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Abstract In this study yeast cell physiological

activity was assessed on the basis of the in situ activity

of two important enzymes, succinate dehydrogenase

and pyruvate decarboxylase. FUN1 dye bioconversion

and cellular ATP content were also taken as important

indicators of yeast cell activity. The study was

conducted on six brewing yeast strains, which were

either free cells or immobilized on a chamotte carrier.

The experimental data obtained indicate clearly that,

in most cases, the immobilized cells showed lower

enzyme activity than free cells from analogous

cultures. Pyruvate decarboxylase activity in immobi-

lized cells was higher than in planktonic cell popula-

tions only in the case of the Saccharomyces

pastorianus 680 strain. However, in a comparative

assessment of the fermentation process, conducted

with the use of free and immobilized cells, much more

favorable dynamics and carbon dioxide productivity

were observed in immobilized cells, especially in the

case of brewing lager yeast strains. This may explain

the higher total cell density per volume unit of the

fermented medium and the improved resistance of

immobilized cells to environmental changes.

Keywords Yeast immobilization � Chamotte �
SDH activity � PDC activity � In situ assay

Introduction

Current research on the application of immobilized

yeast cells in brewing technology has three main

focuses: the production of alcohol-free beer, and

conducting either main fermentation or green beer

maturation in continuous systems. Only a few of the

technologies proposed in the literature have resulted in

pilot-scale attempts or industrial implementation

(Verbelen et al. 2006; Willaert 2000; Brányik et al.

2012). One of the main difficulties is maintaining the

desired physiological state in immobilized microbial

cells. The outcome of a brewery fermentation depends

on wort composition, ambient technological condi-

tions as well as on variations in pitching yeast activity.

Therefore, for the end product quality, monitoring of

yeast physiological state is very essential.

The term ‘‘physiological activity’’ could describe

various important parameters: fermentation poten-

tial, stress tolerance, aging, growth or reproduction

abilities. The physiology of immobilized cells is

affected by the microenvironment and the supply of
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nutrients and metabolic products (internal and exter-

nal mass transfer) (Junter et al. 2002; Pajić-Lijakovic

et al. 2007; Gonga et al. 2010). Cellular stress at the

stage of immobilization may also have a significant

impact on the physiological state, and according to

Smart (2001) this physiological history may deter-

mine a cell’s efficiency during the technological

process. The general aim is to maintain the greatest

viability and metabolic activity of the cells, allowing

to the process to be carried out with high efficiency

for the longest time possible. Continuous system

technologies in beer production require immobilized

yeast cells to be kept for several months in bioreac-

tors. In the case of yeast plankton populations, over

time the linear dimensions of cells increase, there is a

longer generation time and their metabolic activity

decreases.

It has been shown that free and immobilized yeast

cells differ in chemical composition and ploidy

(Verbelen et al. 2006). Immobilized cells, in compar-

ison with free cells, have a higher content of glycogen,

trehalose, structural polysaccharides (glucans and

mannan), fatty acids and DNA. Immobilization also

causes changes in the proteome of a cell, in the level of

gene expression, and has a significant impact on the

quantitative composition and organization of the

cytoplasmic membrane and cell wall structures

(Brányik et al. 2008; Parascandola et al. 1997). Many

studies have reported an increase in metabolic activity

(increased rate of sugar uptake and productivity of

selected metabolites) in immobilized cells (Junter

et al. 2002; Norton and D’Amore 1994; Angelova

et al. 2000; Talebnia and Taherzadeh 2007; Plessas

et al. 2007; Li et al. 2007; Behera et al. 2011).

Adsorption of Saccharomyces carlsbergensis on

porous glass and S. cerevisiae on ceramic support

resulted in increased production of ethanol and

reduced production of CO2 (Kourkoutas et al. 2004).

In yeast entrapped in alginate matrices, a slight

decrease was noticed in intracellular pH due to

increased enzymatic activity. This promotes the

permeability of membranes, which in turn leads to

an increase in proton transport and ATP use, stimu-

lating glycolysis processes (Galazzo and Bailey 1990).

Higher efficiency in the pentose phosphate pathway

and of glycolytic flux may also be explained by the

increased activity of alcohol dehydrogenase and by

more efficient regeneration of the NADH and NADPH

cofactors Brányik et al. (2008).

