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Abstract
We show that deciding the feasibility of a booking (FB) in the European entry-exit gas market
is coNP-hard if a nonlinear potential-based flow model is used. The feasibility of a booking
can be characterized by polynomially many load flow scenarios with maximum potential-
difference,which are computed by solving nonlinear potential-based flowmodels.Weuse this
existing characterization of the literature to prove that FB is coNP-hard by reducing Partition
to the infeasibility of a booking. We further prove that computing a potential-difference
maximizing load flow scenario is NP-hard even if we can determine the flow direction a
priori. From the literature, it is known that FB can be decided in polynomial time on trees
and a single cycle. Thus, our hardness result draws the first line that separates the easy from
the hard variants of FB and finally answers that FB is hard in general.

Keywords Potential-based flows · Gas networks · Computational complexity · European
entry-exit market · Bookings

Mathematics Subject Classification 90B10 · 90C30 · 90C35 · 90C60 · 90C90

1 Introduction

The entry-exitmarket systemhas been introduced for the European gasmarket as the outcome
of the European gas market liberalization (Directive, 1998, 2003, 2009). One of the main
goals of the entry-exit system is to decouple the trade and transport of gas. To this end,
the current market system is split into different stages, which are formally described in
Grimm et al. (2019) by a multilevel model of the European entry-exit gas market. In these
stages, the transmission system operator (TSO) and the gas traders interact with each other
via so-called bookings and nominations. A booking is a mid- to long-term capacity-right
contract between the gas traders and the TSO in which the gas traders buy capacity rights
for the maximum injection or withdrawal quantity of gas at entry and exit nodes of the
network. On a day-ahead basis, the traders nominate the quantity of gas for an injection,
respectively withdrawal, on the next day such that the nominated quantity of gas stays within
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the booked capacities and the total injection and withdrawal quantities are balanced. By
signing the booking contracts, the TSO is obliged to guarantee the feasibility of transport of
the nominated amounts of gas through the network. Since the gas traders can nominate any
booking-compliant nomination, i.e., any balanced quantities of injections and withdrawals
up to the booked-capacities, the TSO has to guarantee the feasibility of transport for every
booking-compliant nomination. Hence, the TSO has to generally verify the feasibility of
infinitely many booking-compliant nominations before the TSO signs a booking. On the one
hand, this property of the entry-exit market system decouples trade and transport. On the
other hand, it leads to many new challenges, e.g., deciding the feasibility of a booking or
the computation of bookable capacities, so-called technical capacities; see Fügenschuh et al.
(2013), Labbé et al. (2019), Martin et al. (2011), Schewe et al. (2020).

In this work, we focus on deciding the feasibility of a booking in general graphs. To this
end, we consider passive networks without active elements, i.e., no controllable elements
such as valves or compressors are present in the network. We further focus on stationary
models of gas transport with nonlinear potential-based flows; see, e.g., Gross et al. (2019),
Labbé et al. (2019), Schewe et al. (2019). Here, nonlinear potential-based flows means that
the potential function is nonlinear. We note that potential-based flows significantly differ
from the frequently used linear network flows with arc capacities. The latter flows consist of
flow conservation and capacities on the flow through an arc. However, linear flows with arc
capacities neglect pressure levels. Thus, the corresponding flows are not pressure-driven. In
the following, we refer to linear flows with arc capacities as capacitated linear flows.

One of the main differences between the physically more accurate potential-based flows
and the capacitated linear flows is that in a passive potential-based flowmodel, no cyclic flows
are possible, which is not necessarily the case for capacitated linear flows. This structural
property of potential-based flows can be algorithmically exploited; see e.g., Habeck and
Pfetsch (2021). However, the link between node potentials and arc flows is usually given by
nonlinear constraints. Consequently, potential-based flows generally lead to a harder class
of optimization problems compared to capacitated linear flows. We note that potential-based
flows are also used to model hydrogen, water, or power distribution networks; see Gross et
al. (2019), Robinius et al. (2019).

Many optimization methods for the transport of gas in pipeline networks have been
researched in the recent years, e.g., see the book Koch et al. (2015) and the survey arti-
cle Ríos-Mercado and Borraz-Sánchez (2015) for a comprehensive overview. In doing so,
the research mainly focuses on cost-optimal transport, respectively feasible transport, of a
single nomination, respectively load flow scenario. The gas flow in pipelines follows physical
laws, which lead to challenging mathematical optimization models. Thus, in the literature,
approximations considering different classes of optimization models are used. Based on the
descriptions in Labbé et al. (2019), Schewe et al. (2020), Labbé et al. (2021), we now state
some examples for these approximations. In DeWolf and Smeers (2000), the gas physics are
approximated by piecewise linear functions and the authors analyze the cost-optimal trans-
port in the Belgian network before the European market liberalization. In Bakhouya and De
Wolf (2007), the cost-optimal transport in the Belgian network is again analyzed considering
the different market situation due to the progressed market liberalization. A combination
of piecewise linearizations together with sequential quadratic programming is applied in
Domschke et al. (2011). Furthermore, in many works piecewise linear relaxations are con-
sidered for approximating the gas transport, e.g., see Geißler (2011), Geißler et al. (2013,
2015, 2018). Approaches based on continuous nonlinear optimization methods, respectively
complementarity-constraint modeling, are used in, e.g., Rose et al. (2016), Baumrucker and
Biegler (2010), Schmidt et al. (2015a, b, c), Schmidt et al. (2016). Even more sophisticated
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and challenging nonlinear mixed-integer models are studied, e.g., in Geißler et al. (2015,
2018), Humpola (2017). For details on optimization w.r.t. partial differential equations and
optimal control of gas networks, we refer to the survey Hante et al. (2017) and the references
therein.

Regarding the complexity, deciding the feasibility of a nomination for capacitated linear
flows as well as for potential-based flows with linear potential functions is in P since both
problems can be decided by solving linear programs; see e.g., Labbé et al. (2019), Schewe et
al. (2019). In the following, we refer to potential-based flows with linear potential functions
as linear potential-based flows. If active elements such as valves are present in the network,
then deciding the feasibility of a nomination is NP-hard for the potential-based flow model;
see Szabó (2012).

The literature on bookings, especially on deciding the feasibility of a booking, is rather
small in comparison with the research on nominations. Following the literature review in
Schewe et al. (2020), we now briefly summarize the literature on bookings. We note that
deciding the feasibility of a booking can be seen as a specific two-stage or adjustable robust
feasibility problem, see e.g., Ben-Tal and El Ghaoui (2009), Gorissen et al. (2015), since a
feasible booking requires the feasibility of all, generally infinitely many, nominations within
the given booking bounds. One of the first results about the mathematical properties of book-
ings are givenwithin the PhD thesesHayn (2016),Willert (2014). Further structural properties
such as (non-)convexity of the set of feasible nominations and bookings are shown in Schewe
et al. (2019). We note that the reservation-allocation problem considered in Fügenschuh et al.
(2014) is similar to the feasibility of a booking.Moreover, the authors of Aßmann et al. (2018)
develop approaches to decide robust feasibility and infeasibility of specific two-stage robust
optimization problems using techniques of polynomial optimization. These approaches can
also be used to decide the feasibility of a booking in pipe-only networks. In case of capaci-
tated linear flows, deciding the feasibility of a booking is coNP-complete in general networks,
but can be decided in polynomial time in tree-shaped networks; see Hayn (2016). For the
more accurate potential-based flows in pipe-only networks, the feasibility of a booking can
be characterized by polynomially many nominations with maximum potential-difference;
see Labbé et al. (2019). Using this characterization, the authors of Labbé et al. (2019) show
that for linear potential-based flows deciding the feasibility of a booking is in P for gen-
eral graphs. Additionally, they also prove that this holds for nonlinear potential-based flows
in tree-shaped networks; see Labbé et al. (2019). We note that the latter also follows from
Robinius et al. (2019) under additional assumptions on the potential bounds. Moreover, the
authors of Labbé et al. (2021) extend these results by proving that deciding the feasibility of a
booking in a single cycle is in P. In doing so, again special structures of the nominations with
maximum potential-difference are exploited. In this paper, we finally answer that deciding
the feasibility of a booking is coNP-hard in general graphs. Thus, we draw the first line that
separates the easy from the hard variants of deciding the feasibility of a booking.

We finally refer to the topic of computing maximal feasible bookings, which are called
technical capacities. These technical capacities are introduced in Martin et al. (2011) and
first results are obtained in Hayn (2016), Willert (2014). They can also be seen as a more
sophisticated application of the radius of robust feasibility, e.g., see Goberna et al. (2014),
Chuong and Jeyakumar (2017), Liers et al. (2021). Regarding the complexity exponential
upper bounds for computing technical capacities w.r.t. capacitated linear flows are given in
Hayn (2016). An extensive complexity analysis is provided in the recent work Schewe et al.
(2020). The authors prove that computing technical capacities, i.e., maximizing over the set
of feasible bookings, isNP-hard for capacitated linear, linear-, and nonlinear-potential based
flows even on trees.
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Our contribution is the following. We prove that deciding the feasibility of a booking
considering a nonlinear potential-based flowmodel is coNP-hard in general graphs. The proof
is obtained by reducing Partition to the infeasibility of a booking. It is the first hardness result
for deciding the feasibility of a booking w.r.t. potential-based flows since the latter is in P for
linear potential-based flows in general graphs and for nonlinear potential-based flows in trees
and a single-cycle network. We further prove that computing a nomination with maximum
potential-difference is NP-hard even if we can determine the flow direction a priori. We
summarize our contribution w.r.t. bookings together with a review of the results from the
literature in Fig. 1, which is an adapted and extended version of Fig. 3 in Sect. 6 of Labbé et
al. (2019).

