
https://doi.org/10.1007/s10489-021-02658-y

Rational verification: game-theoretic verification of multi-agent
systems

Alessandro Abate1 · Julian Gutierrez2 · Lewis Hammond1 · Paul Harrenstein1 ·Marta Kwiatkowska1 ·
Muhammad Najib3 ·Giuseppe Perelli4 · Thomas Steeples1 ·Michael Wooldridge1

Accepted: 30 June 2021
© The Author(s) 2021

Abstract
We provide a survey of the state of the art of rational verification: the problem of checking whether a given temporal
logic formula φ is satisfied in some or all game-theoretic equilibria of a multi-agent system – that is, whether the system
will exhibit the behavior φ represents under the assumption that agents within the system act rationally in pursuit of their
preferences. After motivating and introducing the overall framework of rational verification, we discuss key results obtained
in the past few years as well as relevant related work in logic, AI, and computer science.

Keywords Automated verification · Game theory · Multi-agent systems · Model checking · Automated synthesis

1 Introduction

The deployment of AI technologies in a wide range
of application areas over the past decade has brought
the problem of verifying such systems into sharp focus.
Verification is one of the most important and widely-
studied problems in computer science [14]. Verification
is the problem of checking program correctness: the
key decision problem relating to verification is that of
establishing whether or not a given system P satisfies a
given specification φ. The most successful contemporary
approach to formal verification is model checking, in
which an abstract, finite state model of the system of
interest is represented as a Kripke structure (a labelled
transition system), and the specification is represented as a
temporal logic formula, the models of which are intended to
correspond to “correct” behaviours of the system [31]. The
verification process then reduces to establishing whether
the specification formula is satisfied in the given Kripke

This article belongs to the Topical Collection: 30th Anniversary
Special Issue

� Michael Wooldridge
mjw@cs.ox.ac.uk

Extended author information available on the last page of the article.

structure, a process that can be efficiently automated in
many settings of interest [9, 28].

In the present paper, we will be concerned with multi-
agent systems [73, 82]. Software agents were originally
proposed in the late 1980s, but it is only over the past decade
that the software agent paradigm has been widely adopted.
At the time of writing, software agents are ubiquitous: we
have software agents in our phone (e.g., Siri), processing
requests online, automatically trading in global markets,
controlling complex navigation systems (e.g., those in self-
driving cars), and even carrying out tasks on our behalf
at home (e.g., Alexa). Typically, these agents do not
work in isolation: they may interact with humans or with
other software agents. The field of multi-agent systems is
concerned with understanding and engineering systems that
have these characteristics.

Since agents are typically “owned” by different princi-
pals, there is no requirement or assumption that the prefer-
ences delegated to different agents are aligned in any way.
It may be that their preferences are compatible, but it may
equally be that preferences are in opposition. Game theory
provides a natural and widely-adopted framework through
which to understand systems with these properties, where
participants pursue their preferences rationally and strategi-
cally [61], and this observation has prompted a huge body of
research over the past decade, attempting to apply and adapt
game theoretic techniques to the analysis of multi-agent
systems [63, 73].

/ Published online: 3 August 2021

Applied Intelligence (2021) 51:6569–6584

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-021-02658-y&domain=pdf
http://orcid.org/0000-0002-9329-8410
mailto: mjw@cs.ox.ac.uk

1.1 The research question

In the present article, we are concerned with the question
of how we should think about the issues of correctness
and verification in multi-agent systems (at this point we
should clarify that, in this work, we are only concerned with
systems composed solely of software agents: in Section 5
we briefly comment on the issue of verifying human-agent
systems).

We argue that in a multi-agent setting, it is appropriate
to ask what behaviours the system will exhibit under
the assumption that agents act rationally in pursuit of
their preferences. We advance the paradigm of rational
verification for multi-agent systems, as a counterpart to
classical verification. Rational verification is concerned
with establishing whether a given temporal logic formula
φ is satisfied in some or all game-theoretic equilibria of a
multi-agent system – that is, whether the system will exhibit
the behaviour represented by φ under the assumption that
agents within the system act rationally in pursuit of their
preferences/goals.

We begin by motivating our approach, describing in
detail the issue of correctness and verification, and the
hugely successful model checking paradigm for verifica-
tion. We then discuss the question of what correctness
means in the setting of multi-agent systems, and this
leads us to introduce the paradigm of rational verification
and equilibrium checking. Following this survey a range
of semantic models for rational verification, summaris-
ing the key complexity results known for these models,
and then examine three key tools for rational verification.
We conclude by surveying some active areas of current
research.

2 Setting the scene

The aim of this section is to explain how the concept
of rational verification has emerged from various research
trends in computer science and AI, and how it differs from
the conventional conception of verification.

Correctness and formal verification The correctness prob-
lem has been one of the most widely studied problems in
computer science over the past fifty years, and remains
a topic of fundamental concern to the present day [14].
Broadly speaking, the correctness problem is concerned
with checking that computer systems behave as their
designer intends. Probably the most important problem
studied within the correctness domain is that of formal ver-
ification. Formal verification is the problem of checking
that a given computer program or system P is correct with
respect to a given formal (i.e., mathematical) specification

φ. We understand φ as a description of system behaviours
that the designer judges to be acceptable – a program that
guarantees to generate a behaviour as described in φ is
deemed to correctly implement the specification φ.

A key insight, due to Amir Pnueli, is that temporal
logic provides a suitable framework with which to express
formal specifications of reactive system behaviour [66].
Pnueli proposed Linear Temporal Logic (LTL) for express-
ing desirable properties of computations. LTL extends
classical logic with tense operators X (“in the next
state. . .”), F (“eventually. . .”), G (“always. . .”), and U
(“. . . until. . .”) [31]. For example, the requirement that a sys-
tem never enters a “crash” state can naturally be expressed
in LTL by a formula G¬crash, where ¬crash denotes the
complement (negation) of the set of “crash” states (namely
states associated with a label crash). If we let �P � denote
the set of all possible computations that may be produced
by the program P , and let �φ� denote the set of state
sequences that satisfy the LTL formula φ, then verifica-
tion of LTL properties reduces to the problem of checking
whether �P � ⊆ �φ�. Another key temporal formalism is
Computation Tree Logic (CTL), which modifies LTL by
prefixing path formulae (which depend on temporal opera-
tors) with path quantifiers A (“on all paths. . .”) and E (“on
some path. . .”) [31]. While LTL is suited to reasoning about
runs or computational histories, CTL is suited to reason-
ing about states of transition systems that encode possible
system behaviours.

Fig. 1 Model checking. A model checker takes as input a model,
representing a finite state abstraction of a system, together with a
claim about the system behaviour, expressed in temporal logic. It then
determines whether or not the claim is true of the model or not; most
practical model checkers will provide a counter example if not

6570 A. Abate et al.

Model checking The most successful approach to verifi-
cation using temporal logic specifications is model check-
ing [28]. Model checking starts from the idea that the
behaviour of a finite state program P can be represented
as a Kripke structure or transition system KP . Now, Kripke
structures can be interpreted as models for temporal logic.
So, checking whether P satisfies an LTL property φ reduces
to the problem of checking whether φ is satisfied on paths
through KP . Checking a CTL specification φ is even sim-
pler: the Kripke structure KP is a CTL model, so we
simply need to check whether KP |= φ, which boils down
to performing reachability analysis over the states of KP

(Fig. 1). These checks can be efficiently automated for
many cases of interest. In the case of CTL, for exam-
ple, checking whether KP |= φ can be solved in time
O(|KP | · |φ|) [27, 31]; for LTL, the problem is more com-
plex (PSPACE-complete [31]), but using automata theoretic
techniques it can be solved in time O(|KP | · 2|φ|) [80], the
latter result indicating that such an approach is feasible for
small specifications. Since the model checking paradigm
was first proposed in 1981, huge progress has been made
on extending the range of systems amenable to verification
by model checking, and to extending the range of properties
that might be checked [28].

Multi-agent systems We now turn to the class of systems
that we will be concerned with in the present paper. The
field of multi-agent systems is concerned with the theory and
practice of systems containing multiple interacting semi-
autonomous AI software components known as agents [73,
82]. Multi-agent systems are generally understood as
distinct from conventional distributed or concurrent systems
in several respects, but the most important distinction for our
purposes is that different agents are assumed to be operating
on behalf of different external principals, who delegate their
preferences or goals to their agent. Because different agents
are “owned” by different principals, there is no assumption
that agents will have preferences that are aligned with each
other.

Correctness in multi-agent systems Now, consider the
following question:

How should we interpret correctness and formal
verification in the context of multi-agent systems?

In an uninteresting sense, this question is easily answered:
we can certainly think of a multi-agent system as nothing
more than a collection of interacting non-deterministic
computer programs, with non-determinism representing the
idea that agents have choices available to them; we can
express such a system using any readily available model
checking framework, which would then allow us to start

reasoning about the possible computational behaviours that
the system might in principle exhibit.

While such an analysis is entirely legitimate, and
might well yield important insights, it is nevertheless
missing a very big part of the story that is relevant in
order to understand a multi-agent system. This is because
it ignores the fact that agents are assumed to pursue
their preferences rationally and strategically. Thus, certain
system behaviours that might be possible in principle will
never arise in practice because they could not arise from
rational choices by agents within the system.

