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Abstract
Viability is the ability of a supply chain (SC) to maintain itself and survive in a changing
environment through a redesign of structures and replanning of performance with long-term
impacts. In this paper, we theorize a new notion—the viable supply chain (VSC). In our
approach, viability is considered as an underlying SC property spanning three perspectives,
i.e., agility, resilience, and sustainability. The principal ideas of the VSCmodel are adaptable
structural SC designs for supply–demand allocations and, most importantly, establishment
and control of adaptive mechanisms for transitions between the structural designs. Further,
we demonstrate how theVSC components can be categorized across organizational, informa-
tional, process-functional, technological, and financial structures. Moreover, our study offers
a VSC framework within an SC ecosystem. We discuss the relations between resilience and
viability. Through the lens and guidance of dynamic systems theory, we illustrate the VSC
model at the technical level. The VSC model can be of value for decision-makers to design
SCs that can react adaptively to both positive changes (i.e., the agility angle) and be able to
absorb negative disturbances, recover and survive during short-term disruptions and long-
term, global shocks with societal and economical transformations (i.e., the resilience and
sustainability angles). The VSC model can help firms in guiding their decisions on recovery
and re-building of their SCs after global, long-term crises such as the COVID-19 pandemic.
We emphasize that resilience is the central perspective in the VSC guaranteeing viability of
the SCs of the future. Emerging directions in VSC research are discussed.
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1 Introduction

Supply chains (SC) are a backbone of economies and society, and largely interact with
nature. The interactions in these SC ecosystems are very complex and triggered by mutual
interrelations and feedbacks between SCs, nature, society, and the economy. Being initially
developed in the veins of leanness and agility, and their combination as leagility (Christopher
andTowill 2000; Lee 2004;Goldsby et al. 2006; Eckstein et al. 2015;Gunasekaran et al. 2016;
Dubey et al. 2018; Fadaki et al. 2020), SC research has been extended by the perspectives
of resilience (Christopher and Peck 2004; Blackhurst et al. 2005; Tang 2006; Sawik 2011;
Spiegler et al. 2012; Dubey et al. 2019a; Hosseini et al. 2019a; Wood et al. 2019) and
sustainability (Seuring 2013; Brandenburg and Rebs 2015; Dubey et al. 2015; Allaoui et al.
2019) followed by the advanced utilization of digital technologies and Industry 4.0 (Wamba
et al. 2015; Ivanov et al. 2016; Choi et al. 2018; Dolgui et al. 2020, 2020a; Dubey et al.
2019b; Ivanov et al. 2019b; Ghadge et al. 2020; Queiroz et al. 2020) (Fig. 1).

The current state-of-the-art state-of-the-art results in SCmanagement stem from a number
of remarkable transformations. In Fig. 1, these transformations are framed in a historical
perspective. Being lean, responsive, and globalized in structural designs, SCs have also
learned a great deal about how to act in line with nature and societal interests (i.e., become
sustainable), how to strengthen their resilience during disruptions triggered by severe natural
or man-made disasters, how to recover and manage the ripple effects (Ivanov et al. 2014a, b;
Dolgui et al. 2018; 2020b), and how to utilize the advantages of digital technologies in SC
management.

However, in 2020, the leagility, resilience, and sustainability of SCs have been put to
the test. SCs worldwide have experienced an unprecedented series of shocks caused by the
COVID-19 virus outbreak and global pandemic, a new instigator of SC disruptions quite
unlike any seen in recent times (Chesbrough 2020; Choi 2020; Currie et al. 2020; Ivanov
2020a; Ivanov and Dolgui 2020b; Ivanov and Das 2020; Sarkis et al. 2020). The COVID-
19 outbreak and global pandemic have immensely affected all areas of the economy and
society raising a series of completely novel decision-making settings for SC researchers and
practitioners:

Fig. 1 Transformation of major SC management research angles over time
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– Have the established SC resilience measures (e.g., anticipatory and coping mechanisms
such as risk mitigation inventories, subcontracting capacities, backup supply and trans-
portation infrastructures, omni-channel anddata-driven, real-timemonitoring andvisibility
systems) (Craighead et al. 2007; Ho et al. 2015; Hosseini et al. 2019) helped the companies
to survive and recover through the pandemic?

– Could the SCs quickly adapt and serve to secure the minimal survival needs of society and
economies (WEF 2020)?

– How can digital technologies help mitigate the effects of severe risks during globally
propagating disruptions such as epidemic outbreaks (e.g., COVID-19) disrupting global
SCs (Araz et al. 2020; Ivanov 2020a)?