The remainder of this paper is structured as follows. In Sect. 2, we formally introduce
the problem of deciding the feasibility of a booking. Notations and first results, which are
necessary for the hardness proof, are stated in Sect. 3. Afterward, in Sect. 4 the coNP-hardness
of deciding the feasibility of a booking considering a nonlinear potential-based flow model
is shown. Finally, we close with a conclusion in Sect. 5.

2 Problem description

The problem description closely follows the one in Labbé et al. (2021). We represent a gas
network by a weakly connected and directed graph G = (V , A) with node set V and arc
set A. The set of nodes is partitioned into the set V+ of entry nodes, at which gas is injected,
the set V− of exit nodes, where gas is withdrawn, and the set V0 of the remaining inner nodes.
These node types are equipped with a vector σ∈ RV given by

σu =

⎧
⎪⎨

⎪⎩

1, if u ∈ V+,

−1, if u ∈ V−,

0, if u ∈ V0.

In this paper, only passive networks, i.e., without active elements such as control valves or
compressors, are considered. In the following, we introduce notations and definitions which
are taken from Schewe et al. (2019), Labbé et al. (2021) and follow the corresponding
descriptions therein.

Definition 2.1 A load flow is a vector � ∈ RV≥0, with �u = 0 for all u ∈ V0. The set of load
flow vectors is denoted by L .

A load flow represents an actual situation of the demand in the network at a single point in time
by specifying the amount of gas �u that is injected at u ∈ V+ or withdrawn at u ∈ V−. Since
we only consider stationary flows, we need to impose that the total injection and withdrawal
quantities are balanced, which leads to the definition of a nomination.

Definition 2.2 A nomination is a balanced load flow �, i.e., σ�� = 0. The set of nominations
is given by

N :=
{
� ∈ L : σ�� = 0

}
.

Definition 2.3 A booking is a vector b ∈ RV≥0, with bu = 0 for all u ∈ V0.

Fromamathematical perspective, loadflows and bookings are the same. Further, nominations
and bookings are linked as described in the following definition.
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Fig. 1 Overview of known complexity results for deciding the feasibility of a booking. The figure is an adapted
and extended version of the one in Sect. 6 of Labbé et al. (2019). We note that for the case of no flow bounds,
respectively no potential bounds, it is not hard to observe that every booking is feasible. Thus, we do not
explicitly cite this result

Definition 2.4 A nomination � is called booking-compliant w.r.t. the booking b if � ≤ b
holds, where “≤” is meant component-wise. The set of booking-compliant (or b-compliant)
nominations is given by

N (b) := {� ∈ N : � ≤ b} .

As in Labbé et al. (2021), we now introduce the notion of feasible nominations and
bookings. To do so, we model stationary gas flows by an abstract physics model that is
based on the Weymouth pressure drop equation and potential-based flows; see, e.g., Gross
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et al. (2019) or Labbé et al. (2019). It consists of arc flow variables q ∈ RA and nodal
potentials π ∈ RV≥0. These arc flows couple the potentials, which leads to the nonlinear
potential-based flow model (1) below. We note that in gas networks with horizontal pipes
the potentials π ∈ RV≥0 are closely linked to the gas pressures p ∈ RV≥0 at the nodes of the
pipeline networks by πu = p2u for u ∈ V . In case of non-horizontal pipes, we refer to Koch
et al. (2015).

Definition 2.5 A nomination � ∈ N is feasible if a point (q, π) exists that satisfies
∑

a∈δout(u)

qa −
∑

a∈δin(u)

qa = σu�u, u ∈ V , (1a)

πu − πv = �aqa |qa | , a = (u, v) ∈ A, (1b)

πu ∈ [π−
u , π+

u ], u ∈ V , (1c)

where δout(u) := {a ∈ A | a = (u, v)} and δin(u) := {a ∈ A | a = (v, u)} represent the set
of arcs leaving and entering node u ∈ V , �a > 0 is an arc-specific constant for any a ∈ A,
and 0 < π−

u ≤ π+
u are potential bounds for any u ∈ V .

Constraints (1a) ensure mass flow conservation at every node of the network. The flows q
couple the potentials for every arc of the network in Constraint (1b). Since we model a gas
network as a directed graph, we can interpret the direction of flow. Thus, for an arc (u, v) ∈ A,
the arc flow can be negative if it flows in the opposite direction of the orientation of the arc,
i.e., if it flows from v to u. Moreover, technical restrictions of the network impose that the
potentials are bounded (1c). For other models of gas transport such as capacitated linear and
linear potential-based flows, we refer to Schewe et al. (2019), Labbé et al. (2019).

For a given nomination � ∈ N and aweakly connected pipe-only network, the correspond-
ing flows q = q(�), i.e., they satisfy Constraints (1a) and (1b), are unique because they are the
optimal solution of a strictly convex minimization problem; see Maugis (1977). Moreover,
the corresponding potentials π = π(�) are unique up to constant shifts; see Ríos-Mercado
et al. (2002). Consequently, the potential-differences πu − πv for u, v ∈ V are unique for a
given nomination �. We further note that the feasibility of a nomination can be verified by
different approaches; see e.g., Koch et al. (2015), Gotzes et al. (2016). We now turn to the
feasibility of a booking, which is less studied in the literature and very challenging.

Definition 2.6 We say that a booking b is feasible if all booking-compliant nominations
� ∈ N (b) are feasible.

For deciding the feasibility of a booking, an infinite number of nominations has to be checked
for feasibility, in general. As in Labbé et al. (2021), we make the following non-restrictive
assumption on the potential bounds.

Assumption 2.7 The potential bound intervals have a non-empty intersection, i.e.,
⋂

u∈V
[π−

u , π+
u ] �= ∅.

This assumption is a necessary condition for the feasibility of a booking, since it ensures that
the zero nomination, which is always booking-compliant, with corresponding zero flows is
feasible in the network. Consequently, if this assumption is not satisfied, it directly follows
that all bookings are infeasible. Moreover, we can check this assumption in polynomial time
a priori.
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It is shown in Labbé et al. (2019), that the feasibility of a booking b can be characterized
by polynomially many nominations with maximum potential-difference between all pairs
of nodes. To this end, the authors introduce, for every pair of nodes (w1, w2) ∈ V 2, the
following problem

ϕw1w2(b) := max
�,q,π

πw1 − πw2 (2a)

s.t. 0 ≤ �u ≤ bu, u ∈ V , (2b)

(1a), (1b),

where ϕw1w2 is the corresponding optimal value function that depends on the booking b. We
note that the zero vector is feasible for Problem (2) due to Assumption 2.7. Consequently,
an optimal solution always exists since the variables � and q are bounded, and thus, we can
bound the potentials π by a finite positive constant due to Theorem 7.1 of Chapter 7 in Koch
et al. (2015).

Problem (2) computes the maximum potential-difference between the given nodes w1

and w2 within the booking b. Thus, we do not consider any potential bounds that possibly
restrict the maximum potential-difference. From Theorem 10 in Labbé et al. (2019) it then
follows that these maximum potential-differences satisfy certain potential bounds if and only
if booking b is feasible. More precisely, booking b is feasible if and only if

ϕw1w2(b) ≤ π+
w1

− π−
w2

holds for every pair of nodes (w1, w2) ∈ V 2. Exploiting this approach, we can decide the
feasibility of a booking by solving the nonlinear and nonconvex optimization problems (2)
for every pair of nodes. For trees and single-cycle networks, this can be done in polynomial
time; see Labbé et al. (2019), Robinius et al. (2019), Labbé et al. (2021). In this paper, we
show that deciding the feasibility of a booking w.r.t. nonlinear potential-based flowmodel (1)
is coNP-hard. We further prove that the decision variant of (2) is NP-hard. To this end, we
formally define the problem of deciding the feasibility of a booking w.r.t. nonlinear gas flow
model (1) and the decision problem corresponding to (2).

Deciding the feasibility of a booking (FB).

Input: Graph G = (V , A) with entries V+, exits V−, inner nodes V0, potential drop
coefficients �a ∈ Q>0 for a ∈ A, potential bounds π−

u ≤ π+
u , π−

u , π+
u ∈ Q>0

for all u ∈ V , and a booking b ∈ QV≥0.
Question: Is booking b feasible, i.e., does for every booking-compliant nomination

� ∈ N (b) a feasible point (q, π) for (1) exist?

Computing amaximum potential-difference nomination (MPD).

Input: Graph G = (V , A) with entries V+, exits V−, inner nodes V0, potential drop
coefficients �a ∈ Q>0 for a ∈ A, a booking b ∈ QV≥0, two nodes w1, w2 ∈ V ,
and a threshold T ∈ Q.

Question: Does a solution of (2) with objective ϕw1w2(b) ≥ T exist?

3 Notations and basic observations

Wenow introduce notations and basic observations, which are taken fromLabbé et al. (2021).
Using these results, we prove that FB w.r.t. our nonlinear potential-based flow model (1) is
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coNP-hard in Sect. 4. In the following, we consider the directed and weakly connected graph
G = (V , A) that models the considered gas network. For a nomination � ∈ N , entry and
exit nodes v ∈ V+ ∪ V− are called active if �v > 0 holds. We denote the set of active
entries by V>+ := {v ∈ V+ : �v > 0} and the set of active exits by V>− := {v ∈ V− : �v > 0}.
Furthermore, the set of non-zero nominations is given by N 0 := N \ {0}.

Modeling gas networks by directed graphs enables us to interpret the direction of arc
flows. However, the physical flow in a potential-based network is independent from the
direction of the arcs. As described in Ahuja et al. (1993), we introduce a path in a directed
graph G = (V , A) as a sequence of nodes and arcs without any repetition of nodes. For
two nodes v1, vr ∈ V , a path P(v1, vr ) between nodes v1 and vr is a sequence v1 − a1 −
v2 − a2 − . . . − ar−1 − vr such that for each 1 ≤ k ≤ r − 1 either ak = (vk, vk+1) ∈ A
or ak = (vk+1, vk) ∈ A holds. As in Ahuja et al. (1993), we partition the arcs of a path
into forward and backward arcs. An arc (i, j) of the considered path is called a forward arc
if the path visits node i before node j and otherwise it is called a backward arc. Further,
path P(v1, vr ) is a directed path from v1 to vr if it does not contain any backward arcs.