To take a specific example, consider eBay, the online
auction house. When users create an auction on eBay, they
must specify a deadline for bidding in the auction. This
deadline, coupled with the strategic concerns of bidders,
leads to a behaviour known as ‘sniping’ [69]. Roughly,
sniping is where bidders try to wait for the last possible
moment to submit bids. Sniping is strategic behaviour, used
by participants to try to get the best outcome possible. If we
do not take into account preferences and strategic behaviour
when designing a system like eBay, then we will not be able
to predict or understand behaviours like sniping.

The classical formulation of correctness does not
naturally match the multi-agent system setting because
there can be no single specification φ, against which the
correctness of a multi-agent system is judged. Instead, each
agent within such a system carries its own specification: an
agent is judged to be correct if it acts rationally to achieve its
delegated preferences or goals. So, what should replace the
classical notion of correctness and verification in the context
of multi-agent systems? We posit that rational verification
and equilibrium checking provide a suitable framework.

Rational verification and equilibrium checking Along with
many other researchers [63, 73] we believe that game
theory provides an appropriate formal framework for
the analysis of multi-agent systems. Originating within
economics, game theory is essentially the theory of strategic
interaction between self-interested entities [61]. While the
mathematical framework of game theory was not developed
specifically to study computational settings, it nevertheless
seems that the toolkit of analytical concepts it provides can
be adapted and applied to multi-agent settings. A game in
the sense of game theory is usually understood as an abstract
mathematical model of a situation in which self-interested
players must make decisions. A game specifies the decision-
makers in the game – the “players” and the choices available
to these players (their strategies). For every combination
of possible choices by the players, the game also specifies
what outcome will result, and each player has their own
preferences over possible outcomes.

A key concern in game theory is to try to understand
what the outcomes of a game can or should be, under the

6571Rational verification: game-theoretic verification of multi-agent systems

assumption that the players within it act rationally. To this
end, a number of solution concepts have been proposed,
of which the Nash equilibrium is the most prominent. A
Nash equilibrium is a collection of choices, one for each
participant in the game, such that no player can benefit
by unilaterally deviating from this combination of choices.
Nash equilibria seem like reasonable candidates for the
outcome of a game because to move away from a Nash
equilibrium would result in some player being worse off
– which would clearly not be rational. In general, it could
be the case that a given game has no Nash equilibrium
or multiple Nash equilibria. Now, it should be easy to see
how this general setup maps to the multi-agent systems
setting: players map to the agents within the system, and
each player’s preferences are as defined in their delegated
goals; the choices available to each player correspond to the
possible courses of action that may be taken by each agent in
the system. Outcomes will correspond to the computations
or runs of the system, and agents will have preferences
over these runs; they act to try and bring about their most
preferred runs.

With this in mind, we believe it is natural to think of the
following problem as a counterpart to model checking and
classical verification. We are given a multi-agent system,
and a temporal logic formula φ representing a property of
interest. We then ask whether φ would be satisfied in some
run that would arise from a Nash equilibrium collection of
choices by agents within the system. We call this equilibrium
checking, and refer to the general paradigm as rational
verification.

3Models for rational verification

3.1 An abstract model

Let us make our discussion a little more formal with some
suggestive notation (we present some concrete models in
later sections). Let P1, . . . , Pn be the agents within a multi-
agent system. For now, we do not impose any specific
model for agents Pi : we will simply assume that agents
are non-deterministic reactive programs. Non-determinism
captures the idea that agents have choices available to them,
while reactivity implies that agents are non-terminating. The
framework we describe below can easily be applied to any
number of computational models, for example concurrent
games [5], event structures [81], interpreted systems [33], or
multi-agent planning systems [15].

A strategy for an agent Pi is a rule that defines how the
agent makes choices over time. Each possible strategy for an
agent Pi defines one way that the agent can resolve its non-
determinism. We can think of a strategy as a function from
the history of the system to date to the choices available to

the agent in the present moment. We denote the possible
strategies available to agent Pi by Σ(Pi). The basic task
of an agent Pi is to select an element of Σ(Pi) – we will
see later that agents select strategies in an attempt to bring
about their preferences. When each agent Pi has selected a
strategy, we have a profile of strategies �σ = (σ1, . . . , σn),
one for each agent. This profile of strategies will collectively
define the behaviour of the overall system. For now, we will
assume that strategies are themselves deterministic, and that
a collection of strategies therefore induces a unique run of
the system, which we denote by �σ . The set R(P1, . . . , Pn)

of all possible runs of P1, . . . , Pn is:

R(P1, . . . , Pn) = {ρ(�σ) : �σ ∈ Σ(P1) × · · · × Σ(Pn)}.
Where the strategies that lead to a run do not need to be
named, we will denote elements of R(P1, . . . , Pn) by ρ, ρ′,
etc. Returning to our earlier discussion, we typically use
LTL as a language for expressing properties of runs: we
will write ρ |= φ to mean that run ρ satisfies temporal
formula φ.

Before proceeding, we state a version of the conventional
model checking problem for our setting:

MODEL CHECKING:
Given: System P1, . . . , Pn; temporal formula φ.
Question: Is it the case that ∃�σ ∈ Σ(P1) × · · · ×

Σ(Pn) : ρ(�σ) |= φ?

This decision problem amounts to asking whether ∃ρ ∈
R(P1, . . . , Pn) such that ρ |= φ, that is, whether there is any
possible computation of the system that satisfies φ, that is
whether the system could in principle exhibit the behaviour
φ.

Preferences So far, we have said nothing about the idea that
agents act rationally in pursuit of delegated preferences. We
assume that agents have preferences over runs of the system.
Thus, given two possible runs ρ1, ρ2 ∈ R(P1, . . . , Pn), it
may be that Pi prefers ρ1 over ρ2, or that it prefers ρ2 over
ρ1, or that it is indifferent between the two. We represent
preferences by assigning to each player Pi a relation �i ⊆
R(P1, . . . , Pn)×R(P1, . . . , Pn), requiring that this relation
is complete, reflexive, and transitive. Thus ρ1 �i ρ2 means
that Pi prefers ρ1 at least as much as ρ2. We denote the
irreflexive sub-relation of �i by �i , so ρ1 �i ρ2 means
that Pi strictly prefers ρ1 over ρ2. Indifference (where we
have both ρ1 �i ρ2 and ρ2 �i ρ1) is denoted by ρ1 ∼i ρ2.
We refer to a structure M = (P1, . . . , Pn, �1, . . . , �n) as a
multi-agent system.

Alert readers will have noted that, if runs are infinite,
then so are preference relations over such runs. This raises
the issue of finite and succinct representations of preference
relations over runs. Several approaches to this issue have
been suggested. The most obvious is to assign each agent Pi

6572 A. Abate et al.

a temporal logic formula γi representing its goal. The idea
is that Pi prefers all runs that satisfy γi over all those that
do not, is indifferent between all runs that satisfy γi , and
is similarly indifferent between runs that do not satisfy γi .
Formally, the preference relation �i corresponding to a goal
γi is defined as follows:

ρ1 �i ρ2 if ρ2 |= γi implies ρ1 |= γi .

We discuss alternative (richer) preference models in
Section 5.2.

Nash equilibrium With this definition, we can now define
the standard game theoretic concept of Nash equilibrium for
our setting. Let M = (P1, . . . , Pn, �1, . . . , �n) be a multi-
agent system, and let �σ = (σ1, . . . , σi, . . . , σn) be a strategy
profile. Then we say �σ is a Nash equilibrium of M if for all
players Pi and for all strategies σ ′

i ∈ Σ(Pi), we have:

ρ(�σ) �i ρ(σ1, . . . , σ
′
i , . . . , σn).

Let NE(M) denote the set of all Nash equilibria of M . Of
course many other solution concepts have been proposed in
the game theory literature [61] – to keep things simple, in
this paper we will restrict our attention to Nash equilibrium.

Equilibrium checking We are now in a position to introduce
equilibrium checking, and the associated key decision
problems. The basic idea of equilibrium checking is that,
instead of asking whether a given temporal formula φ is
satisfied on some possible run of the system, we instead
ask whether it is satisfied on some run induced by a Nash
equilibrium strategy profile of the system. Informally, we
can understand this as asking whether φ could be made true
as the result of rational choices by agents within the system.
This idea is captured in the following decision problem (see
Fig. 2):

E-NASH:
Given: Multi-agent system M; temporal formula φ.

Question: Is it the case that ∃�σ ∈ NE(M) : ρ(�σ) |= φ?

The obvious counterpart of this decision problem is A-
NASH, which asks whether a temporal formula φ is satisfied
on all Nash equilibrium outcomes.

A-NASH:
Given: Multi-agent system M; temporal formula φ.

Question: Is it the case that ∀�σ ∈ NE(M) : ρ(�σ) |= φ?

A higher-level question is simply whether a system has
any Nash equilibria:

NON-EMPTINESS:
Given: Multi-agent system M .
Question: Is it the case that NE(M) �= ∅?

