which we have to solve a Poisson equation. The boundary conditions are enforced by
addition of extra momentum sources. This is done before the pressure-correction
and is independent of it. As a result we can use so-called fast Poisson solvers
which only work on a separable domain. Inclusion of obstacles makes the Poisson
problem non-separable for a traditional approach and we have to resort to slower
iterative solvers [14]. Therefore, as first advantage, the method we use is faster than
traditional methods (like iterative solvers). The speedup with respect to Cartesian
codes which do not use a direct solver is in general a factor of 2.5 or more (which of
course depends on the divergence required and on the resolution) [14]. The code is
cheaper by a factor of 10 or more per grid point when compared to curvilinear and
unstructured codes [14].

Our IBM has been specifically designed for square geometries and to consider
complicated geometries including many obstacles. In fact, by aligning a square
body with the grid lines it is possible to apply almost exactly the non-penetration
conditions for the vertical components of the velocity. Velocity interpolations are
also avoided near the wall both for the non-penetration and the no-slip conditions.
This is the second advantage.

For non-aligned bodies or for curvilinear geometries our method can still be
applied but its implementation becomes complicated because interpolations are
required. In this case it loses the third advantage which is its simplicity to be
implemented and to add as many square bodies as required which can be included
independently of one another, or removed [10]. In conclusion, for non-aligned or
curved obstacles the Fadlun–Verzicco method is certainly more suitable. However,
it has higher wall normal leakage of the order of 10−3 of the bulk velocity [14]. In
both methods the near wall quantities can not be well represented out of the sub-
viscous layer, however in [15] has been shown that in this case the Fadlun–Verzicco
approach presents larger errors due to its linear interpolation into the flow.

In conclusion, we have performed calculations with an immersed boundary
method for the case of a hot or insulated square body located in a box-domain open
at the two faces perpendicular to the main stream direction. Two geometries have
been used, a 2D geometry with few grid cells in the span direction and a fully 3D
geometry. The object has been simulated with a new immersed boundary method.
Several tests have been carried out by using different conditions for the inflow
velocity and the heat flux from the body. Initially we have made a two dimensional
simulation of a cold and hot body in a laminar channel flow with constant inflow
conditions and comparison with a previous IBM and an iterative solver has been
performed. The new IBM shows a very good agreement with respect to the results of
an iterative solver. For the three dimensional geometry, at first we have simulated
laminar cases with perturbation of the inflow mass flux for different frequencies.
Secondly, we have studied the case of a laminar flow with a hot body whose heat flux
and internal temperature can vary within the temperature limits of a common air-
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methane premixed flame. For this last case two tests have been done with different
frequencies of the temperature oscillations.

The results show good behaviour of the stress IBM in all conditions considered
with a velocity at the body walls and inside the object of an order of magnitude
varying between 10−9 and 10−4 depending on the magnitude and the frequency of
the disturbances applied. The method is able to adjust the velocity field inside the
obstacle also for high frequency of mass or heat flux perturbations. We conclude
that this new immersed boundary method is easy to implement, it requires less
computational resources than standard methods, it has accuracy comparable with
that one of an iterative solver approach and it is suited for heat transfer and
combustion problems.

Appendix: Spatial Discretization

The spatial discretization (second order finite volume) is outlined here, for pure
central differences scheme of the terms A (advection) and D (diffusion) for the
x-components of the energy and momentum equations. In the other directions the
procedure is similar.

For the energy equation (in non-conservative form) we have:

AT = −
[

1

2

(

ui−1, j,k + ui, j,k
) 1

2

(

Ti+1, j,k − Ti−1, j,k
)

�xi

]

DT =
[

1

ρi, j,k

1

RePr
1

�xi
κ

(

Ti+1, j,k + Ti−1, j,k − 2Ti, j,k
)

�xi

]

For the x-component of the momentum Considering u as the x-component of the
velocity it is:

Am = ∇ · (−u(ρu))i, j,k = −ui+ 1
2 , j,k(ρu)i+ 1

2 , j,k − ui− 1
2 , j,k(ρu)i− 1

2 , j,k

�xhi
+

−vi+ 1
2 , j,k(ρu)i, j+ 1

2 ,k − vi+ 1
2 , j−1,k(ρu)i, j− 1

2 ,k

�yj

−wi+ 1
2 , j,k(ρu)i, j,k+ 1

2
− wi+ 1

2 , j,k−1(ρu)i, j,k− 1
2

�zk
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τxxi+ 1

2 , j,k
− τxxi− 1

2 , j,k
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+

τyxi, j+ 1
2 ,k

− τyxi, j− 1
2 ,k

�yj
+

τzxi, j,k+ 1
2

− τzxi, j,k− 1
2

�zk
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with,

τxxi+ 1
2 , j,k

= μ

Re

(

2
ui+1, j,k − ui, j,k

�xi+1
− 2

3
�i+1, j,k

)

τyxi, j+ 1
2 ,k

= μ

Re

(

ui, j+1,k − ui, j,k

�yh j
+ vi+1, j,k − vi, j,k

�xhi

)

τzxi, j,k+ 1
2

= μ

Re
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)

and
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