To provide a more compact representation of paths, we denote a path P(v1, vr ) by the
corresponding set of arcs, i.e., P(v1, vr ) ⊆ A, in the following. If it is clear from the context,
we may omit the start and end node and simply use a ∈ P to express that arc a is part of
the considered path. We further note that the considered paths do not contain any cycles in
the graph underlying G. This is in line with the considered physics of gas transport, since in
every solution (q, π) of (1) no cyclic flow exists due to (1b).

For an arc a = (u, v) ∈ A, we now introduce the following characteristic function

χa(P) :=

⎧
⎪⎨

⎪⎩

1, if a is a forward arc of path P,

−1, if a is a backward arc of path P,

0, if a /∈ P,

where P is an arbitrary path. The following lemma of Labbé et al. (2021) uses a classical
result from linear flow models to construct a flow decomposition without cyclic flows.

Lemma 3.1 (Lemma 2 and Corollary 3 in Labbé et al. (2021)) For � ∈ N 0, let P� :={
P(u, v) : u ∈ V>+ , v ∈ V>−

}
be the set of paths in G with an active entry as start node and

an active exit as end node. Then, a decomposition of the given arc flows q = q(�), satisfying
(1a) and (1b), into path flows exists, such that

qa =
∑

P∈P�

χa(P) q(P), a ∈ A,

where q(P) is the nonnegative flow along the path P ∈ P�. Furthermore, the flows q can be
chosen such that if qa > 0 for a ∈ A and χa(P) = −1 for P ∈ P�, then q(P) = 0 holds.
Similarly, if qa < 0 for a ∈ A and χa(P) = 1 for P ∈ P�, then q(P) = 0 holds. Moreover,
the flows satisfy

∑

v∈V>−

q(P(u, v)) = �u, u ∈ V>+ ,
∑

u∈V>+

q(P(u, v)) = �v, v ∈ V>− .

Similar to Labbé et al. (2021), we express the potential-difference function along a given
path.
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Definition 3.2 Let a path P be given. Then, the potential-difference function along P is given
by

	P : RA → R, 	P (q) :=
∑

a∈P

χa(P)�aqa |qa | .

As described in Labbé et al. (2021), from Constraints (1b) it follows that for any node pair
u, v ∈ V and for any path P := P(u, v), the equationπu(�)−πv(�) = 	P (q(�)) is satisfied,
where π(�) and q(�) correspond to the potentials and flows of a given nomination � ∈ N . If
P is a directed path from u to v, then the potential-difference function simplifies to

	P (q) =
∑

a∈P

�aqa |qa | .

As last basic observation, we explicitly state some properties for directed paths and the
potential-difference function proven in Labbé et al. (2021).

Lemma 3.3 [Lemma 4 in Labbé et al. (2021)] For u, v ∈ V , let P := P(u, v) be a directed
path from u to v. Then, the following holds:

(a) 	P is continuous.
(b) 	P is strictly increasing w.r.t. every component. That means, for q fixed except for one

value qa, a ∈ P, 	P is increasing in qa.
(c) 	P is unbounded w.r.t. every component, i.e., for a ∈ P,

lim
qa→−∞ 	P = −∞ and lim

qa→∞ 	P = ∞.

(d) 	P is additive w.r.t. the path, i.e., for every node v′ of the path P,

	P = 	P(u,v′) + 	P(v′,v)

with P = P(u, v′) ∪ P(v′, v).
(e) If (�, q, π) satisfies Constraints (1a) and (1b), then 	P (q) ≥ 0 holds if and only if

πu ≥ πv holds.

4 Hardness

In this section, we prove that deciding the feasibility of a booking (FB) w.r.t. nonlinear
potential-based flow model (1) is coNP-hard. To this end, we reduce Partition to the infea-
sibility of a booking. We consider Partition as it is defined in Garey and Johnson (1990).

Partition (Part).

Input: S1, . . . , Sn ∈ N with n ∈ N, I = {1, . . . , n}.
Question: Does I1 ⊆ I with

∑
i∈I1 Si = ∑

I\I1 Si exist?
In the following, we denote a Partition instance by S. The value K = ∑

i∈I Si further
represents the sum of all numbers of Partition instance S and we assume without loss of
generality that n ≥ 3 holds.

For a given Partition instance S, we now construct a corresponding booking instance with
its graph G(Part) = (V , A). To this end, we introduce for every number Si of the Partition
instanceS an entry node z+i and an exit node z−i , which are connected by an arc. Furthermore,
we add a main entry node s and a main exit node t . Each of these two nodes is connected to
every entry node z+i for i ∈ I . The booking and potential bounds are chosen such that we
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Fig. 2 The graph G(Part). Entry nodes are indicated by circles and exit nodes by boxes

only have to consider (2) w.r.t. (s, t) for deciding the feasibility of the considered booking.
We then prove that the corresponding objective value, i.e., the potential-difference between
s and t , exceeds a certain threshold value if and only if the Partition instance S is feasible.
In detail, graph G(Part) = (V , A) is constructed as

V+ = {
s, z+1 , . . . , z+n

}
, V− = {

t, z−1 , . . . , z−n
}
, V = V+ ∪ V−,

A = {
(s, z+i ) : i ∈ I

} ∪ {
(z+i , z−i ) : i ∈ I

} ∪ {
(z+i , t) : i ∈ I

}
.

A visualization of the graph G(Part) is given in Fig. 2. We consider for G(Part) the
booking b

bs = bt = K

2
, bz+i

= bz−i
= Si , i ∈ I ,

and potential drop coefficients �a > 0 for a ∈ A given by

�(s,z+i ) = �(z+i ,t) = 1

S2i
, �(z+i ,z−i ) = 1, i ∈ I .

Wefinally set the potential bounds for this booking instance. To this end, we first introduce
some parameters depending on the input K that are required throughout this section.

ε(K ) = 1 −
(
K − 1

8K

K

)2

, M(K ) = max

{

1 − ε(K ) + ε(K )2, 1 − ε(K )2

K 2

}

, (3a)

ε̃(K ) = 1

5
(1 − M(K )), T (K ) = max

{

1 − ε̃(K )2

K 2n2
, M(K ) + 4ε̃(K )

}

. (3b)

We note that 0 < T (K ) < 1 holds due to K ≥ 1. Further, we do not explicitly simplify
these parameters by computing the maxima, because each of these parameters is separately
used in the following proofs. Thus, the extensive form of (3a) and (3b) is useful for the
remainder of this section.

The lower π− and upper π+ potential bounds for G(Part) are given by

π+
s = π+

t = 9K 2 + 1, π+
u = 18K 2 + 1, u ∈ V \ {s, t} ,

π−
u = 0, u ∈ V \ {t} , π−

t = π+
t − T (K ).

We note that for a given instance of Partition, we can build the corresponding booking
instance G(Part) in polynomial time and its coding length is polynomially bounded from
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above by the coding length of the given Partition instance. We now consider G(Part) and its
booking b throughout this section. From Sect. 2, it follows that the booking b is feasible if
and only if

ϕw1w2(b) ≤ π+
w1

− π−
w2

(4)

holds for every pair of nodes (w1, w2) ∈ V 2, where ϕw1w2(b) is the optimal value function
of (2) that denotes the maximum potential-difference between w1 and w2 within booking b.

We first show that Inequality (4) is directly satisfied for (w1, w2) ∈ V 2 \ {(s, t)}, due to
the choice of the lower and upper potential bounds.

Lemma 4.1 For any node pair (w1, w2) ∈ V 2 \ {(s, t)} of G(Part) = (V , A), Inequality (4)
is satisfied.

Proof Let (q, π) be an optimal solution of ϕw1w2(b). We note that for the case w1 = w2, the
equation ϕw1w2(b) = 0 holds and, thus, Condition (4) is satisfied in this case due toπ−

u ≤ π+
u

for all u ∈ V . Consequently, we assume w1 �= w2 ∈ V in the following. From (1a), (1b),
and

∑
u∈V+ bu = (3/2)K , it follows |qa | ≤ (3/2)K for every arc a ∈ A. For an arbitrary

path P(w1, w2), it holds

πw1 − πw2 =
∑

a∈P(w1,w2)

χa(P)�aqa |qa | ≤ |P(w1, w2)|
(
3

2
K

)2

.

Since the path P(w1, w2) with minimal number of arcs consists of at most 4 arcs, this leads
to

πw1 − πw2 ≤ 4

(
3

2
K

)2

= 9K 2

< π+
w1

− π−
w2

=

⎧
⎪⎨

⎪⎩

9K 2 + 1, if w1 ∈ {s, t} , w2 �= t

18K 2 + 1, if w1 ∈ V \ {s, t} , w2 �= t

9K 2 + T (K ), if w1 ∈ V \ {s, t} , w2 = t . 
�

Consequently, deciding the feasibility of booking b for G(Part) reduces to the following.

Corollary 4.2 Booking b is feasible for G(Part) if and only if ϕst (b) ≤ T (K ).

Proof Booking b is feasible if and only if for every pair of nodes Inequalities (4) hold. From
Lemma 4.1 it follows that for each pair of nodes except (s, t) ∈ V 2 Inequalities (4) are
satisfied. Consequently, booking b is feasible if and only if

ϕst (b) ≤ π+
s − π−

t = 9K 2 + 1 − (9K 2 + 1 − T (K )) = T (K ),

which proves the claim. 
�

In the remainder of this section, we prove that ϕst (b) > T (K ) is satisfied if and only if the
given Partition instance S is feasible. We first prove that if Partition instance S is feasible,
then ϕst (b) exceeds the threshold T (K ).