Many changes have been made in the modern beer-

brewing process since the first recorded beer produc-

tion by mankind. However, despite all these changes,

one constant factor is the requirement for good quality

brewing yeast (Lodolo et al. 2008). Knowing the

physiological state of immobilized yeast cells is

important not only from a theoretical perspective. It

is important to verify the efficacy of cell-carrier

systems, as well as to monitor the continuous process.

The precise evaluation of yeast physiology is rather

difficult and sometimes problematic—the type of

information gathered depends on the kind of analytical

method applied. Therefore, monitoring of yeast phys-

iology should be multi-parametric.

Observation, analytics and diagnostics of biofilms

formed on abiotic surfaces are usually complicated,

and often expensive. Visualization of the spaces

colonized by the microorganisms and the architecture

of the three-dimensional structure formed is made

possible by such techniques as magnetic resonance

imaging, optical coherence tomography, confocal

laser scanning microscopy and fluorescence micros-

copy (Chandra et al. 2001; Nott et al. 2005; Xi et al.

2006). The coupling of fluorescent in situ hybridiza-

tion (FISH) and microautoradiography allows for the

consumption by the tested microorganisms of differ-

ent substrates to be determined precisely (Lee et al.

1999; Kindaichi et al. 2004). In the description of the

interactions between immobilized microorganisms

and their metabolic characteristics, the use of micro-

electrodes and a combination of FISH, mass spec-

troscopy and isotopic labeling techniques can be of

significant help (Jang et al. 2003; Majors et al. 2005).

Many techniques used in the evaluation of the

microbial physiology of immobilized cells require

their detachment (Uppuluri et al. 2006). Multiple cell

rinsing and centrifugation can have a significant

impact on the value of the parameter under evaluation

(Brányik et al. 2005). In the current study, we propose

determining succinate dehydrogenase (SDH) and

pyruvate decarboxylase (PDC) activity in situ in

immobilized cells with increased membrane perme-

ability. The aim of noninvasive analysis (in situ) is to

avoid disturbing the normal functioning of the cells

and so lowering their physiological activity. An

in situ enzyme activity assay based on chemical

changes in membrane permeability allowing migra-

tion of low molecular weight compounds (substrates,

products, cofactors), while the enzymes and other
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macromolecules are kept in constant concentrations

(Freire et al. 1998). The cytoplasmic membrane

forms a barrier with low permeability and enzyme

activity is determined in whole cells (Cordeiro and

Freire 1995; Kippert 1995; Bindu et al. 1998; Kondo

et al. 2008; Crotti et al. 2001; Gough et al. 2001;

Chelico and Khachatourians 2003; Berlowska et al.

2006, 2009; Miranda and Ferreira 2008).The advan-

tage is that enzyme activity is determined for a

specific physiological state of the cell. Using this type

of enzyme assay, cellular regulatory effects can be

observed and enzyme activities determined for cells

immobilized on solid supports.

We focused our research on the immobilization of

yeast brewery strains on chamotte ceramic carriers.

Our study is the continuation of previous research on

yeast adhesion to native and modified chamotte tablets

(Kregiel et al. 2012, Berlowska et al. 2013), which led

us to study chamotte modification as a way to enhance

yeast cell adhesion efficiency. Enhanced in this way

yeast immobilization and proper selected conditions

of this process give opportunity to conduct physio-

logical tests for adhered cells.

The aim of the present study was to determine the

effect of the immobilization process on brewing yeast

cell physiological activity. Multi-parameter physio-

logical activity evaluation was conducted for free and

immobilized yeast cells, which allowed the nature,

characteristics, fermentation abilities and technologi-

cal suitability of the tested strains to be described. The

basis of physiological activity assessment was the

activity assay in situ of two enzymes, SDH and PDC,

important yeast metabolic pathways (the Krebs cycle

and glycolysis respectively). PDC (EC 4.1.1.1) is an

important enzyme for yeast fermentation. Measuring

PDC activity allows the fermentation activity of

individual yeast strains to be monitored. On the other

hand, SDH (EC 1.3.5.1) is essential for the aerobic

utilization of carbon sources and plays a crucial role in

the supply of energy for the physiological activity of

yeast cells (Kregiel et al. 2013). Therefore, SDH and

PDC activity assays may be the important methods to

evaluate yeast activity and control different biotech-

nological processes. ATP content and fermentative

activity were also monitored.