For some SCs, demand has drastically increased and supply was not able to cope with that
situation (e.g., facemasks, hand sanitizer, disinfecting spray). As such, the question ofmarket
and society survivability was raised. For other SCs, demand and supply have drastically
dropped resulting in production stops (e.g., automotive industry), the danger of bankruptcies,
and the necessity of governmental supports. Here the questions of SC survivability again
arose. It is evident that both of these questions go beyond the existing state of the art in SC
leagility, sustainability, and resilience because they cannot be resolved individually within
each of these perspectives and require integrated frameworks and an extension when long-
term, severe global disruptions affect all elements of SC ecosystems (i.e., businesses, society,
nature, and economies).

Despite the considerable progress in the state of the art and practical applications in each of
the individual frameworks (i.e., agile, lean, sustainable, resilient, and digital SC) (Altay et al.
2018; Bier et al. 2020; Blackhurst et al. 2011; Brandenburg and Rebs 2015; Choi et al. 2018;
Das et al. 2006; Dolgui et al. 2018; Dubey et al. 2015; Govindan et al. 2016; DuHadway
et al. 2019; Hosseini et al. 2019a; Ivanov 2018b; Ivanov and Dolgui 2019; Ivanov et al.
2019a; Tang and Veelenturf 2019; Wamba et al. 2017), there appears to be a lack of a holistic
approach around these individual frameworks which could conceptually guide their roles and
interplays as an integrated whole. In addition, a large body of humanitarian logistics and SC
literature can be considered to close the existing research gap in the literature on commercial
SC disaster-tolerance (Dubey et al. 2019c, d, Fosso Wamba 2020). Besides, the issues of
SC survivability have not been studied intensively but were recognized as crucial topics
following the COVID-19 pandemic propagations (Choi et al. 2020; Haren and Simichi-Levi
2020; Ivanov 2020a, b; Ivanov and Dolgiu 2020; Ivanov and Das 2020; Ni et al. 2020).

The example of the COVID-19 pandemic shows that in cases of extraordinary events,
SC resistance to disruption needs to be considered at the scale of survivability or viability
to avoid SC and market collapses and secure the provision of goods and services. Accord-
ing to Ivanov and Dolgui (2020b), “viability is a behavior-driven property of a system with
structural dynamics. It considers system evolution through disruption-reaction balancing in
the open system context. The viability analysis is survival-oriented at a long-term scale.”
Ivanov (2018b, p. 59) defines SC viability as an “ability to survive and exist after a disruption
[….] with the re-design of the supply chain structure and re-planning economic performance
with long-term impacts.” This SC ability to meet the demands of surviving in a changing
environment follows the notions of the Viable System Model by Beer (1985) developed for
intercompany perspective and ecology modeling angles (Aubin 1991). Viability in this con-
text can be understood considering approaches in ecological modeling. Ecological modeling
is a research area concerned with the analysis of ecosystems in dynamics (Gross et al. 2004,
2009). Recent literature points to a resemblance of SCs to ecosystems (Byrne et al. 2018;
Gross et al. 2018; Demirel et al. 2019; Nair and Reed-Tsochas 2019).
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To close the research gaps described above, in this study we theorize a new notion—the
viable supply chain (VSC). Our contribution lies in conceptualization of a VSC model span-
ning three perspectives, i.e., agility, resilience, and sustainability. The principal ideas of the
VSC model are adaptable structural SC designs for supply–demand allocations and, most
importantly, establishment and control of adaptive mechanisms for transitions between the
structural designs. Further, we demonstrate how the VSC components can be categorized
across organizational, informational, process-functional, technological, and financial struc-
tures. Moreover, our study offers a VSC framework within an SC ecosystem. Through the
lens and guidance of dynamic systems theory, we illustrate the VSC model at the technical
level. The VSC model can be of value for decision-makers to design SCs that can react
adaptively to both positive changes (i.e., the agility angle) and be able to absorb negative
disturbances, recover and survive during short-term disruptions and long-term, global shocks
with societal and economical transformations (i.e., the resilience and sustainability angles).
The VSC model can help firms in guiding their decisions on recovery and re-building of
their SCs after global, long-term crises such as the COVID-19 pandemic. We emphasize that
resilience is the central perspective in the VSC guaranteeing viability of the SCs of the future.
Emerging directions in VSC research are discussed.

The rest of this study is organized as follows. In Sect. 2, we elaborate on the viable SC
ecosystem framework, discuss the relations between SC resilience and viability, describe the
VSC model, and present the multi-structural view of the VSC model. In Sect. 3, we illustrate
the SC viability formation through the lens of dynamic systems theory. Section 4 is created
to map out some directions of a future research agenda in VSCs. We conclude the paper in
Sect. 5 by summarizing the most important insights.