Lemma 4.3 If Partition instance S is feasible, then ϕst (b) ≥ 1 > T (K ) holds.
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Proof Since Partition instance S is feasible, M1 ⊂ I and M2 ⊂ I with M1 ∩ M2 = ∅ and
M1 ∪ M2 = I exist such that

∑
i∈M1

Si = ∑
i∈M2

Si = K/2 holds. We now construct a
feasible point (�, q, π) of (2) w.r.t. (s, t) that has an objective value of 1.

�s = �t = K

2
, �z−i

= Si , �z+i
= 0, i ∈ M1, �z+i

= Si , �z−i
= 0, i ∈ M2,

q(s,z+i ) = q(z+i ,z−i ) = Si , q(z+i ,t) = 0, i ∈ M1,

q(s,z+i ) = q(z+i ,z−i ) = 0, q(z+i ,t) = Si , i ∈ M2,

πs = πz+i
= πz−i

= π+
s , i ∈ M2, πz+i

= π+
s − 1, πz−i

= πz+i
− S2i , i ∈ M1,

πt = πs − 1.

We note that the constructed point (�, q, π) satisfies Constraints (1a) as well as (1b) and �

respects the booking bounds. Consequently, (�, q, π) is a feasible point for (2) w.r.t. (s, t).
Moreover, the corresponding objective value equals 1. Thus, the optimal solution of ϕst (b)
has an objective value of at least 1 > T (K ). 
�

We next prove that if we require nonnegative flow in (2) and Partition instance S is
infeasible, then an optimal solution does not exceed the threshold value T (K ), i.e.,ϕst (b) <

T (K ) holds. To this end, we introduce the nonnegative flow variant of (2) for node pair (s, t):

ϕ+
st (b) := max

�,q,π
πs − πt (5a)

s.t. 0 ≤ �u ≤ bu, u ∈ V , (5b)

qa ≥ 0, a ∈ A, (5c)

(1a), (1b).

With the help of Lemmas 4.5–4.13, we prove that ϕ+
st (b) < T (K ) is satisfied if Par-

tition instance S is infeasible. Afterward, we use these results to show the general case
ϕst (b)<T (K ). The main idea is that if the considered Partition instance is infeasible, then
for at least one i ∈ I the flows satisfy q(s,z+i ) > 0 and q(z+i ,t) > 0; see Lemma 4.6. This
together with the considered nonlinear potential-based flow (1b) plays an important role in
the remaining section which is based on the following observation.

Observation 4.4 Let be a > 0 and b > 0 with a2 + b2 = c. Then, a + b >
√
c holds.

To provide an intuition for the main idea, we give the following explanation. For every i ∈ I
and solution (�, q, π) of (5), the equality

πs − πt = �(s,z+i )q
2
(s,z+i )

+ �(z+i ,t)q
2
(z+i ,t)

holds, which we will show in Lemma 4.7. From Observation 4.4, it follows that we need
strictly more flow in terms of q(s,z+i ) + q(z+i ,t) to obtain a potential-difference of πs − πt if
q(s,z+i ) > 0 and q(z+i ,t) > 0 hold in comparison to the case if one of these flows is zero. We
prove in Lemma 4.6 that if Partition instance S is infeasible, q(s,z+i ) > 0 and q(z+i ,t) > 0 for
at least one i ∈ I in an optimal solution of (5) is satisfied. The latter is not necessarily the case
if S is feasible; see Lemma 4.3. Consequently, we need strictly more flow to obtain a certain
potential-difference πs − πt if S is infeasible in contrast to the case if S is feasible. This is
one of the main reasons why the optimal value of (5) cannot exceed the threshold T (K ) if

123



Annals of Operations Research (2022) 318:591–618 603

Partition instance S is infeasible due to the monotonicity of the potential drop 	P (q) w.r.t.
the flow q; see Lemma 3.3 (b).

We start the proof of ϕ+
st (b) < T (K ) by characterizing optimal solutions of (5) in the next

two lemmas.

Lemma 4.5 Let (�, q, π) be an optimal solution of (5). Then,

�s = �t = K

2
= bs = bt

holds.

Proof We consider a flow decomposition of Lemma 3.1 for given (�, q) and prove the claim
by the distinction of three different cases.

If �s < K/2 and �t < K/2 hold, then from Lemma 3.3 it follows that εi > 0 for all i ∈ I
exist such that

�s +
∑

i∈I
εi ≤ K

2
= bs, �t +

∑

i∈I
εi ≤ K

2
= bt

and we can increase the flow q(Pi (s, t)) by εi for i ∈ I , such that the potential drop 	Pi (s,t)

is the same for i ∈ I . Here, Pi (s, t) is the directed path from s to t via z+i , i.e., Pi (s, t) ={
(s, z+i ), (z+i , t)

}
. The modification increases the potential drop πs − πt due to Lemma 3.3

(b). This is a contradiction to the optimality of (�, q, π) for (5).
If �s = K/2 and �t < K/2 hold, then from (1a) it follows that the total flow leaving node s

is K/2 and the total flow entering node t is strictly less than K/2. Moreover, no negative flow
is entering s or leaving node t due to (5c). Thus, there is i ∈ I such that q(P(s, z−i )) > 0 for
P(s, z−i ) = {

(s, z+i ), (z+i , z−i )
}
holds. We additionally consider the path Pi (s, t) as in the

previous case. Due to Lemma 3.3 and the graph structure of G(Part), ε > 0 and 0 < ε̃ < ε

exist such that decreasing q(P(s, z−i )) by ε and increasing q(Pi (s, t)) by ε̃ does not change
the potential drop 	Pi (s,t) and �t < K/2 as well as (5c) still holds. Consequently, �s < K/2
and �t < K/2 is satisfied and analogously to the above this is a contradiction to the optimality
of the considered solution.

If �t = K/2 and �s < K/2 are satisfied, then, analogously to the previous case, from (1a)
and (5c) it follows that i ∈ I exist such that q(P(z+i , t)) > 0 for P(z+i , t) = {

(z+i , t)
}
holds.

We again consider the path Pi (s, t) as before. Due to Lemma 3.3 and the graph structure
of G(Part), ε > 0 and 0 < ε̃ < ε exist such that decreasing q(P(z+i , t)) by ε and increasing
q(Pi (s, t)) by ε̃ does not change the potential drop 	Pi (s,t) and �s < K/2 as well as (5c)
still holds. Consequently, �s < K/2 and �t < K/2 is satisfied and analogously to the above
this is a contradiction to the optimality of the considered solution. 
�

We now show that if Partition instance S is infeasible, then every optimal solution of (5)
satisfies that at least one path Pi (s, t) = {

(s, z+i ), (z+i , t)
}
with i ∈ I and qa > 0 for

a ∈ Pi (s, t) exists.

Lemma 4.6 If Partition instanceS is infeasible, then for any optimal solution (�, q, π) of (5),
there exists an index i ∈ I such that q(s,z+i ) > 0 and q(z+i ,t) > 0 hold.

Proof We prove the contraposition. To this end, let (�, q, π) be an optimal solution of (5)
that satisfies q(s,z+i ) = 0 or q(z+i ,t) = 0 for each i ∈ I . Due to Lemma 4.5 and (5c),
q(s,z+i ) = q(z+i ,t) = 0 is not satisfied for any i ∈ I in an optimal solution of (5). Thus, the
index sets

M1 =
{
i ∈ I : q(s,z+i ) > 0

}
, M2 =

{
i ∈ I : q(z+i ,t) > 0

}
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satisfy M1 ∩ M2 = ∅ and M1 ∪ M2 = I . Consequently, if i ∈ M1, then q(s,z+i ) > 0
and q(z+i ,t) = 0 hold. Thus, the structure of graph G(Part) implies q(s,z+i ) ≤ Si since positive

flow via arc (s, z+i ) can only be sent to exit z−i , which demand is bounded from above by Si .
Analogously it follows the case for i ∈ M2 and we obtain the flow bounds

q(s,z+i ) ≤ Si , q(z+i ,t) ≤ Si , i ∈ I . (6)

Furthermore, from Lemma 4.5 it follows �s = �t = K/2. The latter together with flow
conservation (1a) and (6), leads to

K

2
=

∑

i∈I
q(s,z+i ) =

∑

i∈M1

q(s,z+i ) ≤
∑

i∈M1

Si ,

K

2
=

∑

i∈I
q(z+i ,t) =

∑

i∈M2

q(z+i ,t) ≤
∑

i∈M2

Si .

From this and
∑

i∈M1∪M2
Si = ∑

i∈I Si = K , we obtain

K

2
=

∑

i∈M1

Si =
∑

i∈M2

Si

and thus, Partition instance S is feasible. 
�
In the next lemma, we express a relation between certain flows and the objective value of

Problem (5), which we exploit multiple times in the following proofs.

Lemma 4.7 Let (�, q, π) be a feasible point of Problem (5) with objective value ϕ. Then, for
each i ∈ I the following equality

q2
(s,z+i )

+ q2
(z+i ,t)

= φS2i (7)

holds.

Proof For every i ∈ I , it follows from Constraints (1b) that

φ = πs − πt = 1

S2i
q(s,z+i )

∣
∣
∣q(s,z+i )

∣
∣
∣ + 1

S2i
q(z+i ,t)

∣
∣
∣q(z+i ,t)

∣
∣
∣ .

In addition, the flows q are nonnegative since they satisfy Constraints (5c), which in combi-
nation with the previous equality proves the claim. 
�

With the help of the previous three lemmas, we now prove that if Partition instance S is
infeasible, then the optimal value of (5) is strictly smaller than 1.