Fig. 2 Equilibrium checking. The key difference to model checking
is that we also take as input the preferences of each of the system
components, and the key question asked is whether or not the temporal
property φ holds on some/all equilibria of the system

A system without any Nash equilibria is inherently unstable:
whatever collection of choices we might consider for the
agents within it, some player would have preferred to make
an alternative choice. Notice that an efficient algorithm for
solving E-NASH would imply an efficient algorithm for
NON-EMPTINESS.

Finally, we might consider the question of verifying
whether a given strategy profile represents a Nash
equilibrium:

IS-NE:
Given: Multi-agent system M , strategy profile �σ
Question: Is it the case that �σ ∈ NE(M)?

Recall that mathematically strategies are functions that take
as input the history of the system to date, and give as output
a choice for the agent in question. Since the computations
generated by multi-agent systems will be infinitary objects,
to study this decision problem we will need a finite
representation for strategies. A common approach is
to use finite state machines with outputs (e.g., Moore
machines).

3.2 Iterated boolean games

A simple and elegant concrete computational model that
we have found useful to explore questions surrounding
rational verification is the framework of iterated Boolean
Games (iBGs) [39]. In an iBG, each agent Pi is defined
by associating it with a finite, non-empty set of Boolean
variables Φi , and preferences for Pi are specified with

6573Rational verification: game-theoretic verification of multi-agent systems

an LTL formula γi . It is assumed that each propositional
variable is associated with a single agent. The choices
available to Pi at any given point in the game then represent
the set of all possible assignments of truth or falsity to
the variables under the control of Pi . An iBG is “played”
over an infinite sequence of rounds; in each round every
player independently selects a valuation for their variables,
and the infinite run traced out in this way thus defines
an LTL model, which will either satisfy or fail to satisfy
each player’s goal. In iBGs, strategies are represented as
finite state machines with output (Moore machines). This
may seem like a limitation, but in fact it is not: in the
setting of iBGs, finite state machine strategies are all that is
required.

Let us now turn to the decision problems that we
identified above, and consider their complexity in the iBG
case. Before we state the complexity of these problems,
it is worth recalling a special case of iBGs, which was
first studied in the 1980s by Pnueli and Rosner [67].
An LTL synthesis problem is a setting defined by two
players, denoted E and A, two disjoint sets of propositional
variables, ΦE and ΦA, and an LTL formula φE defined
over the variables ΦE ∪ ΦA. The setting is interpreted as
a game in the following way: the play continues for an
infinite sequence of rounds, where in each round the players
simultaneously choose a valuation for their respective
variable set. In this way, the play traces out a word in
(ΦE ∪ ΦA)ω, and this word can be understood as an LTL
valuation. Player E wins if this valuation satisfies φE , and
loses otherwise. The LTL synthesis problem is then as
follows:

LTL SYNTHESIS:
Given: Variables ΦE and ΦA, and LTL formula φE .

Question: Can E force a win in the game induced by
ΦE, ΦA, φE? That is, does there exists a strategy σE

for E such that for all strategies σA for A, we have
ρ(σE, σA) |= φE?

The LTL synthesis problem was introduced to study the
problem of software settings in which we want to know
whether a particular software component (represented by
E in this case) can ensure that an overall system objective
(φE) is satisfied in the presence of arbitrary, or adversarial
input from the software environment (A). In game-theoretic
terms, LTL synthesis is a two-player, strictly competitive
win-lose game, and it can be seen as a special case of iBGs:
we can model LTL synthesis in an iBG by assigning player
E the goal φE and A the goal ¬φE . Now, the central result
proved by Pnueli and Rosner was this:

Theorem 1 [67] The LTL synthesis problem is 2EXPTIME-
complete.

Observe that this is an extremely negative result,
considerably worse than (for example) the PSPACE-
complete LTL model checking problem [74]. The high
complexity derives from the fact that the LTL synthesis
problem requires quantifying over strategies for satisfying
LTL formulae: checking Nash equilibrium properties of
iBGs requires similar quantification, and it should therefore
come as no surprise that iBGs inherit the high complexity
of LTL synthesis.

Theorem 2 [39] For iBGs, IS-NE is PSPACE-complete
(and hence no easier or harder than model checking or
satisfiability for LTL). In contrast, NON-EMPTINESS, E-
NASH, and A-NASH are all 2EXPTIME-complete.

It is not hard to see the close relationship between
these problems and LTL synthesis. For example, we can
immediately see that A-NASH is 2EXPTIME hard from
the following reduction: given an instance (ΦE, ΦA, φE) of
LTL synthesis, construct an iBG with players {E, A}, and
propositional control sets as in the LTL synthesis instance,
with goals for the players being φE and ¬φE respectively.
Then ask whether φE is satisfied on all Nash equilibrium
runs of the game. It is straightforward to see that E has a
winning strategy for φE if and only if φE is satisfied on all
Nash equilibrium computations.

Although it may seem rather abstract, the iBG framework
is quite general, and more widely applicable than it might
at first appear. For example, frameworks in which agent
programs Pi can be axiomatised in LTL can be expressed in
iBGs – see [37] for details.

One fascinating aspect of the development of the theory
for iBGs is that, when understanding the equilibrium
properties of iBGs, we can make use of the Nash folk
theorems – classic results in game theory which relate
to the equilibrium properties that can be sustained in
iterated games [61]. It is remarkable that a proof technique
developed in the 1950s to study an abstract class of games
turns out to be directly applicable to the verification of AI
systems 70 years later: see [39] for details.

3.3 Concurrent game structures

Concurrent Game Structures are a widely-used model for
concurrent and multi-agent systems [5]. In this model, say
M , typically presented in its deterministic form, there are
N players who, at each state s, make an independent choice
ai , with i ∈ N , which jointly define an action profile
a = (a1, . . . , a|N |) that uniquely determines the next state
s′, that is, a unique transition (s, a, s′) in M . Formally, a
Concurrent Game Structure is given by a tuple:

M = (N, S, s0, (Ai)i∈N, δ),

6574 A. Abate et al.

where, N and S are finite, non-empty sets of agents and
system states, respectively, where s0 ∈ S is an initial state;
Ai is a set of actions available to agent i, for each i; and
δ : S × A1 × · · · × A|N | → S is a transition function.

Concurrent games are played as follows. The game
begins in state s0, and each player i ∈ N simultaneously
picks an action a0

i ∈ Ai . The game then transitions to
a new state, s1 = δ(s0, a0

1, . . . , a0|N |), and this process

repeats. Thus, the nth state transitioned to is sn =
δ(sn−1, an−1

1 , . . . , an−1
|N |). Since the transition function is

deterministic, a play of a game will be an infinite sequence
of states, denoted by π . Such a sequence of states is called
a run.

Thus, to play a game, agents use strategies, which are
formally defined as functions from sequences of states
to next states. Because Concurrent Game Structures are
deterministic, a profile of strategies for all agents f =
(f1, . . . , f|N |) determines a unique run in M , denoted by
π(f). Assuming that agents have a preference relation �i ,
with i ∈ N , over the set of runs in M , one can immediately
define further game-theoretic concepts, such as the stable
outcomes, runs, or profiles of a game. For instance, in case
of Nash equilibrium, we say that a strategy profile f =
(f1, . . . , f|N |) is a Nash equilibrium if, for each agent i and
every strategy f ′

i of i we have:

π(f) �i π(f1, . . . , f
′
i , . . . , f|N |),

that is, agent i does not prefer the run induced by
(f1, . . . , f

′
i , . . . , f|N |) over the run induced by �f =

(f1, . . . , fi, . . . , f|N |), which we call a Nash equilibrium
run.

3.4 Reactivemodule games

While concurrent games provide a natural semantic
framework for multi-agent systems, they are not directly
appropriate as a modelling framework to be used by people.
For this, the framework of Reactive Module Games is more
suitable [41]. Within this framework, concurrent games are
modelled using the Simple Reactive Modules Language
(SRML) [78], a simplified version of the Reactive Modules
language that is widely used within the model checking
community [3].

The basic idea is that each system component
(agent/player) in SRML is represented as a module, which
consists of an interface that defines the name of the module
and lists a non-empty set of Boolean variables controlled by
the module, and a set of guarded commands, which define
the choices available to the module at each state. There are
two kinds of guarded commands: init, used for initialis-
ing the variables, and update, used for updating variables
subsequently.

A guarded command has two parts: a “condition” part
(the “guard”) and an “action” part. The “guard” determines
whether a guarded command can be executed or not given
the current state, while the “action” part defines how to
update the value of (some of) the variables controlled by a
corresponding module. Intuitively, ϕ � α can be read as “if
the condition ϕ is satisfied, then one of the choices available
to the module is to execute α”. Note that the value of ϕ

being true does not guarantee the execution of α, but only
that it is enabled for execution, and thus may be chosen.
If no guarded command of a module is enabled in some
state, then that module has no choice and the values of
the variables controlled by it remain unchanged in the next
state. More formally, a guarded command g over a set of
variables Φ is an expression

g : ϕ � x′
1 := ψ1; . . . ; x′

k := ψk

where the guard ϕ is a propositional logic formula over
Φ, each xi is a member of Φ and ψi is a propositional
logic formula over Φ. It is required that no variable xi

appears on the left hand side of more than one assignment
statements in the same guarded command, hence no issue
on the (potentially) conflicting updates arises.