This paper is the first to describe the physiological

activity of brewery yeasts immobilized on inexpen-

sive, porous chamotte covered by active organo-

silanes.

Materials and methods

Carriers

During the experiment, solid carriers were used made

from inexpensive chamotte material [mainly Al2O3

(36 %) with SiO2 (58 %) and Fe2O3 (2.6 %)]. The

ceramic chamotte tablets were prepared from water

and chamotte fire clay (50–1,000 lm) (Boleslawiec

Refractory Plant BZMO Ltd., Poland) in the ratio 1:2.

Chamotte carriers were made in our laboratory by

firing chamotte fire clay at a temperature of 1,100 �C.

The height and diameter of the chamotte tablets were 5

and 15 mm, respectively.

The carriers were modified in the Centre of

Molecular and Macromolecular Studies of the Polish

Academy of Science. The chamotte tablets were

immersed in 10 % H3PO4, left for 2 h and then

washed and dried at room temperature. The dry tablets

were placed in 10 % 3-(N,N-dimethyl-N-2-hydroxy-

ethyl) ammonium propyldimethoxysilane or (3-glyci-

doxy propyl) trimethoxysilane chloride isopropanol

solution. The flask was repeatedly connected and

disconnected from the vacuum pump to remove the air

from and draw the silane solution into the pores. The

prepared media were pre-dried to evaporate the

isopropanol and then incubated at 80 �C for 12 h.

For the (3-glycidoxy propyl) trimethoxysilane modi-

fication, dry carriers were laid on a Buchner funnel so

as to form a single layer and their location was

changed periodically (by turning them upside down).

Under a funnel, 200 mL of 25 % ammonia-water was

heated and stirred for 2 h. Free ammonia caused the

collapse of the epoxide ring on the surface and creation

of 3-(3-amino-2-hydroxy-1-propoxy) propyldimeth-

oxysilane groups.

Yeast strains

In our research, to assess physiological state of

immobilized brewery yeasts, the six various top and

bottom-fermenting Saccharomyces stains were used

(Table 1.) These strains were selected according to

their adhesion properties in the previous studies

(Kregiel et al. 2012; Berlowska et al. 2013).

The yeast strains were stored on wort agar slants

(Merck) at room temperature. Directly prior to the

experiment, they were activated by placing them on

fresh agar slants and incubated at 30 �C for 48 h.
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Culture conditions

The yeasts were propagated in liquid wort broth

(Merck). The cultivation was carried out in a 500 mL

round bottom flask filled with 50 mL of medium with

1 % v/v yeast suspension added. It was performed

using the shaking flask method (220 rpm) at a

temperature of 30 �C.

For the purpose of the experiment, starved cultures

were also required. These were prepared from station-

ary phase cultures which were rinsed twice with

Ringer’s solution (Merck) and resuspended in the

same solution.

Fermentations

To assess fermentation performance on a small

laboratory scale, for consistent and reproducible

procedures the simple, well defined glucose-based

medium was used. Static fermentations were con-

ducted in 50 mL medium ([(NH4)2�SO4 3 g/L;

KH2PO4 1 g/L; MgSO4�7H2O 0.5 g/L; yeast extract

(Difco) 0.5 g/L; CaCO3 3 g/L] with 12 % glucose)

sealed with a fermentation lock containing paraffin oil.

The fermentations, carried out both for adhered and

free yeast cells, were conducted over 7 days at the

appropriate temperature (top fermenting yeast 20 �C,

bottom fermenting yeast 10 �C).

Yeast cell immobilization

Only the high efficiency of immobilization let us to

evaluate physiological state of adhered yeast cells.

Therefore, the parameters of adhesion process have

been optimized for each strain on the base of previous

studies results. Both character of chemical surface

modifications and immobilization medium were taken

into consideration (Kregiel et al. 2012; Berlowska

et al. 2013). The yeast cells were harvested when they

reached the appropriate phase of growth or physio-

logical state, at which point they were standardized. In

50-mL sterile Erlenmeyer flasks, 5 mL of cells and

medium suspensions with a density of 5 9 107 cells/mL

were prepared. For dilutions, sterile basic cultivation

(wort broth) medium or Ringer solution was used

(Table 1). Next, sterile carriers were introduced into

each of the previously prepared suspensions and incu-

bated at 30 �C with agitation (75 rpm) for 24 h.