Lemma 4.8 If Partition instance S is infeasible, then ϕ+
st (b) < 1 holds.

Proof Let (�, q, π) be an optimal solution of (5) with objective value φ. Due to Lemma 4.5
and flow conservation (1a), the equalities

K

2
=

∑

i∈I
q(s,z+i ),

K

2
=

∑

i∈I
q(z+i ,t), (8)

are satisfied. From Lemma 4.6, it follows that an index l ∈ I with q(s,z+l ) > 0 and q(z+l ,t) > 0
exists. Further, Lemma 4.7 implies that for every i ∈ I Equality (7) is satisfied. Applying
Observation 4.4 then leads to

q(s,z+l ) + q(z+l ,t) >
√

φSl , q(s,z+i ) + q(z+i ,t) ≥ √
φSi , i ∈ I \ {l} .
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From this and (8), we obtain

K =
∑

i∈I\{l}

(
q(s,z+i ) + q(z+i ,t)

)
+ q(s,z+l ) + q(z+l ,t)

>
√

φ
∑

i∈I\{l}
Si + √

φSl = √
φK ,

which implies φ < 1. 
�
Up to now, we have shown that if Partition instance S is feasible, then ϕst (b) ≥ 1 holds;

see Lemma 4.3. Furthermore, if S is infeasible, then ϕ+
st (b) < 1 is satisfied. In general, it

now suffices to show that there is a small ε > 0 such that for infeasible S the inequality
ϕst (b) ≤ 1− ε holds. Then, we can set π−

t = π+
t − 1+ ε and analogously to Corollary 4.2

it follows that the considered booking b is feasible if and only if ϕst (b) ≤ 1− ε. In doing so,
the coding length of ε > 0 has to be polynomially bounded from above by the coding length
of S since ε > 0 is part of the booking instance. In the following Lemmas 4.9–4.13, we now
show that if S is infeasible, then ϕ+

st (b) < T (K ) < 1 holds. Afterward, we use this result for
nonnegative flows to prove that for infeasible S also the general case ϕst (b) < T (K ) < 1 is
satisfied. Consequently, booking b is feasible if and only ifS is infeasible due toCorollary 4.2.

For a feasible point (�, q, π) of (5) with positive objective value, we introduce the fol-
lowing partition of the indices I

M1 =
{
i ∈ I : q(s,z+i ) > 0, q(z+i ,t) = 0

}
, (9a)

M2 =
{
i ∈ I : q(s,z+i ) = 0, q(z+i ,t) > 0

}
, (9b)

M3 =
{
i ∈ I : q(s,z+i ) > 0, q(z+i ,t) > 0

}
. (9c)

We note that q(s,z+i ) = q(z+i ,t) = 0 does not hold for any i ∈ I due to the positive objective
value of the considered feasible point (�, q, π). Moreover, the parameters ε(K ) and M(K )

of (3a) come now into play.

Lemma 4.9 Let Partition instance S be infeasible. If (�, q, π) is an optimal solution of (5)
such that q(s,z+l ) > 0 and q(z+l ,t) > 0 hold for exactly one index l ∈ I , then the corresponding
objective value φ satisfies

φ <

(
K − 1

8K

K

)2

= 1 − ε(K ) < 1.

Proof We assume for a contradiction that an optimal solution (�, q, π) of (5) exists such that
the requirements are satisfied and the objective value φ satisfies φ ≥ 1 − ε(K ) > 0. From
Lemma 4.8, it follows φ < 1. We partition the index set I according to (9).

Due to the requirements, M1 ∩ M2 = ∅, M3 = {l}, and M1 ∪ M2 ∪ {l} = I hold.
Consequently, Lemma 4.5 and flow conservation (1a) lead to

K

2
=

∑

i∈M1

q(s,z+i ) + q(s,z+l ),
K

2
=

∑

i∈M2

q(z+i ,t) + q(z+l ,t). (10)

Additionally, we can apply Lemma 4.7 and thus, from Equalities (7) it follows

q(s,z+i ) = √
φSi , i ∈ M1, q(z+i ,t) = √

φSi , i ∈ M2. (11)
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Combining Eqs. (10) and (11) leads to

q(s,z+l ) = K

2
− √

φ
∑

i∈M1

Si , q(z+l ,t) = K

2
− √

φ
∑

i∈M2

Si . (12)

We now distinguish different cases for the value of
∑

i∈M1
Si , respectively

∑
i∈M2

Si .
If

∑
i∈M1

Si = K/2 holds, then
∑

i∈I\M1
Si = K/2 holds due to

∑
i∈I Si = K . This

is a contradiction to the infeasibility of Partition instance S. Analogously it follows that
∑

i∈M2
Si = K/2 cannot hold.

If
∑

i∈M1
Si > K/2 holds, then

∑
i∈M1

Si ≥ K/2+ 1/2 holds due to the integrality of Si
for i ∈ I . This together with (12), and

φ ≥ 1 − ε(K ) =
(
K − 1

8K

K

)2

leads to

q(s,z+l ) = K

2
− √

φ
∑

i∈M1

Si

≤ K

2
− √

φ

(
K

2
+ 1

2

)

≤ K

2
−

(
K − 1

8K

K

) (
K

2
+ 1

2

)

= K 2

2K
− K 2 − 1

8

2K
− K − 1

8K

2K
=

1
8

2K
− K − 1

8K

2K
< 0,

which is a contradiction to q(s,z+l ) ≥ 0. Analogously it follows that
∑

i∈M2
Si > K/2 cannot

hold.
Consequently,

∑
i∈M1

Si < K/2 and
∑

i∈M2
Si < K/2 hold. Due to the integrality of Si

for i ∈ I ,
∑

i∈M1
Si ≤ K/2−1/2 and

∑
i∈M2

Si ≤ K/2−1/2 are satisfied. From this, (12),
and φ < 1, which holds due to Lemma 4.8, it follows

q(s,z+l ) = K

2
− √

φ
∑

i∈M1

Si ≥ K

2
−

∑

i∈M1

Si ≥ 1

2
,

q(z+l ,t) = K

2
− √

φ
∑

i∈M2

Si ≥ K

2
−

∑

i∈M2

Si ≥ 1

2
.

Combining the latter inequalities, Equality (7), and the strict inequalities 2 1
8K

√
φSl < 1/4

as well as
( 1
8K

)2
< 1/4, that follow from φ < 1 and Sl ≤ K , leads to

(
q(s,z+l ) + q(z+l ,t)

)2 = q2
(s,z+l )

+ q2
(z+l ,t)

+ 2q(s,z+l )q(z+l ,t)

≥ φS2l + 2 · 1
4

> φS2l + 2
1

8K

√
φSl +

(
1

8K

)2

=
(

√
φSl + 1

8K

)2

,

123



Annals of Operations Research (2022) 318:591–618 607

and consequently, we obtain

q(s,z+l ) + q(z+l ,t) >
√

φSl + 1

8K
. (13)

From (10), (11), (13), and
∑

i∈I Si = K we obtain

K =
∑

i∈M1

q(s,z+i ) +
∑

i∈M2

q(z+i ,t) + q(s,z+l ) + q(z+l ,t)

= √
φ

∑

i∈I\{l}
Si + q(s,z+l ) + q(z+l ,t)

= √
φ(K − Sl) + q(s,z+l ) + q(z+l ,t)

>
√

φ(K − Sl) + √
φSl + 1

8K

= √
φK + 1

8K
,

and consequently,
K − 1

8K

K
>

√
φ

holds. This is a contradiction to the assumption

φ ≥ 1 − ε(K ) =
(
K − 1

8K

K

)2

.

�

We have proven that the optimal value of (5) does not exceed the threshold 1 − ε(K ) if
exactly one index i ∈ I with q(s,z+i ) > 0 and q(z+i ,t) > 0 exists and Partition instance S is
infeasible. We now use this result to show that if arbitrarily many indices satisfy the latter
property, the optimal objective value of (5) is bounded above by a threshold value smaller
than 1. To this end, we consider two cases. In Lemma 4.12 at most one index i ∈ I satisfies
the stricter property q(s,z+i ) ≥ ε(K ) > 0 and q(z+i ,t) ≥ ε(K ) > 0 where ε(K ), defined
in (3a), is a positive lower arc flow bound. Afterward, we consider that at least two indices
satisfy this lower arc flow bound; see Lemma 4.13. To this end, we first prove two technical
lemmas that we use in the following.

In the next lemma, we show that a feasible point for (1a), (5b), and (5c) with a minimum
potential-difference between s and t can bemodified to a feasible point of (5)while preserving
the potential-difference between s and t .

Lemma 4.10 Let M ≥ 0 and (�, q) be a feasible point for (1a), (5b), (5c), and for all i ∈ I
�(s,z+i )q

2
(s,z+i )

+ �(z+i ,t)q
2
(z+i ,t)

≥ M

holds. Then, a point (�̃, q̃, π) satisfying (1a), (5b), (5c), and additionally (1b) with
�(s,z+i )q̃

2
(s,z+i )

+ �(z+i ,t)q̃
2
(z+i ,t)

= M

for all i ∈ I exists. Moreover, (�̃, q̃, π) is a feasible point for (5) with objective value of M.