Here is a concrete example of a guarded command:

(p ∧ q)
︸ ︷︷ ︸

guard

� p′ := �; q ′ := ⊥
︸ ︷︷ ︸

action

The guard is the propositional logic formula (p ∧ q), so this
guarded command will be enabled if both p and q are true. If
the guarded command is chosen (to be executed), then in the
next time-step, variable p will be assigned � and variable q
will be assigned ⊥.

Formally, an SRML module mi is defined as a triple
mi = (Φi, Ii, Ui), where Φi ⊆ Φ is the finite set of
Boolean variables controlled by mi , Ii a finite set of init
guarded commands, and Ui a finite set of update guarded
commands. As in iBGs, it is required that variables are
controlled by exactly one agent.

Figure 3 shows a module named toggle that controls
a single Boolean variable, named x. There are two init
guarded commands and two update guarded commands.
The init guarded commands define two choices for the
initialisation of variable x: true or false. The first update

Fig. 3 Example of module toggle in SRML

6575Rational verification: game-theoretic verification of multi-agent systems

guarded command says that if x has the value of true,
then the corresponding choice is to assign it to false,
while the second command says that if x has the value
of false, then it can be assigned to true. Intuitively, the
module would choose (in a non-deterministic manner) an
initial value for x, and then on subsequent rounds toggles
this value. In this particular example, the init commands
are non-deterministic, while the update commands are
deterministic. We refer to [41] for further details on the
semantics of SRML. In particular, in Figure 12 of [41],
we detail how to build a Kripke structure that models the
behaviour of an SRML system.

Module definitions allow us to represent the possible
actions of individual agents, and the effects of their actions,
but do not represent preferences. In RMGs, preferences
are captured by associating each module with a goal,
which is specified as a temporal logic formula. Given this,
a reactive module game is given by a structure G =
(N, m1, . . . , mn, γ1, . . . , γn), where N = {1, . . . , n} is
the set of agents, mi is the module defining the choices
available to agent i, as explained above, and γi is the
goal of player i. In [41], two possibilities were considered
for the language of goals γi : LTL and CTL. In the case
of LTL, strategies σi for individual players are essentially
the same as in iBGs: deterministic finite state machines
with output. At each round of the game, a strategy σi

chooses one of the enabled guarded commands to be
executed. Because all strategies are deterministic, upon
execution the collective strategies of all players will trace
out a unique run, which will either satisfy or not satisfy
each player’s goal, as in the case of iBGs. In the case
of CTL, however, strategies are non-deterministic: instead
of selecting a single guarded command for execution, a
strategy selects a set of guarded commands. The result
of executing such strategies yields a tree structure, which
will then either satisfy or fail to satisfy the CTL goals
of players.

When it comes to the complexity of decision problems
relating to RMGs, we find the following:

Theorem 3 [41]

– For LTL RMGs, IS-NE is PSPACE-complete, while
E-NASH and A-NASH are both 2EXPTIME-complete.

– For CTL RMGs, IS-NE is EXPTIME-complete, while
E-NASH and A-NASH are both 2EXPTIME-hard.

The key conclusion relating to these results is that,
despite the naturalness and expressive power of RMGs,
computationally they are no more complex than iBGs. The
high complexity of the key decision problems relating to
RMGs indicates that naive algorithms to solve them will be
hopelessly impractical: specialised techniques are required.

In Section 4.1, we will describe such techniques, and a
system implemented based upon them.

3.5 Markov games

Markov Games, also known as Concurrent Stochastic
Games (sometimes simply Stochastic Games), are a popular
representation of (simultaneous) multi-agent decision-
making scenarios with stochastic dynamics. In this latter
respect they differ from Concurrent Game Structures, as
discussed above, in which environments are assumed to
be deterministic. They naturally generalise both Markov
Decision Processes (a Markov Game with one player) and
iterated Normal-Form Games (a Markov Game with one
state). Such games proceed at each time-step, from a state s,
by each agent Pi using their strategy σi to select an action
ai , leading to a joint action a = (a1, . . . , an). The next state
s′ is then drawn from the conditional probability distribution
given by a Markovian transition function T (s′ | s, a). The
strategy profile �σ and the transition dynamics thus define
a Markov Chain over the states S of the game, leading to
a distribution Pr�σ (ρ) over runs ρ = s0s1s2 . . . through the
state space.

On top of this underlying game structure one may
then define different forms of objective for each of the
agents. Common examples include the expected cumulative
discounted reward:

E�σ

[∞
∑

t=0

βt ri
t+1 | s0 = s

]

I (s)

and the expected mean-payoff reward:

lim
T →∞

1

T
E�σ

[

T
∑

t=0

ri
t+1 | s0 = s

]

I (s).

Here, β ∈ [0, 1) is a discount factor, ri
t+1 ∈ R is the

reward given to agent i at time t + 1, and I (s) is an initial
state distribution. Alternatively, for any set of runs R′ ⊆
R(P1, . . . , Pn) we may define an indicator random variable
XR′ such that XR′(ρ) = 1 if ρ ∈ R′ and XR′(ρ) = 0
otherwise. A player’s reward can then be defined as the
expected value E�σ [XR′] of this variable. For example, we
could consider the probability of satisfying a temporal logic
formula γi by defining R′ as containing all and only those
runs ρ such that ρ |= γi .

The introduction of stochastic dynamics also introduces
different ‘ways of winning’ when we have Boolean
objectives that are either satisfied or not by a particular
path [29]. For example, a player may win by satisfying
their goal γi surely (with certainty), almost surely (with
probability one), limit surely (with probability greater than
1−ε for every ε > 0), boundedly (with probability bounded
away from one), positively (with positive probability),
or existentially (possibly). Aside from these qualitative

6576 A. Abate et al.

conditions, players may be interested in simply maximising
the probability that their goal γi is achieved. Such a
perspective can also be carried over to the problem of
rational verification, in which we may be interested in the
sure, almost sure, or limit sure satisfaction of a property φ,
or simply in the probability that φ is satisfied.

4 Tools

While synthesis problems (such as the LTL synthesis prob-
lem, introduced by Pnueli and Rosner and discussed above)
have been increasingly studied within the verification com-
munity, rational verification has come to prominence only
in the past few years. As such, relatively few software tools
exist for this problem. Below, we briefly survey some of the
most widely used.

4.1 EVE: the equilibrum verification environment

As we noted above, the high complexity of rational
verification for RMGs (see above) indicates that naive
algorithms for this purpose will be doomed to failure, even
for systems of moderate size. It follows that any practical
system will require sophisticated algorithmic techniques.
The Equilibrium Verification Environment (EVE) is a
system based on such techniques [45, 47].

The basic approach embodied by EVE involves reducing
rational verification to a collection of parity games [32],
which are widely used for synthesis and verification
problems. A parity game is a two-player zero-sum turn-
based game given by a labelled finite graph H =
(V0, V1, E, α) such that V = V0 ∪ V1 is a set of states
partitioned into Player 0 (V0) and Player 1 (V1) states,
respectively, E ⊆ V × V is a set of edges/transitions, and
α : V → N is a labelling priority function. Player 0 wins
if the smallest priority that occurs infinitely often in the
infinite play is even. Otherwise, player 1 wins. It is known
that solving a parity game (checking which player has a
winning strategy) is in NP ∩ coNP [51], and can be solved
in quasi-polynomial time [17].1

The algorithm underpinning EVE uses parity games in
the following way. It takes as input an RMG M and builds
a parity game H whose sets of states and transitions are
doubly exponential in the size of the input but with priority
function only exponential in the size of the input game.
Using a deterministic Streett automaton on infinite words
(DSW) [52], we then solve the parity game, leading to
a decision procedure that is, overall, in 2EXPTIME, and,

1Despite more than 30 years of research, and promising practical
performance for algorithms to solve them, it remains unknown whether
parity games can be solved in polynomial time.

therefore, given the hardness results we mentioned above,
essentially optimal. The EVE system can: (i) solve the E-
NASH and A-NASH problems for the given RMG; and (ii)
synthesise individual player strategies in the game.

Experimental results show that EVE performs favourably
compared with other existing tools that support rational
verification.

4.2 PRISM-games

A separate though closely related thread of research
into the verification of multi-agent systems has emerged
from the probabilistic model-checking community. The
most prominent example of this in recent years is the
expansion of PRISM [54], a popular tool for probabilistic
model-checking, to handle first Turn-Based [11] and now
Concurrent Stochastic Games (Markov Games) [55, 56].
Earlier work was limited to non-cooperative turn-based
or zero-sum concurrent settings. Later efforts considering
cooperative, concurrent games were initially restricted to
those with only two coalitions, but this restriction has been
partially lifted in the most recent instantiation of the work,
which supports model-checking of arbitrary numbers of
coalitions in the special case of stopping games – those
in which eventually, with probability one, the outcome of
each player’s objective becomes fixed [56]. We note further
that the current version of the tool also supports the use
of Probabilistic Timed Automata in verifying Turn-Based
Markov Games with real-valued clocks [57].