2 Viable supply chainmodel

2.1 Definition

The concept of viability has been extensively developed in ecology, biological systems (Aubin
1991) and cybernetics (Beer 1985). Viability is the highest analysis level for SC reactions to
disturbances which is based upon stability, robustness and resilience as follows:

• Stability The ability to return to a pre-disturbance state and ensure a continuity (Ivanov
and Sokolov 2013; Demirel et al. 2019)

• Robustness The ability to withstand a disruption (or a series of disruptions) to maintain
the planned performance (Nair and Vidal 2011; Simchi-Levi et al. 2018)

• Resilience The ability to withstand a disruption (or a series of disruptions) and recover the
performance (Spiegler et al. 2012; Hosseini et al. 2019a; Zhao et al. 2019).

• Viability The ability to maintain itself and survive in a changing environment over a long
period of time through a redesign of the structures and replanning of economic performance
with long-term impacts (Ivanov 2018b, p. 59; Ivanov and Dolgui 2020b).

Generally speaking, SC reactions to disturbances have beenmostly studied at the semantic
network analysis level. Network topologies, structural properties, complexity factors, and
node/arc criticality dominate this research stream (Basole and Belami 2014; Kim et al. 2015;
Brintrup et al. 2015; Sawik 2017; Macdonald et al. 2018; Yoon et al. 2018; Scheibe and
Blackhurst 2018; Pavlov et al. 2018; Ojha et al. 2018; Ivanov 2018a; Ivanov et al. 2019a;
Dolgui et al. 2018; Ivanov and Dolgui 2019; Li et al. 2019; Pavlov et al. 2019a, b).
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The major principles of viability modeling across the disciplines are survival orientation,
the absence of explicit time windows in analysis, and ecosystem focus. As such, we define a
VSC as follows:

Viable supply chain (VSC) is a dynamically adaptable and structurally changeable
value-adding network able to (i) react agilely to positive changes, (ii) be resilient to
absorb negative events and recover after the disruptions, and (iii) survive at the times of
long-term, global disruptions by adjusting capacities utilizations and their allocations
to demands in response to internal and external changes in line with the sustainable
developments to secure the provision of society and markets with goods and services
in long-term perspective.

This understanding of VSC spans various management and organizational principles from
the systems, information, organization, and network theories and can be considered through
the lens of these theories. Beer’s Viable System Model (Beer 1985) allows us to under-
stand how interconnected operations communicate with changing market environments and
meta-systems such as markets, policy, and society. Through the lens of viability, the Beer’s
model builds upon an analogy with the human organism as the most advanced, survival-
oriented complex system. According to Ashby’s law of requisite variety (Ashby 1956), the
situational variety should be balanced by the response variety of the controller or “only
variety absorbs variety.” This law can be considered as one of the VSC pillars in the develop-
ment of highly diversified and decentralized systems able to respond to increasing variety in
the external systems such as new market models (e.g., omnichannel), new business models
(e.g., circular economy), positive disruptions (e.g., innovations), and negative disruptions
(e.g., natural catastrophes), to build resilient and sustainable operational systems. Moreover,
VSC poses open system context analysis. An open system (Mesarovic and Takahara 1975;
Casti et al. 1979) is a system that has interactions with the environment and evolves based on
these interactions. The major characteristics of open systems are control, self-adaptation, and
self-organization (von Bertallanfy 1969), which can be seen as future-leading management
principles for VSC.

2.2 Viable supply chainmodel

In this section, we present the VSC model. We begin with a framework of an SC ecosystem
that spans three feedback cycles of leagility, resilience, and survivability (Fig. 2). Subse-
quently, the VSC model is presented (Fig. 3). We demonstrate how the VSC components
can be categorized across organizational, informational, process-functional, technological,
and financial structures (Fig. 4). Finally, we discuss on the relations between resilience and
viability at the generalized level.

2.2.1 Viable supply chain ecosystem framework

The VSC ecosystem framework is comprised of the following components (Fig. 2):

– the SC itself.
– the intertwined supply network (ISN), which is an “entirety of interconnected supply
chains which, in their integrity secure the provision of society and markets with goods and
services” (Ivanov and Dolgui 2020b).

– society
– nature
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Fig. 2 Viable supply chain ecosystem framework

– economy and governance
– digital SC, which—in a combination with the physical SC—represents a cyber-physical
system framing a digital SC twin (Panetto et al. 2019; Ivanov and Dolgui 2020a).

The VSC ecosystem framework in Fig. 2 is built around three feedback cycles:

– A positive feedback cycle (+), which refers to disruption-free SC operations with the main
objective to maximize profitability.

– A volatile feedback cycle (+)(−), which refers to disruptions and recovery within the SC
resilience scope with the main objective to restore system operations and performance,
and

– A survivability feedback cycle (−), which refers to the long-term, global crises with the
main objective to maintain the SC existence and to secure the provision of society with
the SC’s products or services.

