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Abstract In this paper we propose an approximation for the Traveling Tournament Problem
which is the problem of designing a schedule for a sports league consisting of a set of teams
T such that the total traveling costs of the teams are minimized. It is not allowed for any team
to have more than k home-games or k away-games in a row. We propose an algorithm which
approximates the optimal solution by a factor of 2 + 2k/n + k/(n − 1) + 3/n + 3/(2 · k)

which is not more than 5.875 for any choice of k ≥ 4 and n ≥ 6. This is the first constant
factor approximation for k > 3.

We furthermore show that this algorithm is also applicable to real-world problems as
it produces solutions of high quality in a very short amount of time. It was able to find
solutions for a number of well known benchmark instances which are even better than the
previously known ones.

Keywords Sports scheduling · Traveling Tournament Problem · Approximation algorithms

1 Introduction

During the last decades professional sports leagues worldwide have turned into million or
sometimes even billion dollar businesses. Soccer in Europe as well as American Football,
basketball, baseball or ice hockey in North America attracts thousands of fans inside the
stadiums and millions of spectators around the world. A crucial contribution to the success
of a season lies in the timetable or schedule of the league which determines which games
are arranged when and at which arenas. In doing so, the planers of those leagues have to
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balance not only the expectations of the fans but also many requests made by clubs and TV
stations.

In this paper we will focus on the Traveling Tournament Problem (TTP) introduced by
Easton et al. (2001). It is a quite well-known and practically difficult optimization problem
inspired by Major League Baseball. Especially North American sports leagues have an in-
centive to minimize the travel distance of the participants of a tournament due to the vast
expanse of the continent.

1.1 Sports scheduling and the traveling tournament problem

Sports scheduling in general deals with the design of tournaments. A single round robin
tournament on n teams where n is an even number consists of (n − 1) rounds (also called
slots). In each round n/2 games which are themselves ordered pairs of teams take place.
Every team has to participate in one game per round and must meet every other team exactly
once. It is standard to assume n to be even since in sports leagues with n being odd, usually
a dummy team is introduced, and whoever plays it has a day off, which is called a bye.
For scheduling single round robin tournaments a rather general and useful scheme called
the canonical schedule has been known in sports scheduling literature for at least 30 years
(de Werra 1981). It is based on the polygon/circle method, which was first suggested by
Kirkman (1847). One can think of Kirkman’s method as a long table at which n players
sit such that n/2 players on one side face the other players seated on the other side of the
table. Every player plays a match against the person seated directly across the table. The
next round of the schedule is obtained when everyone moves one chair to the right with the
crucial exception that there exists one person at the end of the table who never moves and
always maintains the seat from his or her first round. Note that this method only specifies
who plays whom when and not where. The canonical schedule introduced by de Werra
defines for each of the encounters specified by the method described above, at whose site
they take place such that the number of successive home or away games is minimized (de
Werra 1981).

A double round robin tournament on n teams consists of 2(n − 1) rounds and every
team must meet every other team twice: once at its own home venue (home game) and once
at the other team’s venue (away game). A popular policy in practice is to obtain a double
round robin tournament from a single round robin tournament by mirroring, that is repeating
the matches of round k for k = 1, . . . , n − 1 in round k + n − 1 with changed home field
advantage. Consecutive home games are called a home stand and consecutive away games
form a road trip. The length of a home stand or road trip is the number of opponents played
(and not the distance traveled).

The Traveling Tournament Problem (TTP) as introduced in Easton et al. (2003) is then
defined as follows:

Input:

– A set V = {1,2, . . . , n} of n teams with n even.
– An n × n integer distance matrix D containing the metric travel distances between the

home venues of all teams.
– Integers L,k, representing lower and upper bounds for the lengths of the teams’ home

stands and road trips.

Output: A double round robin tournament on V satisfying:

– The length of every home stand and road trip is between L and k inclusive.
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– No pair of teams plays both of their matches against each other in two successive rounds.
– The total distance traveled by all teams is minimized.