Determination of the number of immobilized yeast

cells

After the adhesion process, five pieces of chamotte

tablet were selected from each experimental sample.

The tablets were suspended in 5 mL of 5 % H2SO4.

Then, tubes filled with tablets suspended in appropri-

ate solutions were boiled for 2 min. and vortexed for

15 min, after which the carriers were removed. The

remaining solution was analysed for the number of

microorganisms. The density of the yeast suspensions

was determined using the fluorimetric method based

on DAPI staining (Kregiel et al. 2012).

Succinate dehydrogenase (SDH) activity

The in situ assay measured SDH activity in whole

cells. After pre-incubation with digitonin, a perme-

abilization agent blue tetrazolium salt (BT), in the

presence of phenazine methosulfate and sodium azide,

was reduced intracellularly to colored formazan

crystals. The amount of the formed formazan was

determined spectrophotometrically after DMSO

extraction (Kręgiel et al. 2008). Free cells were

measured in standardized suspensions (3 9 108

Table 1 Applied biological

material and immobilization

methods

Strain Type Collection Immobilization

medium

S. pastorianus W 34/70 Lager Hafebank Weihenstephan

(DE)

Ringer’s solution

S. pastorianus 680 National Collection of

Yeast Cultures (GB)

Wort broth

S. pastorianus B4 Collection LOCK105 (PL) Wort broth

S. cerevisae TT Ale Ringer’s solution

S. cerevisae 1017 National Collection of

Yeast Cultures (GB)

Wort broth

S. cerevisae 1183 Ringer’s solution
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cells/mL). In the case of the immobilized yeasts, 6

chamotte carriers with adhered cells were used (no

centrifugation for cells separation was required).

Knowing the number of immobilized yeast cells, the

SDH activity values were recalculated appropriately.

ATP content

Intracellular ATP content was determined in relative

light units (RLU) on the basis of the luciferin/

luciferase method using a Hy-Lite2 luminometer

(Merck) (41). The measurement of free cells was

conducted in standardized suspensions (1 9 104 cells/mL).

Tablets with immobilized cells were washed with

sterile distilled water, and 1 mL of Somatic Cell ATP

Releasing Reagent (SIGMA-ALDRICH) was added to

each carrier. After 5 min, the solution with released

ATP was diluted to an equivalent concentration of

1 9 104 cells/mL (having determined the number of

immobilized yeast cells) and analyzed. The readings in

RLU were calculated on the basis of the standard curve

and expressed in fg/dm3 of ATP.

Pyruvate decarboxylase (PDC) activity

PDC activity was measured in situ in whole cells with

digitonin permeabilized membranes. Sodium pyruvate

(0.05 M) solution was used as a reaction substrate. The

acetaldehyde formed was detected using the GC

technique with a Headspace Autosampler (Berlowska

et al. 2009). Measurements of the free cells were con-

ducted in standardized suspensions (2 9 108 cells/mL)

and in the case of immobilized cells using four carriers

(no centrifugation for cell separation was required).

Once the number of immobilized yeast cells had been

determined, the PDC activity values obtained were

recalculated appropriately.

Fermentation activity

The fermentation activity of yeast populations was

evaluated by a quantitative determination of the

carbon dioxide production in grams per 100 mL of

fermentative medium.

FUN1 staining

Tablets with immobilized cells were rinsed with

distilled water to wash out the medium that remained

on the surface. To stain the cells with FUN1 they were

first soaked in a solution of 2 % glucose in 10 mM Na-

HEPES. Then, 200 lL of 0.1 lg/mL FUN1 was

poured onto the surface of each tablet. After 5 min

incubation at 30 �C, the tablets were left to dry and

then examined under a fluorescence microscope

OLYMPUS BX 41 equipped with the appropriate

filter (excitation wavelength 470–490 nm).

Statistical method

Each experiment was performed in triplicate and each

datum was the arithmetic mean (a.m.) of three

measurements. The standard deviations (SD) were

calculated and the results given as am ± SD.