An SC can be considered viable if it is able to maintain an ecosystem balance (i.e.,
achieve homeostasis) within all three feedback cycles. The positive cycle is concerned with
profitability, developments, investments, efficiency, agility, and responsiveness. This is the
time to use the advantages of technological developments, innovations, and market growth
to react to positive changes. The volatile cycle is concerned with sustaining and recovering
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Fig. 3 Viable supply chain model

from the disruptions to fulfill the demand. The cycle of survivability is intended to secure the
provision of economy and society with the products and services.

Within each of the three feedback cycles in the SC ecosystem, there are internal positive
and negative feedbacks. For example, the interactions of the SC and nature are concerned
with a positive cycle of using natural resources and a negative cycle of emissions as potential
contributors to climate change. The interaction with society results in positive feedbacks
such as technological innovations and workforce development although negative feedbacks
in terms of possible labor strikes (disruptions at SC resilience level) or global pandemics
(disruptions at SC survivability level) also exist.

In summary, the VSC framework integrates the angles of sustainability and resilience,
extending them by survivability, and offers a VSC model of interactions between SCs and
their ecosystems at the levels of profitability, resilience, and survivability.

2.2.2 Viable supply chain model

With the development of the VSCmodel, we argue in favor of multiple structural SC designs
for matching supply and demand according to the three feedback cycles of viable SC ecosys-
tem framework and, most importantly, establishment and control of adaptive mechanisms for
transitions between the structural designs. The rationale behind several structural designs for
matching supply and demand stems from three feedback cycles shown in Sect. 2.2.1, i.e.:

– agility-oriented cycle,
– resilience-oriented cycle, and
– survival-oriented cycle.

Most importantly, SCs need established and manageable adaptive mechanisms for fast
transitions between three structural designs (Fig. 3).

In Fig. 3, the VSC model is presented spanning four perspectives, i.e., structural view,
dynamic state view, performance view, and control view. The structural view represents
three SC structures which are activated through adaptation and recovery actions (note that
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the mathematical symbols used in Fig. 3 will be discussed later in Sect. 3). Here we follow
the research stream on structural SC adaptations (Allesina et al. 2010; Ivanov et al. 2010;
Pavlov et al. 2019a). The VSC structural view can be exemplified as follows. Consider a
car manufacturer with a global SC. This SC can have one structural design at the times
of economic stability and growth with full utilization of global sourcing, lean and agility
advantages, offering a broad variety of products to satisfy individual customer needs (Dubey
et al. 2018). The second structural design relates to the disruptions and maintaining the
resilience in case of singular, local events such as natural disasters, strikes, fires, etc. This
kind of design, i.e., the resilient SC builds around proactive and reactive capabilities such as
risk mitigation inventory, capacity flexibilities, and backup suppliers (Hosseini et al. 2019).
Finally, in cases of long-term, global disruptions such as COVID-19 pandemic, the third SC
design is adapted which might be characterized by production changeovers (e.g., production
of ventilators or masks instead of cars), reducing the product variety, radical changes in
supplier base and logistics, and production localization (Simchi-Levi 2020).

We note that it might be a very challenging task to operate and control three SC designs
simultaneously, both in terms of efficiency and complexity. In addition it is nearly impossible
to predict all possible future scenarios and respective SC designs for matching supply and
demand in these scenarios. As such, the main role in the VSC belongs to adaptation and
recovery mechanisms, their design, establishment, training and implementation. It might be
instructive for firms to “virtually” design and simulate the SC structures for resilience and
survivability, and focus on the adaptation trainings to practice the SC changeability.

The state view of the VSM represents the adaptation and recovery processes in time in a
two-dimensional state space. Both axes represent the transitions of SC structure (i.e., network
configuration) in time. The states X1 depict the leagility level, X2–the resilience level, and
X3–the survivability level. The horizontal transitions [e.g., between X1(S11) and X1(S12)]
reflect the SCconfiguration changeswithin the same layer (e.g., the leagility). These structural
transformations happen, for example, at the leagility level due to the re-designing a supplier
base or a distribution network based on profit improvements or cost reduction activities. The
vertical transitions between the states are triggered by adaptation against disruptions and
recovery. We note that the structures and states can have a single dimension representing
SC configurations in the form of a network design as composed of different organizations
and also be considered from the multi-structural point of view combining organizational,
informational, financial, product, and process-functional structures. We refer to the study by
Ivanov et al. (2010) for more information about multi-state, multi-structural SC design.

The performance view in Fig. 3 suggests an illustration of the SC performance reaction
to the stressors of different severity according to three levels coined in the structural view.
The technical part of the VSC model, i.e., the dynamic state and control views will be
discussed in detail in Sect. 3. All these four perspectives, i.e., structural view, dynamic state
view, performance view, and control view provide as an integral whole a comprehensive
description of a VSC model.

2.2.3 Multi-structural VSC view

Distinctively, the VSC elements can be presented from the multi-structural SC perspective
(Fig. 4).