In this paper, we assume that L = 1 which is common in literature and means that we
forget about L. This assumption is reasonable since it is hard to imagine a sports league
planner who will insist on forbidding home stands or road trips of length 1 when facing his
many conflictive objectives.

1.2 Previous work

So far, most efforts concerning the TTP have led to a variety of algorithms aiming to mini-
mize the total distance driven by the teams. Kendall et al. (2010) and Rasmussen and Trick
(2008) provide a good overview of the work done on the TTP and sports scheduling in gen-
eral. Just to mention a very few examples, hybrid algorithms with constraint programming
(CP) exist by Benoist et al. (2001) who additionally use Lagrange relaxation. Easton et al.
(2003) merge CP with integer programming while Henz (2004) combines CP with large
neighborhood search. Anagnostopoulos et al. (2003), van Hentenryck and Vergados (2006),
Di Gaspero and Schaerf (2007) and Lim et al. (2006) propose neighborhood search-based al-
gorithms, whereas Ribeiro and Urrutia (2007) focus on the special class of constant distance
TTP where break maximization is equivalent to travel distance minimization.

Miyashiro et al. (2008) provide a 2 + (9/4)/(n − 1) approximation for the intensively
studied special case k = 3 by means of the Modified Circle Method, a variation of the
canonical schedule. Yamaguchi et al. (2009) obtain an algorithm with approximation ra-
tio (2k − 1)/k +O(k/n) for k ≤ 5 and (5k − 7)/(2k)+O(k/n) for k > 5. Again they make
use of the canonical schedule, now refined such that the teams are ordered around the ‘table’
such that most of the distances driven are part of a near optimal traveling salesman tour
which clearly has positive effects on the length of many distances traveled. As k ≤ n − 1,
they showed this way that a constant factor approximation for any choice of k and n exists.
However, they did not show how this factor looks exactly.

The complexity has been settled quite recently by Thielen and Westphal (2011) who
showed that the TTP is strongly NP-hard. They use a reduction from 3-satisfiability
(3-SAT) by showing that for any instance φ of 3-SAT there is an instance of TTP(3) and
some ξ such that there is a feasible schedule of cost at most ξ if and only if φ is solvable.

1.3 Our results

Our aim in this work is to approximate the TTP by a constant ratio for arbitrary choices of
k and n.

Applying the canonical schedule mentioned above, we choose a specific orientation of
the underlying graph which ensures that home stands and road trips do not contain more than
k matches and for which the total distance traveled is not too long. Whereas it is common
practice to derive the second half of the season by repeating the first half’s games in the
same order but with changed home field advantage, it is not suitable here, as road trips or
home stands might become too long. Thus, we derive the second half in a slightly different
way. Finally, we show that the plan we construct approximates the optimal solution by a
factor of 2 + 2k/n + k/(n − 1) + 3/n + 3/(2 · k). For the case of k = 3 this guarantees an
approximation ratio of 5/2 + 12/(n − 1) which is actually not an improvement on the ratio
of Miyashiro et al. cited above. But for any choice of k ≥ 4 (and thus n ≥ 6) this yields an
approximation ratio of less than 5.875, which is the first constant factor approximation for
k > 3.
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Furthermore, we show that this algorithm is also applicable to real-world applications as
it produces solutions of high quality in a very short amount of time. We were also able to
find solutions for the benchmark instances Galaxy22 to Galaxy40 which are better than the
previously known ones.

2 Lower bounds

The objective of the TTP, minimizing the total travel distance of all teams during a double
round robin tournament, can be estimated by various bounds. One of them is called Inde-
pendent Lower Bound (ILB) (Easton et al. 2001) and consists of finding the shortest tour
for each team individually, independent of the other team constraints (primarily that B has
to be at home when A visits B during one of A’s road trips). Finding an ILB is equivalent
to solving a capacitated vehicle routing problem. In this paper we will use an even coarser
version of ILB where we focus only on a traveling salesman tour traversing all venues.