Proof Let (�, q) be a point that satisfies the requirements. Since (�, q) satisfies (1a) and (5c)
for graph G(Part), the flow q cannot contain any cycle flow. Thus, we obtain a flow decom-
position as in Lemma 3.1 for (�, q) by applying Theorem 3.5 of Ahuja et al. (1993). Due to
qa ≥ 0 for a ∈ A and the graph structure of G(Part), this flow decomposition satisfies that
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a positive flow q(s,z+i ) > 0, respectively q(z+i ,t) > 0 for any i ∈ I can only be the result of a
positive flow q(P(u, v)) with P(u, v) being one of the following paths

P(s, z−i ) = {
(s, z+i ), (z+i , z−i )

}
), (14a)

P(z+i , t) = {
(z+i , t)

}
, (14b)

Pi (s, t) = {
(s, z+i ), (z+i , t)

}
. (14c)

For every i ∈ I with
�(s,z+i )q

2
(s,z+i )

+ �(z+i ,t)q
2
(z+i ,t)

> M

we decrease positive flows q(P(u, v)) with P(u, v) of (14) until

�(s,z+i )q
2
(s,z+i )

+ �(z+i ,t)q
2
(z+i ,t)

= M (15)

holds. This is possible since the left-hand side of the Equality (15), respectively the previous
strict inequality, is continuous and strictly increasing w.r.t. q(s,z+i ) and q(z+i ,t); see Lemma 3.3.
Thus, we can decrease positive flows q(P(u, v))with P(u, v) of (14) such that Equality (15)
is satisfied. Furthermore, (1a), (5b), (5c) are still satisfied.

We now can define the following potentials

πs = π+
s , πz+i

= πs − �(s,z+i )q
2
(s,z+i )

, i ∈ I , (16a)

πz−i
= πz+i

− �(z+i ,z−i )q
2
(z+i ,z−i )

, πt = πz+i
− �(z+i ,t)q

2
(z+i ,t)

, i ∈ I , (16b)

which satisfy (1b) due to (15) and (5c). Moreover, for every i ∈ I the potentials satisfy
πt = πz+i

− �(z+i ,t)q
2
(z+i ,t)

= πs − �(s,z+i )q
2
(s,z+i )

− �(z+i ,t)q
2
(z+i ,t)

= πs − M,

where the last equation follows from (15). Thus, πs − πt = M is satisfied. 
�
In the next lemma, we prove that for every optimal solution of (5) an optimal solution

with a specific flow decomposition exists. Moreover, the flows on arcs of the paths Pi (s, t)
for all i ∈ I do not differ between the two considered optimal solutions.

Lemma 4.11 Let Partition instance S be infeasible. Let (�, q, π) be an optimal solution
of (5). Then an optimal solution (�̃, q̃, π̃) of (5) with a flow decomposition of Lemma 3.1
for (�̃, q̃) exists such that if q(P(u, v)) > 0, then P(u, v) is defined by either (14a) or (14b).
Additionally, q(s,z+i ) = q̃(s,z+i ) and q(z+i ,t) = q̃(z+i ,t) for i ∈ I is satisfied.

Proof Let (�, q, π) be an optimal solution of (5) with objective value φ. Consequently, for
each i ∈ I the equation q2

(s,z+i )
+ q2

(z+i ,t)
= φS2i is satisfied due Lemma 4.7. Further, from

Lemma 4.8, it follows φ < 1 and thus, flows q satisfy q(s,z+i ) < Si as well as q(z+i ,t) < Si
for i ∈ I . We now consider a flow decomposition of Lemma 3.1 corresponding to solu-
tion (�, q, π). Since qa ≥ 0 for a ∈ A holds and the graph structure of G(Part), this flow
decomposition can be chosen such that q(P(u, v)) can only be positive for a path P(u, v)

of (14) or P(z+i , z−i ) consisting of arc (z+i , z−i ) for an i ∈ I , which follows from Theorem 3.5
in Ahuja et al. (1993).

If q(P(z+i , z−i )) > 0 for an index i ∈ I holds, then we delete this flow. We note that
this does not modify flow on arcs (s, z+i ), respectively (z+i , t), for i ∈ I . Thus, the modified
nomination and flows (�̃, q̃) can be extended to a solution (�̃, q̃, π̃) of (5) with objective
value φ, where the potentials π̃ are given by (16). Consequently, we can assume w.l.o.g.
q(P(z+i , z−i )) = 0 for i ∈ I in the remaining proof.

123



Annals of Operations Research (2022) 318:591–618 609

We now consider i ∈ I with q(Pi (s, t)) = ε > 0. Due to q(s,z+i ) < Si and q(z+i ,t) < Si for

i ∈ I , booking b, and (5c), we can set q(Pi (s, t)) = ε > 0 to zero and increase q(P(s, z−i ))

and q(P(z+i , t)) by ε such that the corresponding solution (�̃, q̃) satisfies (5b), (5c), and (1a).
We note that

�̃z−i
= �z−i

+ ε ≤ bz−i
= Si

holds since before the modification q(P(s, z−i )) = �z−i
and, thus,

q(s,z+i ) = q(Pi (s, t)) + q(P(s, z−i ))= ε + �z−i
< Si

were satisfied. Analogously it follows �̃z+i
= �z+i

+ ε ≤ bz+i
= Si . Additionally, we note

that the flow on arc (s, z+i ), respectively (z+i , t), for i ∈ I is not modified. We now repeat
the above procedure for every i ∈ I with q(Pi (s, t)) = ε > 0. Afterward, we can extend the
modified nomination and flows (�̃, q̃) to a solution (�̃, q̃, π̃) of (5) with objective value φ,
where the potentials π̃ are given by (16). Due to the modification, q(s,z+i ) = q̃(s,z+i ) and

q(z+i ,t) = q̃(z+i ,t) for i ∈ I hold and the required flow decomposition is constructed. 
�

For the case that Partition instance S is infeasible, we now prove that if in an optimal
solution of (5) for at most one i ∈ I the flow on the arcs (s, z+i ) and (z+i , t) exceeds ε(K ),
then the corresponding objective value is below the threshold 1 − ε(K ) + ε(K )2.

Lemma 4.12 Let Partition instance S be infeasible. Let

ε(K ) = 1 −
(
K − 1

8K

K

)2

∈ (0, 1)

and (�, q, π) be an optimal solution of (5) that satisfies∣
∣
∣

{
i ∈ I : q(s,z+i ) ≥ ε(K ), q(z+i ,t) ≥ ε(K )

}∣
∣
∣ ≤ 1. (17)

Then, the objective value φ corresponding to solution (�, q, π) satisfies
φ < 1 − ε(K ) + ε(K )2 < 1.

Proof We assume for a contradiction that (�, q, π) is an optimal solution of (5) that satisfies
the requirements and its objective value is φ ≥ 1−ε(K )+ε(K )2. We further assume w.l.o.g.
that the corresponding flow decomposition of Lemma 3.1 for (�, q) satisfies Lemma 4.11.
From Lemma 4.8, it follows that φ < 1. In the following, we consider the paths (14) and
partition the index set I as in (9).

Due to φ ≥ 1 − ε(K ) + ε(K )2 and Lemmas 4.6 and 4.9, |M3| ≥ 2 holds. Further, the
inequality q(s,z+i ) > ε(K ) or q(z+i ,t) > ε(K ) holds due to

q2
(s,z+i )

+ q2
(z+i ,t)

= φS2i ≥ φ ≥ 1 − ε(K ) + ε(K )2 > 2ε(K )2,

where the first equality follows from Lemma 4.7 and the last inequality holds due to

0 < ε(K ) = 1 −
(
K − 1

8K

K

)2

= 1 − (1 − 1

8K 2 )2 ≤ 1 − 49

64
= 15

64
.

We now set qa = 0 for each a = (u, v) ∈ {
(s, z+i ) : i ∈ I

} ∪ {
(z+i , t) : i ∈ I

}
that

satisfies qa ≤ ε(K ). This can be done in the considered flow decomposition by decreasing
flows q(P(s, z−i )), respectively q(P(z+i , t)) for i ∈ I . We denote the modified flows by q̃
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and its corresponding nomination by �̃, which satisfy (1a), (5b), and (5c). We further note
that now |M3| ≤ 1 holds, due to (17).

For an arbitrary index i ∈ I , we assume that q(z+i ,t) has been modified, i.e., q̃(z+i ,t) =
0 < q(z+i ,t). Consequently, q̃(s,z+i ) = q(s,z+i ) holds. This together with Lemma 4.7, φ ≥
1 − ε(K ) + ε(K )2, and Si ≥ 1 leads to

q̃2
(z+i ,t)

+ q̃2
(s,z+i )

= q̃2
(s,z+i )

= q2
(s,z+i )

= φS2i − q2
(z+i ,t)

≥ φS2i − ε(K )2 ≥ (1 − ε(K ) + ε(K )2)S2i − ε(K )2

≥ (1 − ε(K ))S2i .

Analogously we can handle the case that q(s,z+i ) has been modified.

Due to this and �(s,z+i ) = �(z+i ,t) = 1/S2i , we can apply Lemma 4.10 and obtain a

solution (�̃, q̃, π̃) for (5) with objective value φ̃ ≥ 1 − ε(K ) > 0. This solution satisfies
|M3| ≤ 1 due to the modification, (17), and the fact that we only possibly decrease flows in
Lemma 4.10 to obtain (�̃, q̃, π̃).

If |M3| = 1 holds, then this is a direct contradiction to Lemma 4.9.
We now assume |M3| = 0. Due to |M3| ≥ 2 before the modification and the requirements,

at least one arc flow was decreased by the above. Consequently, �̃s < K/2 or �̃t < K/2
holds. Furthermore, |M1| ≥ 1 or |M2| ≥ 1 is satisfied after the modification. We nowmodify
the solution such that its objective stays the same but |M3| = 1 holds which is a contradiction
to Lemma 4.9.

If �̃s < K/2 and �̃t < K/2 hold, then we assume w.l.o.g. that q(s,z+i ) > 0 holds for
some i ∈ I . Due to the considered flow decomposition and Lemma 3.3, we now can decrease
q(P(s, z−i )) by ε > 0 and increase q(P(z+i , t)) by ε̃ > 0 such that both arc flows q̃(s,z+i ) and

q̃(z+i ,t) are positive, the potential drop	Pi (s,t) stays the same, and �̃ ≤ b holds. Consequently,

|M3| = 1 is satisfied for the modified solution (�̃, q̃, π̃) and its objective value φ̃ satisfies
φ̃ ≥ 1 − ε(K ), which is a contradiction to Lemma 4.9.