Literature analysis allows for identifying intersections of leagility, resilience, sustainabil-
ity, and digitalization. Though these interrelations have not been brought into an integrity
so far which is a substantial and distinctive contribution made by the multi-structural VSC
view. The studies by Dubey et al. (2018), Gunasekaran et al. (2018), Ivanov and Dolgui
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Fig. 4 Multi-structural VSC view

(2019), and Zhong et al. (2017) elaborate on interrelations between lean, agile, and digital for
increasingly data-driven market responsiveness. Efficient and resilient SCs (so-called LCN,
low-certainty-need SCs) with the advantages of both lean and risk-resistant/recoverable SCs
have been studied by Ivanov and Dolgui (2019). The studies by Amindoust (2018), Ivanov
(2018a), Fahimnia et al. (2018), Fiksel (2003), and Ramezankhani et al. (2018) develop
an integrated resilience-sustainability perspective. Papadopoulos et al. (2017) and Manupati
et al. (2020) present the insights on the mutual relations between digital technologies and
sustainability. The interface of digital and resilient SC has been studied by Cavalcantea et al.
(2019); Choi et al. (2017); Choi and Lambert (2017); Dubey et al. (2019b); Ivanov (2017b);
Ivanov et al. (2019a), and Ivanov and Dolgui (2020b). Altay et al. (2018); Dubey et al.
(2019b), and Ivanov et al. (2018a) organized a debate around the intersections of flexibility,
agility and uncertainty and developed the discussion towards the roles of agility and flexibility
in achieving SC resilience. Fahimnia et al. (2014) and Dubey et al. (2015) pointed to empir-
ically revealed intersections of the leagility and sustainability. Galaitsi et al. (2020) present
empirical insights on the relations between systemperformance concepts such as adaptability,
agility, reliability, resilience, resistance, robustness, safety, security, and sustainability.
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The VSC model extends the existing state-of-the-art SC resilience knowledge and builds
upon the resilient mechanisms that have been extensively discussed and classified in the
studies by Bier et al. (2020), Ho et al. (2015), Hosseini et al. (2019a), Ivanov et al. (2017),
Melnyk et al. (2014), Pettit et al. (2019), Snyder et al. (2016), and Tukamuhabwa et al.
(2015), to name a few. In addition, literature on the SC ripple effect allows deducing the
SC viability antecedents and drivers (Ivanov et al. 2014a, b; Garvey et al. 2015; Dolgui
et al. 2018; Levner and Ptuskin 2018; Scheibe and Blackhurst 2018; Hosseini and Ivanov
2019; Ivanov et al. 2019a; Kinra et al. 2020; Li et al. 2019; Mishra et al. 2019; Sinha et al.
2020; Dixit et al. 2020; Dolgui et al. 2020b; Garvey and Carnovale 2020; Goldbeck et al.
2020; Li and Zobel 2020; Özçelik et al. 2020). Most of the SC resilience studies build
their arguments around capacity and inventory reservations as well as back-up suppliers to
cope with SC disruptions (Behzadi et al. 2018; Chen et al. 2011; Lücker et al. 2017, 2019;
Hosseini et al. 2019b; Ivanov and Rozhkov 2017; Paul et al. 2019; Paul and Rahman 2018;
Sawik 2016, 2019; Schmitt et al. 2017; Song et al. 2018; Spiegler et al. 2016, 2017; Yin and
Wang 2018; Yoon et al. 2018). Some studies extended the operational discussion toward the
product substitution and process/product modularity as mitigation and recovery policies (Lu
et al. 2011; Gupta and Ivanov 2020). In addition, a few studies investigated structural and
operational dynamics in the SC in an integrated manner (Ivanov and Sokolov 2019; Dolgui
et al. 2020b). Finally, the developments in digital technologies have been utilized in SC
resilience research (Baryannis et al. 2019; Dubey et al. 2019b; Ivanov et al. 2019b; Queiroz
et al. 2019; Ivanov and Dolgui 2020a; Fragapane et al. 2020) pointing to the contributions
of digital technology to SC viability in the areas of improving demand forecasting by data
analytics, production flexibility by additive manufacturing, and SC visibility using digital
twins.

2.3 On the relations between supply chain resilience and viability

After the publication of our recent study on the viability of intertwined supply networks
(Ivanov andDolgui 2020b) and throughout the review process of this article, we have had sev-
eral discussions with risk management and engineering experts on the relations of resilience
and viability. We now lay out some relevant aspects which can be considered. We note that
our discussion relates to SC resilience and viability, and not related to the resilience and
viability in general, since the understandings differ across the disciplines [e.g., engineering,
information, ecology, and medical sciences (Hosseini et al. 2016; Linkov and Kott 2019)].