Theorem 1 Let ρ be the length of a TSP in G. Every solution of the TTP has a total length
of at least n · ρ.

Proof Every team has to visit all the other teams. Thus, each team has to travel at least a
distance of ρ which gives a total distance of n · ρ. �

As in Miyashiro et al. (2008), we denote the sum of the distances of all ordered pairs of
teams as Δ = ∑

i,j∈T d(i, j). Miyashiro et al. (2008) showed a lower bound of 2/3 · Δ for
the objective function of TTP with k = 3. We generalize this result for arbitrary k:

Theorem 2 Every solution of the TTP has a total length of at least 2/k · Δ.

Proof Consider an arbitrary solution and suppose team i plays l ≤ k consecutive away
games at teams t1, t2, . . . , tl . The distance d̃i driven thereby is

d̃i = d(i, t1) +
l−1∑

j=1

d(tj , tj+1) + d(tl, i)

Because of the triangle inequality we have d̃i ≥ 2 · d(i, tj ) for all j and thus we have

l · d̃i ≥ 2 ·
l∑

j=1

d(i, tj ) �⇒ d̃i ≥ 2

k
·

l∑

j=1

d(i, tj )

Summing up over all tours driven yields the desired lower bound of 2/k · Δ for the total
distance driven by the teams in any solution. �

3 Construction of the tournament

For i ∈ V let s(i) = ∑
j∈V d(i, j) be the star-weight of i. Since

∑

i∈V

s(i) =
∑

i∈V,j∈V

d(i, j) = Δ
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Fig. 1 Example for slot 1 with
n = 20, k = 4 and l = 2

Fig. 2 Example for slot 2 with
n = 20, k = 4 and l = 2

there has to be one j ∈ V for which s(i) ≤ Δ/n. Let Theu be a tour through all of the teams’
venues which has been found by applying the well known heuristic by Christofides (1976).
Therefore, we know that this tour is not more than 1.5 times longer than the shortest possible
tour. We furthermore assume that the teams are named in a way such that Theu traverses
them in the order 1,2, . . . , n and that n is the team with minimum star weight. Given this
tour we construct a solution of the TTP in the following way. For n = 20 the games of the
first two rounds of the season are displayed in Figs. 1 and 2. The figures corresponding to
other choices of n can be derived analogously. A solid arc (u, v) in this digraph means that
team u is playing against team v in the arena of team v. The games of the other rounds
can be derived analogously by changing the positions of the teams counterclockwise. The
only arc which changes its orientation during one half of the season is the arc incident to
node n which changes its orientation every kth match. This way, the season starts for team
4 with a tour visiting the teams 16,17,18 and 19 before coming home and then playing
against the teams 1,2 and 3. Then, it starts off again to play against 20,5,6,7, and has then
a home stand again consisting of matches against 8,9,10,11. Finally, there is a last road
trip including 12 and 13 and a last home stand with 14 and 15. It is clear that no team has
home stands or road trips which are longer than k matches. And it is also clear that every
two teams have met each other during this first n − 1 games. The full schedule for the first
half of the season is shown in Table 1.

In order to construct a full tournament, it remains to construct the second half of the
season. If we just repeated the first n − 1 matches with changed locations (changed the ori-
entation of the arcs), we would obtain a solution, in which every pair of teams met twice
and these two games took place at different sites. Furthermore, no half of the season would
contain a road trip or a home stand longer than k matches. However, this solution could con-
tain road trips and home stands being longer than k. For example, the team 4 we considered
above would start into the second half of the tournament with a home stand of length 4 after
having ended the first half with two home stands. In order to get rid of this problem, we
start the second half with the match of round n − 2, succeeded by the matches of the rounds
n − 1,1,2, . . . , n − 3 in this order (see Figs. 3 and 4). The double round robin tournament
obtained this way contains neither road trips nor home stands longer than k. To see this,
assume for the sake of a contradiction that there is a team t which has a road trip longer
than k. It is clear from construction that no half of the season completely contains such a
tour. Thus, the tour has to include the rounds n − 1 and n. In case t has away-games at both
of these rounds, the other matches involving these opponents will be home-games for t . By
construction, these games will take place on the rounds n − 2 and n + 1 which means that
the road trip had only a length of 2, contradicting the assumption. The case for home stands
that are too long follows along the same lines.
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Fig. 3 Example for slot n − 1
with n = 20, k = 4 and l = 2