If �̃s < K/2 and �̃t = K/2 hold, then this and (1a) imply that q(z+i ,t) > 0 exists. Due to

the considered flow decomposition and Lemma 3.3, we can decrease q(P(z+i , t)) by ε > 0
and increase q(Pi (s, t)) by ε̃ with ε ≥ ε̃ > 0 such that the potential drop 	Pi (s,t) stays the
same, �̃ ≤ b, and q̃(s,z+i ) and q̃(z−i ,t) are positive. Consequently, |M3| = 1 is satisfied for

the modified solution (�̃, q̃, π̃) and its objective value φ̃ satisfies φ̃ ≥ 1 − ε(K ), which is a
contradiction to Lemma 4.9. Analogously we handle the case �̃s = K/2 and �̃t < K/2. 
�

We now consider the counterpart of Lemma 4.12, i.e.,
∣
∣
∣

{
i ∈ I : q(s,z+i ) ≥ ε(K ), q(z+i ,t) ≥ ε(K )

}∣
∣
∣ ≥ 2. (18)

Lemma 4.13 Let Partition instance S be infeasible. Let

ε(K ) = 1 −
(
K − 1

8K

K

)2

∈ (0, 1)

and (�, q, π) be a solution of (5) that satisfies (18). Then, the corresponding objective value
φ satisfies

φ < 1 − ε(K )2

K 2 < 1.
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Proof We assume for a contradiction that a solution (�, q, π) of (5) satisfying (18) with an
objective value φ ≥ 1 − ε(K )2/K 2 exists. From Lemma 4.8, it follows φ < 1. Further,
Condition (18), which is satisfied by (�, q, π), implies that two indices l �= r ∈ I exist such
that

q(s,z+l ) ≥ ε(K ), q(z+l ,t) ≥ ε(K ), q(s,z+r ) ≥ ε(K ), q(z+r ,t) ≥ ε(K )

hold. This and
q2
(s,z+l )

+ q2
(z+l ,t)

= φS2l , q2
(s,z+r )

+ q2
(z+r ,t)

= φS2r ,

lead, analogously to (13), to the inequalities

q(s,z+l ) + q(z+l ,t) >
√

φSl + ε(K )2

2K
, q(s,z+r ) + q(z+r ,t) >

√
φSr + ε(K )2

2K
. (19)

We now consider the partition M1, M2, and M3 of I according to (9). Consequently, (11) is
satisfied. From this, flow conservation (1a), and booking b, it follows

K

2
≥

∑

i∈M1∪M3

q(s,z+i ) ≥ √
φ

∑

i∈M1

Si +
∑

i∈M3

q(s,z+i ),

K

2
≥

∑

i∈M2∪M3

q(z+i ,t) ≥ √
φ

∑

i∈M2

Si +
∑

i∈M3

q(z+i ,t).

Combining the previous inequalities,
∑

i∈I Si = K , Observation 4.4, (19), and
φ ≥ 1 − ε(K )2/K 2 lead to

K ≥ √
φ

∑

i∈M1∪M2

Si +
∑

i∈M3

(
q(s,z+i ) + q(z+i ,t)

)

≥ √
φ

∑

i∈I\{l,r}
Si + q(s,z+l ) + q(z+l ,t) + q(s,z+r ) + q(z+r ,t)

= √
φ(K − Sr − Sl) + q(s,z+l ) + q(z+l ,t) + q(s,z+r ) + q(z+r ,t)

>
√

φ(K − Sr − Sl) + √
φSl + ε(K )2

2K
+ √

φSr + ε(K )2

2K

= √
φK + ε(K )2

K
.

This leads to the contradiction
K − ε(K )2

K

K
= 1 − ε(K )2

K 2 >
√

φ ≥ φ

because 1 > φ ≥ 1 − ε(K )2/K 2 > 0 holds. 
�
Lemmas 4.12 and 4.13 prove that if Partition instance S is infeasible, then ϕ+

st (b) can be
bounded above by M(K ) given as

M(K ) = max

{

1 − ε(K ) + ε(K )2, 1 − ε(K )2

K 2

}

, ε(K ) = 1 −
(
K − 1

8K

K

)2

,

where the coding length of M(K ) is polynomially bounded above by the coding length of the
given Partition instance. In the following two lemmas, we prove an analogue statement for
the case that the flow is not necessarily nonnegative, i.e., we consider the general maximum
potential-difference problem (2) w.r.t. (s, t). To this end, M(K ) and ε̃(K ) = (1 − M(K ))/5
come into play; see (3). Moreover, we need the following auxiliary Lemma.
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Lemma 4.14 Let Partition instance S be infeasible. Let (�, q, π) be an optimal solution of (2)
w.r.t. (s, t) with objective value φ > 0. Further, there is at least one arc a ∈ A with negative
arc flow qa < 0. Then, for all i ∈ I , the inequalities∣

∣
∣q(s,z+i )

∣
∣
∣ ≤ Si ,

∣
∣
∣q(z+i ,t)

∣
∣
∣ ≤ Si , (20)

hold.

Proof Let (�, q, π) be an optimal solution of (2)w.r.t. (s, t) that satisfies the requirements. For
all i ∈ I , the inequality q(z+i ,z−i ) ≥ 0 holds due to the structure of graph G(Part). Moreover,
for all i ∈ I , at least one of the arc flows q(s,z+i ) and q(z+i ,t) is positive due to φ > 0.

For every i ∈ I for which either q(s,z+i ) < 0 or q(z+i ,t) < 0 holds, the flow bounds (20)
follow from the graph structure of G(Part), (1a), and the considered booking b. From the
requirements, it further follows that there is at least one index l ∈ I forwhich either q(s,z+l )< 0
or q(z+l ,t) < 0 holds and thus, flow bounds (20) are satisfied for this index l. Consequently,

φ = πs − πt = 1

S2l
q(s,z+l )

∣
∣
∣q(s,z+l )

∣
∣
∣ + 1

S2l
q(z+l ,t)

∣
∣
∣q(z+l ,t)

∣
∣
∣ < 1,

is satisfied, where the second equality follows from (1b). Furthermore, the last inequality is
satisfied since at least one of the summands is negative and the flow bounds (20) are satisfied
for l. Thus, φ < 1 holds.

Moreover, for every i ∈ I with q(s,z+i ) ≥ 0 and q(z+i ,t) ≥ 0, Conditions (1b) and φ < 1
lead to

1 > φ = 1

S2i
q2
(s,z+i )

+ 1

S2i
q2
(z+i ,t)

,

which implies that the flow bounds (20) are satisfied for the considered index i . 
�
Lemma 4.15 Let Partition instanceS be infeasible and n ≥ 3 denotes the number of elements
of S. Let M(K ) and ε̃(K ) be given as in (3) and (�, q, π) be an optimal solution of (2)
w.r.t. (s, t) with objective value φ. If this solution satisfies |qa | ≤ ε̃(K )/n for each a ∈ A
with qa < 0, then

φ < M(K ) + 4ε̃(K ) < 1

holds.

Proof We assume for a contradiction that an optimal solution (�, q, π) for (2) w.r.t. (s, t)
with objective value φ that satisfies the requirements, explicitly |qa | ≤ ε̃(K )/n for a ∈ A
with qa < 0, exists and φ ≥ M(K ) + 4ε̃(K ) holds.

If qa ≥ 0 holds for all a ∈ A, then this is a contradiction to Lemma 4.12 or 4.13 due to
the objective value φ ≥ M(K ) + 4ε̃(K ).

Now at least one arc a ∈ A satisfies qa < 0. From the graph structure of G(Part) and
booking b, it follows q(z+i ,z−i ) ≥ 0 for all i ∈ I . Since φ > 0 and (1b), for every i ∈ I at
least one arc flow q(s,z+i ) or q(z+i ,t) is positive. Consequently, at most n arcs with negative
flow exist. Moreover, from Lemma 4.14, it follows that the flow bounds (20) are satisfied for
i ∈ I . Additionally, q(s,z+i ) > ε̃(K ) or q(z+i ,t) > ε̃(K ) holds for every i ∈ I because of

q(s,z+i )

∣
∣
∣q(s,z+i )

∣
∣
∣ + q(z+i ,t)

∣
∣
∣q(z+i ,t)

∣
∣
∣ = φS2i ≥ φ ≥ M(K ) + 4ε̃(K ) > 2ε̃(K )2.

We now consider a flow decomposition of Lemma 3.1 for (�, q). For every arc a ∈ A
with qa < 0, we delete every positive flow q(P(u, v)) where the path P(u, v) satisfies
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χa(P) = −1. Consequently, we obtain q̃a ≥ 0 for a ∈ A with corresponding nomination
�̃. Due to the chosen flow decomposition and maximally n arcs a with negative arc flow,
satisfying |qa | ≤ ε̃(K )/n, exist, this modification decreases an arbitrary arc flow by at most
n(ε̃(K )/n) = ε̃(K ). Further, the flow bounds (20) still hold for i ∈ I .

If eitherq(s,z+i ) > ε̃(K )orq(z+i ,t) > ε̃(K )holds, thenwe assumew.l.o.g. thatq(s,z+i )>ε̃(K )

is satisfied. This leads to

q̃2
(s,z+i )

+ q̃2
(z+i ,t)

≥
(
max

{
0, q(s,z+i ) − ε̃(K )

})2 +
(
max

{
0, q(z+i ,t) − ε̃(K )

})2

= q2
(s,z+i )

− 2q(s,z+i )ε̃(K ) + ε̃(K )2

≥ q2
(s,z+i )

− 2q(s,z+i )ε̃(K ) + q2
(z+i ,t)

≥φS2i − 2q(s,z+i )ε̃(K )

≥ φS2i − 2Si ε̃(K ) ≥ (M(K ) + 4ε̃(K ))S2i − 2Si ε̃(K )

≥ M(K )S2i .