Results and discussion

Yeast immobilization

For the purposes of the present study, six brewing

yeast strains were immobilized on chamotte carriers

with chemically modified surfaces (Fig. 1a). The

number of cells per carrier was assayed fluorometri-

cally using DAPI. This cationic dye specifically binds

to DNA in places rich in adenine–thymine pairs. It is

also accumulated in small grooves of the DNA double

helix (Barker and Smart 1996). According to the

authors’ own research, the amount of emitted light,

measured spectrofluorimetrically, is proportional to

the number of stained, heat denatured, yeast cells. The

effectiveness of the adhesion processes ranged from

2.6 to 4.0 9 107 cells per cm2. The spatial distribution

of immobilized microorganisms was imaged using a

scanning electron microscope HITACHI S-3000N

(Fig. 1b).

SDH activity

Evaluating the activities of dehydrogenases is used

more and more commonly as a method of determining

the physiological state of microbial cells. Water-

soluble, colorless tetrazolium salts are reduced to color

formazans by dehydrogenases coupled with the elec-

tron transport system. SDH (EC 1.3.99.1), integrally

connected to the inner mitochondrial membrane,

catalyzes the dehydrogenation of succinate to fuma-

rate. Cells that reduce tetrazolium dyes are treated as
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alive, and while those that do not reduce these salts

cannot unambiguously be considered dead, they have

lost their respiratory function (Breeuwer and Abee

2000; De Nooijer et al. 2005).

The highest relative SDH activity of immobilized

cells was estimated for S. pastorianus W 34/70, and S.

cerevisiae 1017. Higher enzyme activity after cell

adhesion in comparison to the cells from young free

aerobic cultures was observed only in the case of S.

pastorianus W 34/70. For the remaining five micro-

organisms, a significant decrease in SDH activity was

associated with cell adsorption on solid surfaces.

These proportions were changed during the 7-day

incubation period in the medium in which the process

of immobilization was carried out. Aging of immobi-

lized microorganisms suspended in wort broth resulted

in higher levels of enzyme activity than in the case of

free cells (Table 2).

Similar phenomena were described by Tsukatani

et al. (2003) in studies of yeast vitality conducted with

WST-1 tetrazolium salt. The amount of formazan

reached its maximum value in the stationary phase of

growth and fell to a quarter on the sixth day of the

culture.

For the immobilized microorganisms suspended in

Ringer’s solution, lower or similar activity was

observed than in the case of free cells (Table 2).

These differences can be explained by the stronger

nutrient deficit. For the same reasons, within this

group of strains, a decrease in SDH was observed after

7 days with regard to the values noted after adhesion.

The activity determined after a 7-day aerobic incuba-

tion of S. pastorianus 680 and B4 was higher than it

was at the beginning of the process. This fact may be

associated with the specific growth and aging patterns

of brewing lager yeast strains.

ATP content

It is well known that with the abandonment of

adenosine triphosphate synthesis, the existing ATP

rapidly degrades. This feature makes ATP a good

marker of cell physiological activity (Imai and Ohno

1995; Sato et al. 2008; Guillou et al. 2003; Osorio et al.

2004). For the purpose of this study, a common

method based on the luciferin/luciferase system was

also adopted. This widely used procedure of ATP

determination in solutions or cell suspensions was

modified to measure the level of this nucleotide in

yeast cells immobilized on solid supports through the

use of a ‘somatic cell ATP-releasing reagent’.

For all the tested strains, similar relationships were

observed between the ATP content of the free and

immobilized cells. However, a substantial decrease in

ATP concentration throughout the adhesion process,

and after longer incubation under aerobic conditions,

was noted.

It is worth of noting that ATP values determined

from the free cells in the stationary phase were even

several times greater than for those from the immo-

bilized cells (Table 3).

At the cellular level, ATP depletion is the earliest

cell-damaging factor. In vivo, severe depletion of ATP

leads to dysfunction, destabilization, and aggregation

of many cellular proteins, including enzymes (Kaba-

kov et al. 2002). Sustained lack of ATP is obviously

lethal for the cell. On the contrary, a transient

(reversible) drop in cellular ATP confers tolerance to

the next energy-depriving exposure. Therefore, we can

Fig. 1 Chamotte surface: a native, b with immobilized cells
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assume that very low ATP level in yeast cells after

immobilization may be a result of cell adaptation

mechanisms to different environmental conditions.