Fig. 4 Example for slot n with
n = 20, k = 4 and l = 2

By looking at the figures presented above, one can see that every home stand or road
trip is defined by a set of consecutive arcs pointing in the same direction. We call such a
set of arcs a block. Furthermore, any orientation of the arcs defining the schedule gives rise
to a feasible schedule, as long as the blocks do not contain more than k arcs. The leftmost
block is not even allowed to contain more than k − 1 arcs because of the games team n is
involved in. As long as we obey these rules for the maximum sizes of blocks stated above,
we will always obtain a feasible plan for any choice of orientations of the arcs defining the
tournament.

In the following, we consider k different orientations. The main difference between them
is the width of the rightmost block. For l ∈ {1, . . . , k} let Ol be the orientation in which the
rightmost block has width l, the blocks in the middle all have width k and the leftmost block
contains the rest (see Fig. 5). In case this leads to the leftmost block containing exactly k

arcs, we change the orientation of the edge (u1, v1), such that the arc incident to team n

cannot prolong the road trips induced by this block to have a length of k + 1 matches. The
left- and rightmost arcs in a block always define the first and the last match of a trip.

4 Costs of the tournament

In this section we will prove an upper bound for the total length of the tours defined by the
tournament constructed in the previous section.

We assume that every team t having an away game against team n will drive home
first before driving to team n’s site and drives home after having played that match. By
construction, t has a home game before or after that game anyway. We just obtain one more
visit home this way. By the triangle inequality, the costs incurred this way are only higher
than before. Furthermore, we will apply the triangle inequality a second time by assuming
that every team drives home after the last game of the first half if it is not already at home.
Let the nodes of the underlying graph be denoted as u1, u2, . . . , un/2−2 and v1, v2, . . . , vn/2−2

(see Fig. 5).
In the following we will estimate the distances related to the constructed tournament

separately:

1. Ch—the costs related to home-games of team n

2. Ca—the costs related to away-games of team n

3. Cs—the costs related to the first rounds of the season-halves and the costs of returning
home after the last rounds of the season-halves
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Fig. 5 The blocks defined by the
orientation O2

4. Cl—the other costs incurred by the edge (u1, v1)

5. Cr—the other costs incurred by the edge (un/2−1, vn/2−1)

6. Co—the other costs

Ch—The costs related to home-games of team n: Every other team plays against team n

once. As we can assume by application of the triangle inequality that all teams come from
their home venues to play against team n and return to their home venues after the game,
we know that the cost incurred thereby is at most

Ch ≤
n−1∑

i=1

d(i, n) + d(n, i) = 2 · s(n) ≤ 2 · Δ/n

where the last follows from the assumption of n being the node with the smallest star-weight.

Ca—The costs related to away-games of team n: Analogously, to the estimation of the
home-games of team n, we can upper bound the costs incurred by the away games by first
assuming that team n always returns home after each away-game. This way, we derive the
same upper bound of 2 · Δ/n for the costs Ca incurred by the away-games of team n.