In PRISM-games, specifications are expressed in rPATL,
probabilistic ATL (a generalisation of CTL that uses an
extra quantifier 〈〈A〉〉φ for reasoning about properties φ that
that be ensured by some subset A of the agents [5]) with
rewards [25]. The logic is then further extended in order to
be able to reason about equilibria in the game (in particular,
subgame-perfect social-welfare optimal Nash equilibria).
For example, this allows one to answer not only queries
such as 〈〈P1〉〉max≥0.5(Pr[ψ]) – is it the case that P1 can
ensure that ψ holds with at least probability a half? – but
also queries such as 〈〈P1 : P2〉〉max≥2(Pr[ψ]+ Pr[χ]) – is it
the case that P1 and P2 can coordinate to ensure that both
of their respective goals, ψ and χ , hold with probability
one? – where ψ and χ are LTL formulae and similarly
for expected rewards. More information can be found in
[56]. An alternative specification formalism that can express
equilibria concepts is Probabilistic Strategy Logic [8], but it
has no associated implementation.

From a technical standpoint, PRISM-games also makes
use of the Reactive Modules language with individual play-
ers represented by a set of modules which may then choose
an enabled command at each time-step. On top of this,
users can include reward structures that produce quantita-
tive rewards given a state and joint action as input, and

6577Rational verification: game-theoretic verification of multi-agent systems

define temporal logic properties expressed in the (extended
version of) rPATL. For zero-sum properties PRISM-games
relies on using value iteration to approximate values for all
states of the game, and then solves a linear program for each
state in order to compute a minimax strategy. For equilibria-
based properties, a combination of backwards induction and
value iteration are used, which is exact for finite-horizon and
approximate for infinite-horizon properties, together with a
sub-procedure for computing optimal Nash equilibria in n-
player Normal-Form Games that makes use of SMT and
non-linear optimisation engines.

4.3 MCMAS

MCMAS [58] adopts interpreted systems [33] as the
formal language to represent systems comprised of multiple
entities. In MCMAS, interpreted systems are extended to
incorporate game-theoretic notions such as those provided
by ATL modalities [59]. The formalisation used to model
systems in MCMAS can be thought of as a “bottom-
up” approach, where the global state is defined as a
tuple of the local states of the agents. In this setting,
global states are given as the composition of local
states of the agents and environment. MCMAS uses
a dedicated programming language called Interpreted
Systems Programming Language (ISPL) to describe the
specification of Interpreted Systems.

There are different extensions of MCMAS that handle
different specification logics. However, one particular
extension that supports a specification language expressive
enough to reason about Nash equilibrium is MCMAS-
SLK [19]. The tool’s specification language is Strategy
Logic with Knowledge (SLK) [18], an extension of Strategy
Logic (SL) [24, 62]. Due to the undecidability of the model-
checking problem of multi-agent systems under perfect
recall and incomplete information [4], the tool adopts
imperfect recall semantics.

The NON-EMPTINESS problem can be solved using
MCMAS by specifying the existence of Nash equilibrium
with SLK. Let N = {1, . . . , n} be the set of players in a
game, V ar be the set of strategy variables, and Γ be the set
of goals of players in the game. Using SLK, we can express
the existence of Nash equilibrium with the formula ϕNE :

ϕNE = 〈〈x1〉〉(1, x1) . . . 〈〈xn〉〉(n, xn)
∧

i∈N

(

¬γi → �yi�(i, yi) ¬γi

)

where i ∈ N, xi, yi ∈ V ar , and γi ∈ Γ .
Intuitively, formula ϕNE can be explained as follows: for

each player i with its chosen strategy xi in the game, if the
goal of player i cannot be achieved using strategy xi then for
every “alternative” strategy yi , the goal of player i cannot
be achieved. This means that, players who do not get their

goals achieved cannot benefit from unilaterally changing
their strategies. Thus, if ϕNE is true, then there exists a
Nash equilibrium in the given game. The other problems of
rational verification, namely E-NASH and A-NASH, can be
reduced to NON-EMPTINESS [37].

5 Challenges

In this section, we provide a brief discussion of some current
and future research challenges for rational verification.

5.1 Tackling complexity

Perhaps the most obvious challenge in making rational
verification an industrial-strength reality is that of the high
computational complexity of the basic decision problems.
Whilst LTL formulae are expressive and natural [79],
and moreover, widely used in industry [21, 26, 70, 71],
the 2EXPTIME-completeness results leave our problems
grossly intractable. As such, it is important for us to consider
other languages which strike a balance of complexity and
expressiveness - how can we capture the richness of multi-
agent systems, whilst still being able to reason about them
effectively?

Perhaps the most obvious thing to try is to consider
fragments of LTL. Various restrictions of LTL are very
well-studied [7, 75] and the decision problems relating
to them are much more computationally amenable. In
[39], the authors consider games where all the play-
ers have propositional safety goals – that is, LTL goals
of the form Gϕ, where ϕ is some propositional for-
mula. In this setting, the E-NASH problem is PSPACE-
complete. Additionally, in [46], the authors consider GR(1)

[12] goals and specifications. Here, the E-NASH problem
is PSPACE-complete with GR(1) goals and LTL spec-
ifications, and lies in FPT (fixed parameter tractable)
[30] when both the goals and the specifications are
in GR(1).

In addition to considering restricted languages for goals
and temporal queries, a number of other directions suggest
themselves as possible ways in which to reduce com-
plexity, although we have no concrete results with these
directions at this time. The first possibility is to consider
ways in which games can be decomposed into smaller
games, while preserving the relevant game-theoretic prop-
erties. Similar techniques have been studied within the
model checking community (see, e.g., [6]). Another possi-
bility, also inspired by work within model checking, is to
consider abstracting games to their smallest bisimulation-
equivalent form. Care must be taken in this case, how-
ever, because we need to ensure that the precise form
of bisimulation to be used must preserve Nash equilibria

6578 A. Abate et al.

across bisimulation-equivalent models, and naive attempts
to define bisimulation, which preserve temporal logic prop-
erties under model checking, do not necessarily preserve
Nash equilibria – we refer the interested reader to [40] for
details.

5.2 Alternative preferencemodels

What if we were to set aside temporal logics and consider
different preference relations altogether? Staying in the
qualitative mindset, in [13], the authors consider games
where the players have ω-regular objectives and look at the
NON-EMPTINESS problem, and obtained complexity results
ranging from P-completeness all the way up to EXPTIME
membership. Alternatively, one can adopt a quantitative
approach and consider mean-payoff objectives – one can ask
if there exists some Nash equilibrium where each player’s
payoff lies within a certain interval. As established in [76],
this problem is NP-complete.

In order to be able to reason about games in a richer
fashion, we can use quantitative and qualitative constructs
in the same breath. If we look at games where the
players’ preferences are given by mean-payoff objectives,
and we ask if there exists a Nash equilibrium which
models an LTL specification, this problem is PSPACE-
complete. Moreover, if we restrict our attention to GR(1)

specifications, then we retain the NP-completeness result
of the original mean-payoff NON-EMPTINESS problem.
However, balancing qualitative and quantitative goals and
specifications is not always as straightforward as this.
For instance, in two-player, zero-sum, mean-payoff parity
games [23], where the first player gets their mean-payoff if
some parity condition is satisfied, and −∞ otherwise, this
same player may require infinite memory to act optimally.
Thus, given the standard translation from non-deterministic
Büchi automata to deterministic parity automata [65], this
does not bode well for games with combined mean-payoff
and LTL objectives - many of the techniques in rational
verification depend on the existence of memoryless or
finite-memory strategies in the corresponding two-player,
zero-sum version of the game. Despite this, [43, 44] look
at games with lexicographic preferences, where the first
component is either a Büchi condition or an LTL formula,
and the second component is some mean-payoff objective.
Rather than considering the standard NON-EMPTINESS

problem, they study a closely related analogue – the
problem of whether or not there exists some finite-state,
strict ε-Nash Equilibrium. These additional restrictions are
brought about precisely due to the necessity of infinite
memory in mean-payoff parity games, as mentioned above.
When the first component is a Büchi condition, then
the given decision problem is NP-complete, and in the
LTL setting, it is 2EXPTIME-complete. Thus, despite the

relaxation of the solution concept, we sadly do not see any
gains in computational tractability.

Finally, some work has been to introduce non-
dichotomous, qualitative preferences to rational verification.
In [53], the authors introduceObjective LTL (OLTL) as a goal
and specification format. An OLTL formula is simply a tuple
of LTL formulae, along with a function which maps binary
tuples of the same length to integers. In a given execution of
a game, some LTL formulae will be satisfied and others will
not. Marking the ones that are satisfied with 1, and the ones
which are not by 0, we can pass the resulting tuple into the
given function and get an integer – each agent in the game
wants to maximise this integer. With this preference model,
we can look at games where there is a set of agents, plus
a system player, and ask if there exists some strategy for
the system player, along with a Nash equilibrium for the
remaining players such that the system player’s payoff is
above a certain threshold. This problem is no harder than
the original rational synthesis problem for LTL [36], being
2EXPTIME-complete. Building on this, in [2], the authors
study rational verification with LTL[F] [1] goals and spec-
ifications. In short, LTL[F] generalises LTL by replacing
the classical Boolean operators with arbitrary functions
which map binary tuples into the interval [0, 1]. Again, the
associated decision problem remains 2EXPTIME-complete.