PDC activity and fermentation activity

Pyruvate decarboxylase (EC 4.1.1.1) is one of the key

enzymes in anaerobic yeast metabolism, so determin-

ing its activity allows one to describe the physiological

state of cells and their fermentation abilities. It is a

homotetrameric enzyme (EC 4.1.1.1) that catalyses

the decarboxylation of pyruvic acid into acetaldehyde

and carbon dioxide in the cytoplasm (Pronk et al.

1996). PDC activity was determined in cells cultured

under aerobic and oxygen-limited conditions. Specific

competition occurring between PDC and pyruvate

dehydrogenase complexes explains the simultaneous

coexistence of two metabolic pathways (glycolysis

and the Krebs cycle) and aerobic alcoholic fermenta-

tion (Van Hoek et al. 1998; Flikweert et al. 1999).

The highest PDC activity of immobilized cells incu-

bated under aerobic conditions was observed in the

S. pastorianus B4 strain. Slightly lower values were

recorded for S. cerevisiae 1017 and S. pastorianus

W 34/70. Except for S. pastorianus B4, the activity of

the newly immobilized microorganisms was reduced

considerably. In four out of the six examined strains

(excluding S. cerevisiae 1017 and 1183), there was a

further decrease in PDC activity after a 7-day incu-

bation period. Nevertheless, comparing these values to

the activity of 7-day populations of free cells, higher or

comparable activity was observed in the cases of all

Table 2 SDH activity of free

and immobilized yeast cells
Strain SDH activity (amount of lmol of formazan/3 9 108 cells)

Cells from

stationary phase

Cells after

adhesion

Free cells

after 7-day

incubation

Immobilized

cells after 7-day

incubation

(A) Adhesion in wort broth

S. cerevisiae 1017 0.81 (±0.09) 0.15 (±0.02) 0.03 (±0.01) 0.08 (±0.01)

S. pastorianus 680 0.82 (±0.08) 0.02 (±0.00) 0.03 (±0.01) 0.08 (±0.01)

S. pastorianus B4 0.04 (±0.01) 0.02 (±0.00) 0.03 (±0.01) 0.05 (±0.01)

(B) Adhesion in Ringer’s solution

S. cerevisiae TT 0.13 (±0.02) 0.04 (±0.01) 0.04 (±0.01) 0.03 (±0.01)

S. cerevisiae 1183 0.33 (±0.05) 0.07 (±0.02) 0.06 (±0.01) 0.03 (±0.01)

S. pastorianus W 34/70 0.24 (±0.02) 0.28 (±0.03) 0.04 (±0.01) 0.03 (±0.01)

Table 3 ATP concentration in

free and immobilized yeast

cells

Strain ATP (fg/cell)

Cells from

stationary

phase

Cells after

adhesion

Free cells

after 7-day

incubation

Immobilized

cells after 7-day

incubation

(A) Adhesion in wort broth

S. cerevisiae 1017 168.89 (±2.75) 13.44 (±1.14) 21.81 (±2.22) 0.00 (±0.00)

S. pastorianus 680 24.18 (±0.21) 7.86 (±0.68) 0.00 (±0.00) 0.00 (±0.00)

S. pastorianus B4 49.22 (±3.98) 8.94 (±0.97) 2.75 (±0.33) 0.00 (±0.00)

(B) Adhesion in Ringer’s solution

S. cerevisiae TT 58.27 (±5.21) 9.19 (±1.09) 1.57 (±0.22) 0.00 (±0.00)

S. cerevisiae 1183 51.97 (±4.43) 6.34 (±0.77) 3.98 (±0.51) 0.00 (±0.00)

S. pastorianus W 34/70 32.91 (±2.89) 3.99 (±0.45) 11.36 (±1.15) 0.00 (±0.00)
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immobilized cell strains adhered in wort broth and of

the S. pastorianus W 34/70 strain (Table 4).

The conditions of 7-day aerobic shaking cultures,

associated with oxidative stress and cell aging, caused

a decrease in the enzyme activity and ATP content to

almost trace values. The smallest reduction in meta-

bolic activity was observed for the top fermenting

yeast. The foam that can be observed forming on the

surface of the fermented broth with greater oxygen-

ation can therefore be associated with a higher

resistance to oxidative stress factors.