To start, we suggest considering SC resilience definitions. For example, 13 different SC
resilience definitions are presented in (Hosseini et al. 2019). When summarizing these def-
initions, we can observe that resilience has been discussed in terms of withstanding the
disruptive events and recovery to a robust state of operations and normal performance. From
this analysis, we can conclude that resilience is the main part of SC viability. There is no
doubt that resilience will play a leading role guaranteeing viability of the SCs of the future.
Having said that, with viability we understand the following combination of features, i.e.:

– Evolution and adaptation of the SC structures and processes in time,
– Multiple feedback cycles (i.e., leagile states—disrupted states—survival states), and
– Survivability over time as the major assessment criterion.

As such, viability takes a more generalized perspective seeking to encompass different
conditions surrounding SCs over long time horizons and develop adaptive network structures
and strategies to guide the SCs facing both positive and negative changes in the environments.
One key issue in resilience is that it is mostly related to system reactions to negative events
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(e.g., absorb-recover-adapt). Viability considers both positive events (i.e., market growth,
profitability) and negative events (disruptions) because the SCs experience both positive and
negative events through their lifecycles. Resilience is a central and leading focus of viability
responsible for protection, adaptation and recovery. If a SC is able to withstand disruptions,
ripple effects and recover, this SC is resilient. If a resilient SC is able to maintain itself and
survive at a long-term perspective in changing environments over the whole lifecycle through
adaptation of supply–demand structures and performances, then we talk about a viable SC.
We note that an assessment of SC viability can be related to the ability of providing certain
products or services for markets and societies in the required scope and at a long-term scale.

Example 1 To illustrate, consider an example of an automotive SC. From the positions of
resilience, a car manufacturer can establish an SC with some backup facilities, inventory
buffers, flexible capacities, and a visibility control system to enable the robustness and
recovery against, e.g., severe natural disasters which may temporarily, adversely affect in-
and outbound material flows. The resilience would be assessed by a performance of the car
manufacturer, e.g., annual revenues or service level. From the positions of viability, the SC
of the car manufacturer should ensure leagility and profitability, be resilient and deliver the
mobility service to society at a long-term perspective.

Example 2 Another way to exemplify the relations between resilience and viability is to con-
sider a living organism. In our understanding, SC resilience is close to the role of immune
systems, and viability is the ability to survive over the whole life through absorbing negative
impacts with the help of a strong immune system and achieving performance by using posi-
tive chances. A strong immune system and acting in line with nature and society help human
beings achieving high performances. Similarly, the SC performance depends on the resilience
and sustainability. A weak immune system may result in performance degradation. Low SC
resilience, if a disruption is experienced, also results in profitability reductions, mismatches
of demand and supply, and destabilization of normal operations. Continuing the analogy,
immune systems of each human being are in a continuous interaction with the environment.
This property is reflected by viability in terms of utilizing positive feedbacks with the envi-
ronment (e.g., making profits in growing markets), sustaining against negative impacts (e.g.,
facility disruptions) and surviving in a case of substantial changes in the environments, e.g.,
global pandemics. Put simply: strong immune systems help the living organisms to live and
survive; strong resilience helps SCs to perform over the whole lifecycle and under different
positive and negative conditions, i.e. to be viable.

Remark on short- and long-term understanding of SC viability Viability is a convenient con-
cept to address both “acute” issues of surviving under very severe stressors such as global
pandemics and “chronic” concerns about guiding an SC through its whole lifecycle in the
long-term perspective.

3 Formal model of SC viability

In this section, we illustrate the VSC model using dynamic systems theory and SC structural
dynamics control approach (Ivanov and Sokolov 2010; Ivanov et al. 2010; Ivanov 2018b and
Ivanov and Sokolov 2019).

At the levels of structure and state dynamics (cf. Fig. 3), let S � {
Sχ , χ ∈ N

}
be the

set of SC structures formed through adaptation and recovery. In the example in Fig. 3, we
consider three structures S1 (χ � 1), S2 (χ � 2), and S3 (χ � 3). In a generalized case,
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N-structures can exist. The structures can be described in an interconnected way using a
dynamic alternative multigraph (Eq. 1):

Stχ �
〈
Bt

χ , Ft
χ , Zt

χ

〉
, (1)

where each point of time t belongs to an interval t ∈ (
T0, T f

]
; Bt

χ �
{
xt〈χ,l〉, l ∈ Lχ

}
is the

set of elements of the structure Stχ (i.e., suppliers and manufacturers in an SC design) at point
of time t; Ft

χ � { f t
<χ,l,l ′>, l, l ′ ∈ Lχ } is the set of arcs (i.e., logistics in an SC design) at

point of time t; Zt
χ � {zt

<χ,l,l ′>, l, l ′ ∈ Lχ } is the set of parameters that characterize the
elements in an SC design numerically (e.g., capacities and inventories) at point of time t.