5.3 Uncertain environments

Thus far, the investigation into rational verification has
focused largely on settings that are deterministic, discrete,
fully observable, and fully known. Indeed this is sufficient
for modelling a great many scenarios of interest, such as
software processes or high-level representations of multi-
agent control. Most of the real world, however, cannot
be captured quite as neatly. This motivates the study
of rational verification in uncertain environments, where
this uncertainty might arise from stochastic dynamics,
continuous or hybrid state and action spaces, or a structure
that is only partially observable or partially known. Each of
these features (and, moreover, their combination) represents
an exciting direction for future work, the challenges of
which we briefly outline here.

Perhaps the most natural and well-studied form of uncer-
tainty in formal verification is of systems with stochastic
dynamics. As noted above in Section 4.2, probabilistic
model-checking techniques have recently been extended to
the multi-agent setting by way of tools such as PRISM-
games [57]. Recent work on rational verification in Markov
Games with goals defined by the almost sure or positive
satisfaction of LTL properties has shown that the complexity
classes of the main problems in both non-cooperative and
cooperative rational verification remain essentially the same
as in the non-stochastic setting: 2EXPTIME-complete [38].

6579Rational verification: game-theoretic verification of multi-agent systems

Further results for other qualitative modes of winning
(as well as for the quantitative case) are still to be
obtained, however, there remain many other interesting
open problems relating to ω-regular objectives in Markov
Games [22].

In some situations especially when considering cyber-
physical systems, it is more appropriate to model the
state space (and possibly the action space) as continuous
or as hybrid – with some discrete and some continuous
elements. Whilst not in itself necessarily introducing
uncertainty, such representations bring challenges related to
the concise encoding of system dynamics agents’ strategies
over uncountable sets, and the careful definition of temporal
logic formulae over paths through the state space. As well
as modelling state or action spaces as continuous, one
may also choose to represent time as being continuous,
requiring new logics in which to encode specifications, such
as Continuous-Time Stochastic Logic (CSL) [10] or Signal
Temporal Logic (STL) [60].

When making a real-world decision in order to achieve
a goal, it is rare to be able to observe all of the
information relevant to that decision and goal. This intuition
can be captured by models in which state space is
only partially observable by the agents therein; in game-
theoretic terms the agents have imperfect information. For
example, Reactive Module Games in which each player
may only observe a subset of the environmental variables
are undecidable with three or more players, although the
two-player case is solvable in 2EXPTIME [48].

Related work has explored the problem of rational
synthesis in turn-based games under imperfect information
(which is undecidable with three or more players and
EXPTIME-complete for two players) [34], though the
effects of partial observability on the rational verification
problem remain under-explored.

Finally, there are scenarios in which larger portions of an
environment are unknown, such as the transition dynamics,
not only to the agents but also to those who wish to
verify it. Here, traditional model-checking approaches do
not apply and some form of learning must be introduced. As
a result, different forms of guarantees about such systems
are obtained, and relying on assumptions about the structure
of the environment and the theoretical characteristics of
the learning algorithms used. Verification methods that
employ learning have recently been developed by those
in both the model-checking community [16], the control,
and learning community [50], though few have considered
the multi-agent settings with more than two players and
those that do restrict their attention to purely cooperative
games [49]. A further complication is raised when agents
themselves employ learning in unknown environments
in order to update their strategies over time. With the
continuing advance of machine learning, this is likely to

become an increasingly common occurrence that requires
new techniques for rational verification.

5.4 Cooperative solution concepts

Rational verification was first defined for noncooperative
games [39, 41, 83]: players were assumed to act alone, and
binding agreements between players were assumed to be
impossible. As such, the solution concepts used in previous
studies have therefore been noncooperative – primarily
Nash equilibrium and refinements thereof.

However, in many real-life situations, these assumptions
misrepresent reality. In order to address this issue, in [42],
such the noncooperative setting for rational verification was
extended to include cooperative solution concepts [61, 64].
It was assumed that there is some (exogenous) mechanism
through which agents in a system can reach binding
agreements and form coalitions in order to collectively
achieve goals. The possibility of binding cooperation and
coalition formation eliminates some undesirable equilibria
that arise in the noncooperative setting, and makes available
a range of outcomes (i.e., computations of the system that
can be sustained in equilibrium) which cannot be achieved
without cooperation.

In this new cooperative setting, the focus was on the core,
arguably one of the most relevant solution concepts in the
cooperative game theory literature. The basic idea behind
the core is that a game outcome is said to be core-stable if
no subset of agents could benefit by collectively deviating
from it; the core of a game is the set of core-stable outcomes.
Now, in conventional cooperative games (characteristic
function games with transferable utility [20]), this intuition
can be given a simple and natural formal definition, and as
a consequence the core is probably the most widely-studied
solution concept for cooperative games. However, the
conventional definition of the core does not easily map into
the rational verification framework as originally defined,
mainly because coalitions are subject to externalities:
whether or not a coalition has a beneficial deviation
depends not just on the makeup of that coalition, but
also on the behaviour of the remaining agents in the system.

Coalition formation with externalities has been exten-
sively studied in the cooperative game theory literature [35,
77, 84], where different variants of the core can be found.
For instance, the α-core takes the pessimistic approach that
requires that all members of a deviating coalition will bene-
fit from the deviation regardless of the behaviour of the other
coalitions that may be formed. Our main definition of the
core precisely follows this approach. Even though coalition
formation with externalities is common in and important
for multi-agent systems [72], not much work has been done
regarding the problem of stability, and its properties, in
multi-agent coalition formation with externalities. Instead,

6580 A. Abate et al.

in AI and multi-agent systems, most research has focused
on the structure formation problem itself [68]. Through our
work on rational verification, we also address this gap in the
literature of verification for AI systems.

The kinds of questions that are asked in the (rational
verification) cooperative setting are exactly the same as
in the non-cooperative framework, only that instead of
(variants of) Nash equilibrium one refers to outcomes in
the core of game-theoretic representations of multi-agent
systems. Such questions, e.g., E-CORE, A-CORE, etc.,
bearing the same meaning as their “Nash” counterparts, are
all 2EXPTIME-complete [42] for games with LTL goals,
but have some computationally desirable properties: the set
of outcomes in the core is never empty, is bisimulation
invariant [40], and has an elegant formalisation in ATL∗ [5],
which makes the automated solution of cooperative rational
verification problems possible in practice using verification
tools for multi-agent systems analysis, such as MCMAS or
EVE, described before.

5.5 Rational verification of human-agent systems

In the present paper, we have focused exclusively on the
verification of multi-agent systems in which the agents
in question are software agents. In practice, of course,
many (arguably most) systems of interest include multiple
software and human participants. Might the techniques
surveyed here be suitable for verifying such systems?

One approach might be to model human choices
and preferences using one of the frameworks described
above, and then directly apply the techniques we have
sketched out. However, this approach presents many natural
challenges. The most obvious of these is that the techniques
we have described are derived from concepts in game
theory and decision theory, and in particular, they make
a raft of assumptions about agents in the system. The
most problematic of these is that agents are assumed to
be perfectly rational (utility maximisers): they will act
optimally in the furtherance of their preferences. Human
decision-makers do not act in this way: game and decision-
theoretic models capture idealised rational actors. The field
of behavioural economics seeks to understand the modes
of decision-making that humans actually use, and if we
are to verify human-agent systems, then we will need to
accomodate behavioural decision-making models in our
systems. At present we are aware of no work that seeks to
do this.

6 Conclusions

Rational verification is a recent approach to the automated
verification of multi-agent systems. In which we aim

to automatically determine whether given properties of
a system, expressed as temporal logic formulae will
hold in that system under the assumption that system
components (agent) behave rationally, by choosing (for
example) strategies that form a game-theoretic equilibrium.
Rational verification can be understood as a counterpart to
the conventional model checking paradigm for automated
verification. Although research in this area is at an early
stage, the basic computational, logical, and algorithmic
territory relating to rational verification has already been
explored, and is described in the present article. An
overarching goal for the future will be to make tools more
practically applicable, and to understand the fundamental
limitations of the paradigm. We have sketched out some of
the key challenges that must be overcome to make this a
reality: chief among them being dealing with complexity,
broader preference models, richer modelling frameworks,
and a wider range of game-theoretic solution concepts.