Cs—The costs related to the first rounds of the season-halves and the costs of returning home
after the last rounds of the season-halves: In the first round of the season, n/2 teams have
to travel to their opponents. We do not consider the game that team n is involved in, as we
have already taken care of these costs above. So, there are n/2 − 1 distances traveled left
which correspond directly to the vertical arcs of Fig. 1. After the games of round n − 1 the
first half of the season is over, and we assume that all teams drive home. The second half
of the season starts with the matches which have already taken place at round n − 2 and it
ends with the second leg of the game of round n−3. Observe, that the orientation of the arcs
does not have an effect on the total distance driven. It only affects the question who is driving
which is not of interest here. In the example mentioned above, for team 4 these are the teams
16,15,14 and 13. If team 4 did not start the season this way but with a match against team
15, then we would need to consider the distances to the teams 15,14,13 and 12. This way
we obtain n − 1 different choices for the first and last trips of the two halves of the season.
Furthermore, it is easy to see that each edge of ({1, . . . , n − 1} × {1, . . . , n − 1}) is part of
at most four of these choices. So, summing up the distances of the n − 1 different possible
choices for round 1, we obtain a total of at most

n−1∑

i=1

n−1∑

j=i+1

4d(i, j) = 2Δ − 4 · s(n)

So, there has to be a choice for which we can estimate

Cs ≤ 2 · (Δ − 2 · s(n)
)
/(n − 1)
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Cl—The costs incurred by the edge (u1, v1): As we assumed that every team’s trip to team
n starts at the home-site and leads back there after the match, there is always a trip ending
or starting with a trip along the edge (u1, v1). Apparently, these are always trips between
teams being neighbors on the heuristically obtained tour THeu. As these teams will meet in
both halves of the games, the edges have to be counted twice and the cost incurred on that
arc can thus be estimated as

Cl ≤ 2d(n − 1,1) + 2
n−2∑

i=1

d(i, i + 1) ≤ 2 · d(THeu)

Cr—The costs incurred by the edge (un/2−1, vn/2−1): In the first half of the season, the
edge (un/2−1, vn/2−1) always marks the end of a trip, whereas it stands for the beginning of
a trip in the second half of the season. The costs incurred in both halves together can be
estimated as follows.

Cr = 2 ·
(

n/2∑

i=1

d(i, i + n/2 − 1) +
n∑

i=n/2+1

d(i, i − n/2)

)

=
n/2∑

i=1

(
d(i, i + n/2 − 1) + d(i + n/2 − 1, i)

) +
n∑

i=n/2+1

(
d(i, i − n/2) + d(i − n/2, i)

)

≤
n/2∑

i=1

opti +
n∑

i=n/2+1

opti = opt (1)

with opti denoting the length of team i driven in an optimal solution of total length opt.
Every possible solution has to contain a trip for any team i ∈ {1, . . . , n/2} which covers team
i +n/2−1. For the length of this trip is not longer than d(i, i +n/2−1)+d(i +n/2−1, i)

and we can make similar observations for the other teams as well, inequality 1 follows.

Co—The other costs: As already mentioned earlier in this paper, we do not only consider
the orientation of the arcs as displayed in Figs. 1–3. Instead, we will consider k different
orientations. The difference between them is the width of the rightmost block, the block
including the arc (un/2−1, vn/2−1) or resp. (vn/2−1, un/2−1). For l ∈ {1, . . . , k} let Ol be the
orientation in which the rightmost block has width l, the blocks in the middle have width k

and the leftmost block contains the rest. In case, this leads to the leftmost block containing
exactly k arcs, we change the orientation of the edge (u1, v1), such that the arc incident
to team n cannot prolong the road trips induced by this block to have a length of k + 1
matches.