Directly after adhesion, the carriers with immobi-

lized cells were transferred to the fermentation

medium. In parallel experiments conducted with free

cells, changes in the composition of the medium and

oxygen limitation caused a reduction in PDC activity

Table 4 PDC activity of free

and immobilized yeast cells—

aerobic cultivation

Strain PDC activity (amount of lmol of acetaldehyde/1 9 108 cells)

Cells from

stationary

phase

Cells after

adhesion

Free cells

after 7-day

incubation

Immobilized

cells after 7-day

incubation

(A) Adhesion in wort broth

S. cerevisiae 1017 4.50 (±0.39) 0.15 (±0.02) 0.53 (±0.04) 0.59 (±0.07)

S. pastorianus 680 1.60 (±0.09) 0.29 (±0.03) 0.04 (±0.01) 0.06 (±0.01)

S. pastorianus B4 4.06 (±0.51) 1.54 (±0.01) 0.02 (±0.00) 1.18 (±0.12)

(B) Adhesion in Ringer’s solution

S. cerevisiae TT 2.63 (±0.25) 0.04 (±0.01) 2.78 (±0.03) 0.04 (±0.01)

S. cerevisiae 1183 2.58 (±0.35) 0.01 (±0.00) 0.87 (±0.09) 0.23 (±0.03)

S. pastorianus W 34/70 4.72 (±0.55) 0.38 (±0.04) 0.00 (±0.00) 0.29 (±0.02)

Fig. 2 PDC activity of free and immobilized yeast cells—fermentation process. a Lager strains, b ale strains
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(Fig. 2). On the other hand, we observed increased

enzyme activity in the case of immobilized cells. The

immobilization techniques also had no influence on

the fermentation process. These phenomena can be

explained by the increased stability and resistance to

environmental changes of the immobilized yeast

strains.

As in the previous tests, the PDC activity of

immobilized microorganisms was lower in the case of

most strains compared to the activity of planktonic

populations. The exception was the immobilized cells

of the S. pastorianus 680 strain, whose PDC activity

was several times higher than in a free state. There is

no known reason for this, but it could be due to an

individual characteristic of the strain.

During the fermentation processes, the production of

carbon dioxide was also measured. Changes in its

values were similar for all S. cerevisiae strains (Fig. 2).

Different fermentation dynamics were observed in the

case of brewing lager yeast strains (Fig. 2a). These

results suggest that high concentrations of immobilized

cells per volume unit and their resistance to stress

factors, including low temperature, could be responsi-

ble for a significant reduction in the adaptive phase and

faster attenuation. Fermentation trials with immobilized

cells showed that the immobilized yeasts adapted to the

specific conditions. Despite the relatively low PDC

activity of immobilized cells, the final fermentation

effect, measured as the amount of CO2 produced, was

achieved in a shorter time. Numerous examples of

reduced fermentation times achieved both in continu-

ous technologies using yeast cells adsorbed on inor-

ganic carriers and in batch processes carried out with

cells immobilized on natural supports have also been

cited by Kourkoutas et al. (2004).

FUN1 staining

The metabolic activity (defined as the ability to

fluorochrome bioconversion) of yeast strains was

made visible using FUN1 stain. An enzyme activity

assay and ATP determination of immobilized cells

were conducted using more than one carrier. So the

average value characterized the whole population. A

large number of yeast cells with low enzyme activity

were capable of bioconverting FUN1. Therefore,

fluorescence staining revealed the diversity of meta-

bolic activity in immobilized yeast cells (Fig. 3). This

fact suggests an absence of physiological homogeneity

in these populations.

Physiology of immobilized yeast cells

Immobilization is ranked as one of the factors

protecting yeast cells from adverse environmental

effects (Junter et al. 2002; Norton et al. 1995; Kanda

et al. 1998; Jirku 1999; Qun et al. 2002). In fermen-

tations carried out with immobilized yeast cells,

chemical changes in cellular composition were asso-

ciated with an increased resistance to stress—espe-

cially to high concentrations of ethanol, and to the high

gravity of the fermented wort (Verbelen et al. 2006;

Brányik et al. 2008; Kourkoutas et al. 2004). Yeast

cells immobilized in different polymer matrices were

characterized by increased stability during freezing

and freeze-drying. Osmotic stress also caused the

production of polyols, and consequently an increase in

resistance to toxic substances (Kourkoutas et al. 2004).