Acknowledgements Wooldridge, Gutierrez, Harrenstein, and Perelli
acknowledge the support of the ERC under grant 291528 (“RACE”).
Wooldridge and Harrenstein further acknowledge the support of the
Alan Turing Institute, London. Kwiatkowska received funding from
the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant 834115,
“FUN2MODEL”) and the EPSRC Programme Grant on Mobile
Autonomy (EP/M019918/1). Abate achknowledges the HICLASS
project (113213), a partnership between the Aerospace Technology
Institute (ATI), Department for Business, Energy & Industrial Strategy
(BEIS) and Innovate UK. Hammond acknowledges the support of
an EPSRC Doctoral Training Partnership studentship (Reference:
2218880). Harrenstein was furthermore supported by the ERC under
grant 639945 (“ACCORD”). Steeples gratefully acknowledges the
support of the EPSRC Centre for Doctoral Training in Autonomous
Intelligent Machines and Systems EP/L015897/1 and the Ian Palmer
Memorial Scholarship. Najib acknowledges the support of the ERC
European Union’s Horizon 2020 research and innovation programme
(grant 759969).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Almagor S, Boker U, Kupferman O (2013) Formalizing and
reasoning about quality. In: Fomin FV, Freivalds R, Kwiatkowska
MZ, Peleg D (eds) Automata, Languages, and Programming -
40th International Colloquium, ICALP 2013, Proceedings, Part II,

6581Rational verification: game-theoretic verification of multi-agent systems

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

volume 7966 of Lecture Notes in Computer Science. Springer,
Riga, pp 15–27

2. Almagor S, Kupferman O, Perelli G (2018) Synthesis of
controllable nash equilibria in quantitative objective games.
In: Proceedings of the 27th International Joint Conference on
Artificial Intelligence, IJCAI’18. AAAI Press, pp 35–41

3. Alur R, Henzinger TA (1999) Reactive modules. Formal Methods
Syst Des 15(11):7–48

4. Alur R, Henzinger TA, Kupferman O (1997) Alternating-time
temporal logic. In: Proceedings of the 38th IEEE Symposium on
Foundations of Computer Science, Florida, pp 100–109

5. Alur R, Henzinger TA, Kupferman O (2002) Alternating-time
temporal logic. J ACM 49(5):672–713

6. Alur R, Henzinger TA, Kupferman O, Vardi MY (1998)
Alternating refinement relations. In: Proceedings of the 9th
International Conference on Concurrency Theory (CONCUR’98),
volume 1466 of Lecture Notes in Computer Science. Springer,
Berlin, pp 163–178

7. Alur R, Torre SL (2004) Deterministic generators and games for
ltl fragments. ACM Trans Comput Log (TOCL) 5(1):1–25

8. Aminof B, Kwiatkowska M, Maubert B, Murano A, Rubin S
(2019) Probabilistic strategy logic. In: In Proc. International Joint
Conference on Artificial Intelligence (IJCAI-19)

9. Baier C, Katoen J-P (2008) Principles Of model checking. The
MIT Press, Cambridge

10. Baier C, Haverkort B, Hermanns H, Katoen J-P (2000) Model
checking continuous-time markov chains by transient analysis. In:
Computer Aided Verification. Springer, Berlin, pp 358–372

11. Basset N, Kwiatkowska M, Topcu U, Wiltsche C (2015) Strategy
synthesis for stochastic games with multiple long-run objectives.
In: Tools and Algorithms for the Construction and Analysis of
Systems. Berlin, Springer, pp 256–271

12. Bloem R, Jobstmann B, Piterman N, Pnueli A, Sa’ar Y (2012)
Synthesis of Reactive (1) designs. J Comput Syst Sci 78(3):911–
938

13. Bouyer P, Brenguier R, Markey N, Ummels M (2015) Pure Nash
equilibria in concurrent deterministic games. Logical Methods in
Computer Science

14. Boyer R. S., Moore J. S. (eds) (1981) The Correctness Problem in
Computer Science. The Academic Press, London

15. Brafman R, Domshlak C (2013) On the complexity of planning for
agent teams and its implications for single agent planning. Artif
Intell 198:52–71

16. Brázdil T, Chatterjee K, Chmelı́k M, Forejt V, Křetı́nský J,
Kwiatkowska M, Parker D, Ujma M (2014) Verification of markov
decision processes using learning algorithms. In: Automated
Technology for Verification and Analysis. Springer International
Publishing, pp 98–114

17. Calude CS, Jain S, Khoussainov B, Li W, Stephan F (2017)
Deciding parity games in quasipolynomial time. In: STOC. ACM,
pp 252–263

18. Čermák P, Lomuscio A, Mogavero F, Murano A (2014) Mcmas-
slk: A model checker for the verification of strategy logic
specifications. In: Biere A., Bloem R. (eds) Computer Aided
Verification. Springer International Publishing, Cham, pp 525–532

19. Cermȧk P, Lomuscio A, Mogavero F, Murano (2018) Practical
verification of multi-agent systems against slk specifications. Inf
Comput 261(Part):588–614

20. Chalkiadakis G, Elkind E, Wooldridge M (2011) Computational
aspects of cooperative game theory. Morgan-Claypool

21. Chan TS, Gorton I (1996) Formal validation of a high performance
error control protocol using spin. Softw Practice Exper 26(1):105–
124

22. Chatterjee K, Henzinger TA (2012) A survey of stochastic ω-
regular games. J Comput Syst Sci 78(2):394–413

23. Chatterjee K, Henzinger TA, Jurdzinski M (2005) Mean-payoff
parity games. In: 20th Annual IEEE Symposium on Logic in
Computer Science (LICS’05). IEEE, pp 178–187

24. Chatterjee K, Henzinger TA, Piterman N (2010) Strategy logic. Inf
Comput 208(6):677–693. https://doi.org/10.1016/j.ic.2009.07.004

25. Chen T, Forejt V, Kwiatkowska M, Parker D (2013) Simaitis, A
Automatic verification of competitive stochastic systems. Formal
Methods Syst Des 43(1):61–92

26. Choi Y (2007) From NuSMV to SPIN: Experiences with model
checking flight guidance systems. Formal Methods Syst Des
30(3):199–216

27. Clarke EM, Emerson EA (1981) Design and synthesis of
synchronization skeletons using branching time temporal logic. In:
Logics of Programs — Proceedings 1981 (LNCS Volume 131).
Springer, Berlin, pp 52–71

28. Clarke EM, Grumberg O, Peled DA (2000) Model the Checking.
MIT press, Cambridge

29. de Alfaro L, Henzinger TA (2000) Concurrent omega-regular
games. In: Proceedings of the 15th Annual IEEE Symposium on
Logic in Computer Science, LICS ’00. IEEE Computer Society,
USA, pp 141

30. Downey RG, Fellows MR (1999) Parameterized complexity.
Springer, New York

31. Emerson EA (1990) Temporal and modal logic. In: Handbook
of Theoretical Computer Science Volume B: Formal Models
and Semantics. Amsterdam, Elsevier Science Publishers B.V.,
pp 996–1072

32. Emerson EA, Jutla CS (1991) Tree automata, mu-calculus and
determinacy. In: FOCS. IEEE, pp 368–377

33. Fagin R, Halpern JY, Moses Y, M. Y. Vardi. (1995) Reasoning
about Knowledge. The MIT press, Cambridge

34. Filiot E, Gentilini R, Raskin J-F (2018) Rational synthesis
under imperfect information. In: Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science. ACM

35. Finus M, Rundshagen B (2003) A non-cooperative foundation of
core-stability in positive externality ntu-coalition games. Nota Di
Lavoro 31.2003 Economics Energy Environment

36. Fisman D, Kupferman O, Lustig Y (2010) Rational synthesis. In:
TACAS, volume 6015 of LNCS. Springer, pp 190–204

37. Gao T, Gutierrez J, Wooldridge M (2017) Iterated boolean games
for rational verification. In: Larson K, Winikoff M, Das S, Durfee
EH (eds) Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems, AAMAS. ACM, Sȧo Paulo,
pp 705–713

38. Gutierrez J, Hammond L, Lin A, Najib M, Wooldridge M (2021)
Rational verification for probabilistic systems. In: Proceedings of
the 18th International Conference on Principles of Knowledge
Representation and Reasoning (KR-21), Virtual. Forthcoming

39. Gutierrez J, Harrenstein P, Wooldridge M (2015) Iterated boolean
games. Inf Comput 242:53–79

40. Gutierrez J, Harrenstein P, Perelli G, Wooldridge M (2019) Nash
equilibrium and bisimulation invariance. Log. Methods Comput.
Sci. 15(3)

41. Gutierrez J, Harrenstein P, Wooldridge M (2017) From model
checking to equilibrium checking: Reactive modules for rational
verification. Artif Intell 248:123–157

42. Gutierrez J, Kraus S, Wooldridge M (2019) Cooperative
concurrent games. In: Elkind E, Veloso M, Agmon N, Taylor
ME (eds) Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS ’19.
International Foundation for Autonomous Agents and Multiagent
Systems, Montreal, pp 1198–1206

43. Gutierrez J, Murano A, Perelli G, Rubin S, Steeples T, Wooldridge
M (2020) Equilibria for games with combined qualitative and
quantitative objectives. Acta Informatica. Springer, pp 1–26

6582 A. Abate et al.

https://doi.org/10.1016/j.ic.2009.07.004

44. Gutierrez J, Murano A, Perelli G, Rubin S, Wooldridge M
(2017) Nash equilibria in concurrent games with lexicographic
preferences. Association for the Advancement of Artificial
Intelligence

45. Gutierrez J, Najib M, Perelli G, Wooldridge M (2018) Eve: A tool
for temporal equilibrium analysis. In: ATVA, Vol 11138 of LNCS.
Springer, Cham, pp 551–557

46. Gutierrez J, Najib M, Perelli G, Wooldridge M (2019)
On computational tractability for rational verification. In:
Proceedings of the Twenty-Eighth International Joint Con-
ference on Artificial Intelligence, IJCAI-19, pp 329–335,
https://doi.org/10.24963/ijcai.2019/47