The graphs of different structures are interdependent thus, for each operation, the following
maps should be constructed (Eq. 2):

MMt
<χ,χ ′> : Ft

χ → Ft
χ ′ . (2)

Composition of the maps can be also used at point of time t as shown in Eq. (3):

MMt
〈χ,χ ′〉 � MMt〈χ,χ1〉 ◦ MMt〈χ1,χ2〉 ◦ . . . ◦ MMt

〈χ ′′,χ ′〉. (3)

The adaptations of SC structures can be described with the help of multi-structural states
as the following inclusion (Eq. 4):

Sχ ⊆ Xt
1 × Xt

2 × Xt
3 × . . . × Xt

(n,m,k), χ � 1, . . . ,N, (4)

where n, m, k are the total numbers of SC structural states at the levels of leagility, resilience
and survivability, respectively.

Now we obtain the set of the SC multi-structural states in dynamics (5):

S � {
Sχ

} � {
S1(n,m,k), . . . ,SN(n,m,k)

}
. (5)

With the help of mapping, we now describe the allowable transitions between the states
both in adaptation and recovery directions (Eq. 6):

�t
<χ,χ ′> : Sχ → Sχ ′ . (6)

Assuming that each multi-structural state at time t ∈ (T0, T f ] is defined by a composition
(6), we now formulate the problem of VSC control over time as shown in Eqs. (7) and (8):

Jζ
(
Bt

χ , Ft
χ , Zt

χ , MMt
<χ,χ ′>,�t

<χ,χ ′>, t ∈ (T0, T f ]
)

→ extr
<Ut ,S

∗T f
χ >∈�(d)∪�(s)

, (7)

�(d) ∪ �(s) �
{〈

Ut , S
T f
δ

〉∣∣∣Rr̃

(

Xt
χ , Ft

χ , Zt
χ , MMt

〈χ,χ ′〉,�
t〈
δ̃,

˜̃
δ
〉

)

≤ ˜̃Rr̃ ;

Ut � �
t1〈δ1,δ2〉 ◦ �

t2〈δ2,δ3〉 ◦ . . . ◦ �
t2〈
δ̃,δ

〉

}

, (8)

where U t are control actions for SC adaptation and recovery, Jζ are SC performance indi-
cators (e.g., costs and service level), ζ ∈ {1, . . . ,
} is the set of the performance indicators,
�(d) ∪ �(s) is the set of dynamic (d) and static (s) alternatives of SC network designs, r̃ ∈{
1, . . . , R̃

}
is the set of material and information processes, Rr̃ is the set of constraints on

material and information processes; ˜̃Rr̃ are constants, which are known and t � (T0, T f ] is
time horizon. Other symbols have been explained above and used in line with (Ivanov and
Sokolov 2010).
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At the control level (cf. Fig. 3), the SC input–output dynamics is described by state vector
ẋp1(t), control vector u(t), perturbation vector ξ (t), recovery control vector uc(t), and output
performance vector y(t). For the general case this dynamic can be described as shown in
Eqs. (9) and (10):

ẋp1(t) � f (x(t), u(t), ξ(t), α, β, t) (9)

y(t) � f (x(t),u(t), ξ(t), α, β, t) (10)

The state control vector ẋp1(t) represents the SC according to the state dynamics shown
in the upper, right-hand part of Fig. 4. The y(t) is measured by a monitoring system F with
regards to compliance with the input state variables xpl (t) Based on information feedbacks
in F and disruption data ξ , deviation of output performance from plan ε � ∥∥y′(t) − ypl (t)

∥∥
is computed, and an adapted input uc(t) is generated for recovery control actions uc(t) .

SC performance evaluation can be described by Eq. (11):

J	(x(t),u(t), ξ(t), β, t) � ‖J‖T (11)

In the right-hand part of Fig. 4, we can distinguish four control scenarios (corresponding
to arrows outgoing from the F-block and the SC states):

• the planned operation policy x � f(t, x, u) can be executed despite a disruption (i.e., the
stability case)

• the planned operation policy x � f(t, x, u) can be executed despite a disruption using
some SC redundancy (i.e., the robustness case)

• disruptions affect the SC operations, the components of JT
�
deviate from the plan, but the

x � f(t, x, u) can be recovered (i.e., the case of resilience)
• disruptions affect the SCoperations, the components of JT

�
deviate fromaplan, no recovery

program v(t) can be found to offer an updated xσ � f(t, x, v) in order to achieve the
planned JT

�
. In this case, the SC viability should be analysed.

For further technical details of the SC viability control, we refer to the studies on the
SC multi-structural control (Ivanov et al. 2010), attainable sets for SC viability assessment
(Ivanov et al. 2018b), and recovery control (Ivanov and Sokolov 2019).

4 Future research directions

Future research in SC viability can be organized aroundmultiple perspectives. In this section,
we summarize several future research directions.