In our research, osmotic stress (after a change of

wort broth or Ringer’s solution for the fermentation

medium) and limited oxygen conditions did not cause

Fig. 3 FUN 1 staining. a Stationary phase, b after adhesion, c 7-day fermentation
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a deterioration of metabolic activity in the immobi-

lized yeast cells tested.

The differences in the activity of key enzymes

assayed on free and immobilized cells in the seventh

day of aerobic culture provide evidence of different

aging processes. Comparing the age that brewer’s

yeast reaches in traditional technologies with several

months of continuous processes, the changes in the

physiology of immobilized cells seem to be signifi-

cant. A decrease in the viability and physiological

activity of immobilized industrial yeast cells was also

reported during the technological process (Calinescu

et al. 2012). Both the aging of immobilized microor-

ganisms and its impact on the quality of the resulting

product are still unsolved issues (Brányik et al. 2005).

Metabolic changes caused by the immobilization

process have been reported by many authors. An

example is the increase in the amount of diacetyl in

young beer obtained using immobilized yeast cells.

This may be due to the inhibition of biosynthesis of

certain amino acids, and to increased expression of

acetohydroxyacid synthase, which is responsible for

the conversion of pyruvic acid into its a-acetolactate

diketones precursor (Brányik et al. 2008). Such

changes are often associated with barriers to the mass

transport of substrate and product, occurring in cases

of encapsulation or entrapment. However, immobili-

zation methods based on adhesion to solid surfaces

have been described as less invasive in relation to the

metabolic activity of immobilized microorganisms

(Verbelen et al. 2006; Willaert 2000; Brányik et al.

2005,2008). For S. cerevisiae cells immobilized on

DEAE-cellulose, used in the production of non-

alcoholic beer, higher activity (in relation to free

cells) of two glycolytic enzymes (hexokinase and

PDC), was estimated (Van Iersel et al. 2000).

Many research studies have indicated an increase in

the metabolic activity of immobilized cells that is

manifested both by an increased rate of substrate use

and by higher productivity of selected metabolites

(Norton and D’Amore 1994; Angelova et al. 2000;

Talebnia and Taherzadeh 2007; Nikoli et al. 2010;

Bouallagui et al. 2013). In view of the volume of

literature and data describing higher glucose flux

(Junter et al. 2002; Plessas et al. 2007; Brányik et al.

2005) we would expect higher PDC activity in

microorganisms immobilized than in suspended cells.

In our study, we found higher PDC activity values only

for S. pastorianus 680 during the fermentation with

immobilized cells in comparison with free cells treated

using the same process. However, in most cases, the

experiments show that the immobilized microorgan-

isms tested are characterized by a decrease in enzyme

activity and ATP content. On the reduced metabolic

activity of immobilized brewing yeast cells see also

Masschelein et al. (1994).

The data obtained is very variable because it

describes different type of yeasts. However, the our

research complements not fully understood processes.

The obtained results show that the activity of the

immobilized cells may depend on the type, age or

behavior of tested yeasts. Therefore, our study seems

to be a valuable material for further studies on the area

of physiology of immobilized yeasts.

Conclusions

The reduced metabolic activity of immobilized yeast

cells does not preclude benefits to their technological

applications. A suitably large density of yeast cells per

unit volume, possible only in immobilized cell systems,

and a very short attenuation time (due to their resistance

to environmental changes) produce a more efficient

fermentation process. Several theories have been

proposed to explain the enhanced fermentation capacity

as a result of immobilization. Adhesion has a major

influence on the plasma membrane properties of the

yeast, which can cause modifications of some solute

transport systems. The enhanced fermentation proper-

ties of immobilized cell systems could also be

explained by the CO2 nucleation effect of the matrix

(Verbelen et al. 2006). Moreover, a reduction in the

ethanol concentration in the immediate microenviron-

ment of the organism due to the specific adsorption of

ethanol by the support may act to minimize end product

inhibition. The greater volumetric productivity can be

also a result of higher cell density in immobilized

systems (Ivanova et al. 2011). However, our interesting

results require a clear explanation in future studies.
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