If q(s,z+i ) > ε̃(K ) and q(z+i ,t) > ε̃(K ) hold, then this leads to

q̃2
(s,z+i )

+ q̃2
(z+i ,t)

≥
(
max

{
0, q(s,z+i ) − ε̃(K )

})2 +
(
max

{
0, q(z+i ,t) − ε̃(K )

})2

= q2
(s,z+i )

− 2q(s,z+i )ε̃(K ) + ε̃(K )2 + q2
(z+i ,t)

− 2q(z+i ,t)ε̃(K ) + ε̃(K )2

≥ φS2i − 2q(s,z+i )ε̃(K ) − 2q(z+i ,t)ε̃(K )

≥ φS2i − 4Si ε̃(K ) ≥ (M(K ) + 4ε̃(K ))S2i − 4Si ε̃(K )

≥ M(K )S2i .

Thus, the modification decreases the potential drop 	Pi (s,t), but it is at least M(K ). Further-
more, q̃ ≥ 0 holds and we only decreased flows of q to obtain q̃ . Consequently, (�̃, q̃)

satisfy (1a), (5b), and (5c). Due to this and �(s,z+i ) = �(z+i ,t) = 1/S2i , we can apply
Lemma 4.10 and obtain a feasible point of (2) w.r.t. (s, t) with qa ≥ 0 and objective value
of at least M(K ). But this is a contradiction to Lemma 4.12 or 4.13. 
�

We now prove that if Partition instance S is infeasible and in an optimal solution of (2)
w.r.t. (s, t) at least one negative arc flow has an absolute flow of at least ε̃(K )/n, then we can
bound the objective of (2) as follows.

Lemma 4.16 Let Partition instance S be infeasible. Further, let ε(K ), M(K ), and ε̃(K ) be
given as in (3). Moreover, let (�, q, π) be a feasible point of (2) w.r.t. (s, t) such that at least
one arc a ∈ A satisfies qa < 0 and |qa | ≥ ε̃(K )/n. Then, the corresponding objective value
φ satisfies

φ < 1 − ε̃(K )2

K 2n2
.

Proof We assume for a contradiction that a solution (�, q, π) of (2) w.r.t. (s, t)with objective
value

φ ≥ 1 − ε̃(K )2

K 2n2

satisfies the requirements. Consequently, an arc a ∈ A with qa < 0 and |qa | ≥ ε̃(K )/n
exists. We now consider the case that a = (s, z+i ) for some i ∈ I holds.
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Due to Lemma 4.14 and the value of φ > 0, the flow bounds 0 ≤ q(z+i ,t) ≤ Si are satisfied.
This,

−q2
(s,z+i )

+ q2
(z+i ,t)

= φS2i ≥
(

1 − ε̃(K )2

K 2n2

)

S2i ,

and Si < K , lead to the contradiction

1 − ε̃(K )2

K 2n2
≤

q2
(z+i ,t)

− q2
(s,z+i )

S2i

≤ 1 −
q2
(s,z+i )

S2i
≤ 1 −

(
ε̃(K )
n

)2

S2i

< 1 −
(

ε̃(K )
n

)2

K 2 = 1 − ε̃(K )2

K 2n2
.

Analogously to the above, it follows the case of a = (z+i , t) for some i ∈ I . 
�
Combining now the results of Lemmas 4.12–4.16, we can bound the objective of (2)

w.r.t. (s, t) by the polynomial T (K ) given by (3b).

Lemma 4.17 Let Partition instance S be infeasible. Let M(K ) and ε̃(K ) be given as in (3).
Then,

ϕst (b) < max

{

1 − ε̃(K )2

K 2n2
, M(K ) + 4ε̃(K )

}

= T (K ) < 1

holds.

Proof Let (�, q, π) be an optimal solution of (2) w.r.t. (s, t). If qa ≥ 0 for a ∈ A holds, then
the claim follows from Lemmas 4.12 and 4.13. If an arc a ∈ A with qa < 0 exists, then the
claim follows from Lemmas 4.15 and 4.16. 
�

Since the feasibility of a booking can be characterized by the nominations with maxi-
mum potential-difference, see (4), the previous lemma connects the feasibility of Partition
instance S to (2) w.r.t. (s, t).

Lemma 4.18 Partition instanceS is feasible if and only ifϕst (b) > T (K ) is satisfied. Further,
the booking b is infeasible if and only if S is feasible.

Proof If Partition instance S is infeasible, then from Lemma 4.17 it follows
ϕst (b) < T (K ) < 1. If S is feasible, then Lemma 4.3 implies ϕst (b) ≥ 1 > T (K ),
since T (K ) < 1.

Consequently, from Corollary 4.2 it follows that booking b is infeasible if and only if S
is feasible. 
�

Finally, we prove our main result that deciding the feasibility of a booking (FB) is coNP-
hard.

Theorem 4.19 Deciding the feasibility of a booking (FB) is coNP-hard.

Proof Deciding the feasibility of a booking is coNP-hard due to Lemma 4.18. 
�
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We further note that deciding whether there exists a nomination with maximum potential-
difference (MPD), see (2), of at least T (K ) is NP-hard. Moreover,MPD is still NP-hard with
the additional restriction of nonnegative flow; see (5).

Lemma 4.20 Computing a maximum potential-difference nomination (MPD) is NP-hard.
Further, MPD with the additional restriction of nonnegative flow (5c) is also NP-hard.

Proof The NP-hardness of MPD follows from T (K ) < 1 and Lemmas 4.18 and 4.3.
Moreover, MPD with the additional restriction of nonnegative flow is NP-hard, which

follows from the combination of Lemma4.3, its proof, Lemmas 4.12 and 4.13, and T (K ) < 1.

�

We close this section with a brief remark why the reduction of this section is not applicable
to linear potential-based flows, i.e., considering qa instead of qa |qa | in (1b). For the latter,
we know that FB is in P; see Labbé et al. (2019).

The hardness proof of FB w.r.t. nonlinear potential-based flow model (1) is based on
Observation 4.4. It implies that if q(s,z+i ) > 0 and q(z+i ,t) > 0 hold, then we need strictly

more flow in terms of q(s,z+i ) + q(z+i ,t) to obtain a pressure drop of φ, i.e., �(s,z+i )q
2
(s,z+i )

+
�(z+i ,t)q

2
(z+i ,t)

= φ, in contrast to the case if one of the latter flows is zero. This does not

apply if we consider a linear potential-based flow model. Thus, the previous reduction from
Partition to the infeasibility of a booking is not applicable for a linear potential-based flow
model.

5 Conclusion

In this paper, we prove that deciding the feasibility of a booking (FB) in the European entry-
exit gas market considering a nonlinear potential-based flow model is coNP-hard in general
graphs. To this end, we reduced Partition to the infeasibility of a booking. This is the first
hardness result for FB w.r.t. potential-based flows, since the latter is in P for linear potential-
based flows in general graphs; see Labbé et al. (2019). It is also in P for trees and a single-cycle
network considering a nonlinear potential-based flow model; see Labbé et al. (2019, 2021),
Robinius et al. (2019). Thus, it is finally shown that FB is hard and a first border separating
the easy from the hard variants of the problem is given. Hence, main parts of the complexity
regarding the considered problem are now understood; see Fig. 1 for an overview. Moreover,
we prove that computing a nomination with the maximum potential-difference is NP-hard
even if we can determine the flow direction a priori. However, an open question is if we
can sharpen the line that separates the easy from the hard cases of FB. The proof of our
complexity results is strongly based on graphs with multiple cycles that share common arcs.
Consequently, a reasonable next case could be the class of cactus graphs since for trees and
a single cycle the considered problem is in P and for general graphs it is coNP-hard.

Furthermore, it remains open if FB is in coNP, i.e., it is open if there is an infeasibility
certificate which coding length is polynomial in the coding length of the input and that
can be checked in polynomial time. Since we consider a nonlinear potential-based flow
model, this task seems to be challenging. This is stressed by Example 4.3 in the recent
PhD thesis Plein (2021), which shows that even for a rational nomination the corresponding
flows can be irrational in our nonlinear potential-based flow model. This result does neither
show that FB is in coNP nor that it is not in coNP. However, as discussed in Plein (2021), it
implies that any infeasibility certificate of polynomial size does not include possibly irrational
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flows corresponding to a nomination within our nonlinear potential-based flow model. Thus,
we cannot directly use the potential-difference maximizing nominations and flows of (2),
which are used to characterize the feasibility of a booking, as an infeasibility certificate.
Consequently, it may be necessary to develop new characterizations for feasible bookings to
address if FB is in coNP, which is out of scope of this paper. However, for capacitated linear
flows deciding the feasibility of a booking is in coNP, see Hayn (2016), which is based on the
fact that for a rational nomination the corresponding flows are always rational for capacitated
linear flows.

Moreover, it remains an open question if FB is strongly NP-hard since we reduced the
weaklyNP-hard Partition problem to the infeasibility of a booking.An answer to this question
also may reveal whether there is an pseudo-polynomial algorithm that decides the feasibility
of a booking.

Our complexity analysis shows that FB is indeed a challengingproblem for the transmission
system operator (TSO) in the European entry-exit gas market system. Moreover, FB has to
be solved by the TSO whenever a booking contract is signed.

Thus, the development of effective methods for FB offers new possibilities for future
research. As a consequence of our complexity analyses, it might be a smart choice to
consider approximation algorithms for deciding the feasibility of a booking in general graphs.
Especially, the development of approximation algorithms to compute a maximum potential-
difference nomination (MPD) directly allows to decide the feasibility of a booking up to a
certain tolerance.
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