47. Gutierrez J, Najib M, Perelli G, Wooldridge M (2020) Automated
temporal equilibrium analysis: Verification and synthesis of multi-
player games. Artif Intell 287:103353

48. Gutierrez J, Perelli G, Wooldridge M (2016) Imperfect informa-
tion in reactive modules games. Inf Comput 261:650–675. 2018
4th International Workshop on Strategic Reasoning (SR

49. Hammond L, Abate A, Gutierrez J, Wooldridge M (2021)
Multi-agent reinforcement learning with temporal logic speci-
fications. In: Proceedings of the 20th International Conference
on Autonomous Agents and MultiAgent Systems, AAMAS ’21.
International Foundation for Autonomous Agents and Multiagent
Systems. Forthcoming

50. Hasanbeig M, Abate A, Kroening D (2018) Logically-constrained
reinforcement learning. arXiv:1801.08099

51. Jurdzinski M (1998) Deciding the winner in parity games is in UP
∩ co-up. Inf Process Lett 68(3):119–124

52. Kupferman O (2018) Automata theory and model checking. In:
Handbook of Model Checking. Springer International Publishing,
pp 107–151

53. Kupferman O, Perelli G, Vardi MY (2016) Synthesis with rational
environments. Ann. Math. Artif Intell. 78(1):3–20

54. Kwiatkowska M, Norman G, Parker D (2011) PRISM 4.0:
Verification of probabilistic real-time systems. In: Gopalakrishnan
G, Qadeer S (eds) Proceedings of 23rd International Conference
on Computer Aided Verification (CAV’11), volume 6806 of
LNCS. Springer, pp 585–591

55. Kwiatkowska M, Norman G, Parker D, Santos G (2018) Auto-
mated verification of concurrent stochastic games. In: Quanti-
tative Evaluation of Systems. Springer International Publishing,
pp 223–239

56. Kwiatkowska M, Norman G, Parker D, Santos Gl (2020)
Automatic verification of concurrent stochastic systems. Formal
Methods in System Design. To appear

57. Kwiatkowska M, Norman G, Parker D, Santos G (2020) PRISM-
games 3.0: Stochastic game verification with concurrency,
equilibria and time. In: Computer Aided Verification. Springer
International Publishing, pp 475–487

58. Lomuscio A, Raimondi F (2006) MCMAS: A tool for verifying
multi-agent systems. In: Proceedings of The Twelfth International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS-2006). Springer, Berlin

59. Lomuscio A, Qu H, Raimondi F (2017) MCMAS: An open-source
model checker for the verification of multi-agent systems. Int J
Softw Tools Technol Transfer 19(1):9–30

60. Maler O, Nickovic D (2004) Monitoring temporal properties
of continuous signals. In: Formal Techniques, Modelling and
Analysis of Timed and Fault-Tolerant Systems. Springer, Berlin,
pp 152–166

61. Maschler M, Solan E, Zamir S (2013) Game Theory. Cambridge
University Press. Cambridge

62. Mogavero F, Murano A, Perelli G, Vardi MY (2014) Reasoning
about strategies: on the model-checking problem. ACM Trans
Comput Logic 15(4):47. https://doi.org/10.1145/2631917

63. Nisan N, Roughgarden T, Tardos E, Vazirani VV (eds)
(2007) Algorithmic Game Theory. Cambridge University Press,
Cambridge

64. Osborne MJ, Rubinstein A (1994) A course in game theory. The
MIT press, Cambridge

65. Piterman N (2007) From nondeterministic büchi and streett
automata to deterministic parity automata. Log Methods Comput
Sci. 3(3)

66. Pnueli A (1977) The temporal logic of programs. In: Proceedings
of the Eighteenth IEEE Symposium on the Foundations of
Computer Science, pp 46–57

67. Pnueli A, Rosner R (1989) On the synthesis of an asynchronous
reactive module. In: Proceedings of the Sixteenth International
Colloquium on Automata, Languages, and Programs

68. Rahwan T, Michalak T, Wooldridge M, Jennings NR (2012)
Anytime coalition structure generation in multi-agent systems
with positive or negative externalities. Artif Intell 186:95–122

69. Roth A, Ockenfels A (2002) Last-minute bidding and the rules for
ending second-price auctions: Evidence from eBay and Amazon
auctions on the internet. Am Econ Rev 92(4):1093–1103

70. Ruane LM (1990) Process synchronization in the UTS kernel.
Comput Syst 3(3):387–421

71. Ruys TC, Langerak R (1997) Validation of bosch’ mobile
communication network architecture with spin. In: Inproceedings
of SPIN97, the Third International Workshop on SPIN. University
of Twente

72. Shehory O, Kraus S (1998) Methods for task allocation via agent
coalition formation. Artif Intell 101(1):165–200

73. Shoham Y, Leyton-Brown K (2008) Multiagent systems algo-
rithmic, Game-Theoretic, and logical foundations. Cambridge
University Press, Cambridge

74. Sistla AP, Clarke EM (1985) The complexity of propositional
linear temporal logics. J ACM 32(3):733–749

75. Strejcek J (2004) Linear temporal logic: Expressiveness and
model checking. PhD thesis, PhD thesis, Faculty of Informatics
Masaryk University in Brno

76. Ummels M, Wojtczak D (2011) The Complexity of Nash
Equilibria in Limit-Average games. CoRR, arXiv:1109.6220

77. Uyanık M (2015) On the nonemptiness of the α-core of
discontinuous games: Transferable and nontransferable utilities. J
Econ Theory 158:213–231

78. van der Hoek W, Lomuscio A, Wooldridge M (2005) On the
complexity of practical ATL model checking. In: Proceedings of
the Fifth International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS-2006), Hakodate

79. Vardi MY (2001) Branching vs. linear time: Final showdown.
In: Margaria T, Yi W (eds) Proceedings of the 2001 Conference
on Tools and Algorithms for the Construction and Analysis of
Systems, TACAS 2001 (LNCS Volume 2031). Springer, Berlin,
pp 1–22

80. Vardi MY, Wolper P (1986) An automata-theoretic approach to
automatic program verification. In: First Symposium in Logic in
Computer Science (LICS)

81. Winskel G (1986) Event structures. In: Advances in Petri Nets
82. Wooldridge M (2009) An Introduction to Multiagent Systems, 2nd

edn. Wiley
83. Wooldridge M, Gutierrez J, Harrenstein P, Marchioni E, Perelli

G, Toumi A (2016) Rational verification: From model checking
to equilibrium checking. In: Schuurmans D, Wellman MP (eds)
Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence. AAAI Press, Phoenix, pp 4184–4191

84. Yi S-S (1997) Stable coalition structures with externalities. Games
Econ Behav 20(2):201–237

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

6583Rational verification: game-theoretic verification of multi-agent systems

https://doi.org/10.24963/ijcai.2019/47
http://arxiv.org/abs/1801.08099
https://doi.org/10.1145/2631917
http://arxiv.org/abs/1109.6220

Affiliations

Alessandro Abate1 · Julian Gutierrez2 · Lewis Hammond1 · Paul Harrenstein1 · Marta Kwiatkowska1 ·
Muhammad Najib3 · Giuseppe Perelli4 · Thomas Steeples1 · Michael Wooldridge1

Alessandro Abate
aabate@cs.ox.ac.uk

Julian Gutierrez
julian.gutierrez@monash.edu

Lewis Hammond
lewis.hammond@cs.ox.ac.uk

Paul Harrenstein
paul.harrenstein@cs.ox.ac.uk

Marta Kwiatkowska
marta@cs.ox.ac.uk

Muhammad Najib
najib@cs.uni-kl.de

Giuseppe Perelli
perelli@diag.uniroma1.it

Thomas Steeples
thomas.steeples@cs.ox.ac.uk

1 Department of Computer Science, University of Oxford, Oxford,
UK

2 Faculty of Information Technology, Monash University, Clayton,
Australia

3 Department of Computer Science, University of Kaiserslautern,
Kaiserslautern, Germany

4 Department of Computer, Control, and Management Engineering,
Sapienza University of Rome, Rome, Italy

6584 A. Abate et al.

http://orcid.org/0000-0002-9329-8410
mailto: aabate@cs.ox.ac.uk
mailto: julian.gutierrez@monash.edu
mailto: lewis.hammond@cs.ox.ac.uk
mailto: paul.harrenstein@cs.ox.ac.uk
mailto: marta@cs.ox.ac.uk
mailto: najib@cs.uni-kl.de
mailto: perelli@diag.uniroma1.it
mailto: thomas.steeples@cs.ox.ac.uk

	Rational verification: game-theoretic verification of multi-agent systems
	Abstract
	Introduction
	The research question

	Setting the scene
	Correctness and formal verification
	Model checking
	Multi-agent systems
	Correctness in multi-agent systems
	Rational verification and equilibrium checking

	Models for rational verification
	An abstract model
	Preferences
	Nash equilibrium
	Equilibrium checking

	Iterated boolean games
	Concurrent game structures
	Reactive module games
	Markov games

	Tools
	EVE: the equilibrum verification environment
	PRISM-games
	MCMAS

	Challenges
	Tackling complexity
	Alternative preference models
	Uncertain environments
	Cooperative solution concepts
	Rational verification of human-agent systems

	Conclusions
	References
	Affiliations