4.1 Intertwined supply networks (ISN)

SCs evolve towards ISNs (Ivanov and Dolgui 2020b) that are characterized by structural
dynamics. Different from linearly directed SCs with static structures, the firms in ISNs may
exhibit multiple behaviors in buyer–supplier relations (i.e., behavioral dynamics) in intercon-
nected or even competing SCs simultaneously. These new dynamic, co-evolving structures
require rethinking of some traditional analysis concepts and could be very interesting in regard
to SC viability. For example, the COVID-19 pandemic clearly showed complex, and at times
unforeseen interconnections between industrial, healthcare, pharmaceutical, and food SCs.
As such, novel, cross-sectoral and adaptable SC designs can be examined in future. This
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research avenue will be supplemented by investigations in flexible production/service tech-
nologies and human–robot collaborations for timely reactions to changing environments and
switching between three feedback cycles of the VSC model (e.g., a switch from car man-
ufacturing at “normal” times to ventilator production during a pandemic). Obviously, these
adaptable structures and technologies are expected to be supported by innovative product and
facility designs engaging all actors in the SC ecosystems from public and private sectors.

4.2 Digital twins and data-driven technologies

Another promising research area for SC viability is the utilization of digital, data-driven
technologies to uncover their potential in decision-making support in cases of long-term,
severe disruptions such as pandemics. In particular, digital SC twins (Ivanov and Dolgui
2020a)—the computerized SCmodels that represent the network state for any given moment
in real time—can be further investigated in this direction in order to examine the role and
value of information collection, data analytics, mapping and coordination in SC viability.
Other interesting concepts for framing SC viability, its antecedents, its drivers, and its eco-
nomic and social performance implications are LCN (low-certainty-need SCs) as a trade-off
between efficiency and resilience, ripple effect and SC viability, ecological modelling, and
RSC (reconfigurable SCs).

4.3 Multi-methodological analysis

From the methodological point of view, SC viability analysis offers a room for almost all
quantitative and empirical methodologies. For example, optimization techniques can be used
for multi-level SC design (cf. Fig. 3). Simulation methods can be applied to recovery analysis
(Ivanov 2020a). Ecological modelling can shed light on underlying behaviors of collective
survivals (Demirel et al. 2019, Ivanov and Dolgui 2020b). Bayesian networks can help in
analyzing causal relationships and disruption propagations (i.e., the ripple effect) in the
networks (Garvey et al. 2015, Hosseini et al. 2019). Interactions in the intertwined SCs and
ecosystems would open new problem settings for game-theoretic studies. We also see new
applications for control theory in the area of SC viability due to feedback and dynamics
considerations (Ivanov and Sokolov 2013). A specific role can be played by hybrid data-
driven approaches blended with optimization.

5 Conclusions

Viability is an ability of an SC to maintain itself and survive in a changing environment, with
the redesign of the structures and replanning economic performance with long-term impacts.
In this paper, we theorized a new notion—the Viable Supply Chain (VSC). Our approach
integrates the angles of sustainability and resilience, extending them by survivability, and
offers a VSC framework within SC ecosystems. The principal ideas of the VSC model are
multiple structural SC designs for supply–demandmatching and,most importantly, establish-
ment and control of adaptive mechanisms for transitions between the structural designs. We
argue in favor of adaptable networks that exhibit the features of leagility, resilience against
disruptions, and pandemic-resistance.

Further, we demonstrate how the VSC components can be categorized across organiza-
tional, informational, process-functional, technological, and financial structures. Through the
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lens and guidance of dynamic systems theory, we illustrate the VSC model at the technical
level. Definitely, other methodologies can be applied to investigate different aspects of VSCs
such as mathematical optimization, discrete-event simulation, agent-based modeling, system
dynamics, game theory, ecological modelling, Bayesian networks, to name a few. Moreover,
VSC principles can be further extended in the framework of intertwined supply networks
(ISN) and using data-driven, digital technologies.

The VSC model can be of value for decision-makers to design SC structures, processes,
information and financial systems that can be profitable during the positive times, able to
withstand disruptions and recover, and survivable during long-term, global disruptions with
societal and economic shocks. In future, managerial insights of different VSC applications
can be studied and articulated across different industries and services, spanning entire SC
ecosystems.

To summarize, the SC and operations management community has created impressive
methodical fundamentals, techniques and tools for leagility, resilience, sustainability and
digitalization of SCs for the last three decades. The COVID-19 pandemic has revealed a
series of novel challenges for SC and operations management which beget an understud-
ied research area—SC viability—which builds upon and extends to an integral whole the
angles of leagility, resilience, sustainability and digitalization. Substantial contributions can
be expected in this regard in almost all the existing areas of SC and operations management,
and new research streams can emerge.
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