In every half, every team i is associated to one of the nodes v1, v2, . . . , vn/2−1 exactly
once. When it is associated to node vj it plays against the team (i + j − 1)mod(n − 1) + 1
which is associated to node uj at that time. In case the edge (uj , vj ) marks the first or the
last game of a road trip in the first or the second half of the tournament, we call this edge
a home-edge (the dashed arcs in Fig. 5). If the home-edge corresponds to the beginning
of a trip in the first half of the season, it marks the end of a tour in the second half of
the season. Therefore, the distance associated with this edge is driven exactly twice in the
corresponding tournament. Let us have a closer look at the costs which are being incurred
by teams traveling along the home-edges. Since every direct travel from or to i’s home site
can only happen via exactly one home-edge, and as there are at most two orientations in
which some edge (uj , vj ) is a home-edge, the overall costs incurred by the home edges
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is at most 2Δ. It still remains to estimate the distances traveled which are not from or to
the traveling teams’ home sites. A trip which visits l teams consists of two drives along
home-edges and l − 1 drives inbetween. By construction, these l − 1 rides are driven along
edges which are part of the heuristically obtained tour THeu. Let uj be a node which does not
represent the beginning of a trip. Whenever a team i is assigned to this node, there is another
team l visiting i after having played an away match at the team i − 1, the predecessor of i

in THeu. Thus, for any node uj or vj which does not represent the beginning of a trip, we
can estimate the sum of the distances driven to get to the teams assigned to this node as no
more than d(THeu). Since there are no more than n/2 − 2 such nodes, the distances driven
here are not more than (n − 2)d(THeu).

For there are k different orientations, there has to be one with total distance incurred by
the home-edges not more than

Co ≤ 2Δ + (n − 2)d(THeu)

k

5 The approximation ratio

If we choose the parameters in the above mentioned ways, we obtain an approximation ratio
of

Ch + ca + Cs + Cl + Cr + Co

opt

≤ 2Δ/n + 2Δ/n + 2 · (Δ − 2s(n))/(n − 1) + 2 · d(Theu) + opt + 2Δ+(n−2)d(THeu)

k

opt

= 2Δ/n + 2Δ/n + 2 · (Δ − 2s(n))/(n − 1)

2/k · Δ + 2 · d(Theu)

n · d(Topt )
+ 1

+ 2/k · Δ
2/k · Δ + (n − 2)/k · d(THeu)

n · d(Topt )

≤ 4Δ/n + 2 · Δ/(n − 1)

2/k · Δ + 3

n
+ 1 + 1 + (n − 2)/k · 3/2 · d(TOpt )

n · d(Topt )

≤ 2/n + 1/(n − 1)

1/k
+ 3

n
+ 2 + 3/(2 · k)

= 2k/n + k/(n − 1) + 3

n
+ 2 + 3/(2 · k)

As k ≤ n − 1, this bound cannot be larger than 5 + 3
n

+ 3/(2 · k) which is not more than
5.875 for k ≥ 4 and n ≥ 6.

6 Computational results

In order to demonstrate this algorithm’s applicability to real-world instances, we ap-
plied it to the well-known benchmark-instances provided on Trick’s site (Trick 2010).
At the core of every timetable generated this way lies the solution of a Traveling Sales-
man Problem. For that task, we applied the software LKH in the version 2.0.3, a very
effective implementation of the Lin-Kernighan heuristic developed by Helsgaun (2012).
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After the generation of the timetables, we finally tried to improve the obtained solu-
tions by changing the venues of single matches. More precisely, we check for every
pair of teams whether it would be less expensive and feasible if they swapped their
home/away roles for the matches between them. Whenever this is the case, we apply
this change and look for more moves of that kind until no further improvement is pos-
sible this way. This neighborhood has been applied very successfully in several other
approaches (Anagnostopoulos et al. 2003; Ribeiro and Urrutia 2007; Di Gaspero and
Schaerf 2007) where it is called SwapHomes. We found it could help to improve our
schedules, too. ling Salesman Problem. For that task, we applied the software LKH in
the version 2.0.3, a very effective implementation of the Lin-Kernighan heuristic devel-
oped by Helsgaun (2012). After the generation of the timetables, we finally tried to im-
prove the obtained solutions by changing the venues of single matches. More precisely,
we check for every pair of teams whether it would be less expensive and feasible if
they swapped their home/away roles for the matches between them. Whenever this is the
case, we apply this change and look for more moves of that kind until no further im-
provement is possible this way. This neighborhood has been applied very successfully
in several other approaches (Anagnostopoulos et al. 2003; Ribeiro and Urrutia 2007;
Di Gaspero and Schaerf 2007) where it is called SwapHomes. It could help to improve
our schedules, too.

The results of our computational experiments are displayed in Table 2. The first three
columns contain the instances’ names, the value of their best known feasible solutions (UB)
and the corresponding lower bounds (LB) as they could be found at Trick (2010) on October
27, 2010. Next, there are two columns which show the total distance driven according to the
approximation and the relative gap compared to the best solutions known so far. Finally,
the last two columns show the objective function after the execution of the simple greedy
2-Opt-heuristic mentioned above.

The running time is very reasonable. Only Galaxy40, Galaxy38, Galaxy36, and Brazil24
took between one and two seconds. The others were solved in shorter time. The computation
of all the schedules together took only 13.61 seconds on a regular desktop computer with
2.4 GHz and 4 GB RAM using only a single thread. The running time of the Lin-Kernighan
heuristic is already included in these figures.

Comparing the values of our solution with the known lower bounds, we observe that the
optimality gap we experience here seems to be somewhere between 15% and 20% and that
this gap does not seem to increase with the number of teams increasing. (Actually, in case
of the NFL-instances, it does decrease from 21% for NFL16 to 15% for NFL32.)

This behavior is very different to that of the approaches considered so far. The instances
with only a few number of teams are by now all solved optimally, but with the number of
teams increasing, the gaps between the known upper and lower bounds grow as well. For
this reason, our algorithm does not provide better solutions than the ones already known
for leagues with only a few teams. But with the number of teams increasing this situation
changes slightly. For the well studied problem NFL32 our generated solution is only 5%
more expensive than the best solution known so far. We could even find better solutions for
the instances Galaxy22, Galaxy24, Galaxy26, Galaxy28, Galaxy30, Galaxy32, Galaxy34,
Galaxy36, Galaxy38, and Galaxy40.

We also generated schedules for TTP(k) with k = 4,5,6 (see Table 3). In these cases, we
could lower the total distances driven on average by 13% in the case of k = 4, and by 18%
and 23% for k = 5 and k = 6, respectively.
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Table 2 Computational results for TTP(3)

Instance LB UB Gap Alg. Gap(UB) Alg + 2-Opt Gap(UB)

Galaxy40 258899 249400 −4% 249230 −4%

Galaxy38 214546 212431 −1% 210787 −2%

Galaxy36 177090 174229 −2% 173827 −2%

Galaxy34 153530 147817 −4% 147817 −4%

Galaxy32 123510 122202 −1% 120683 −2%

Galaxy30 101774 97039 −5% 96979 −5%

Galaxy28 81911 77611 −5% 77577 −5%

Galaxy26 62613 61443 −2% 60962 −3%

Galaxy24 48434 45996 −5% 45910 −5%

Galaxy22 36152 35870 −1% 35767 −1%

Galaxy20 26289 28322 8% 27780 6%

Galaxy18 20907 21613 3% 21528 3%

Galaxy16 14900 16244 9% 16175 9%

Galaxy14 10255 10918 6% 13000 19% 12613 16%

Galaxy12 7034 7197 2% 8227 14% 8131 13%

Galaxy10 4535 4535 0% 5270 16% 5270 16%

NFL32 836031 914620 9% 970427 6% 962631 5%

NFL30 688875 739697 7% 788641 7% 786965 6%

NFL28 560697 609788 9% 653523 7% 652106 7%

NFL26 495982 536792 8% 595778 11% 588890 10%

NFL24 431226 463657 8% 501308 8% 498651 8%

NFL22 378813 402534 6% 446977 11% 445282 11%

NFL20 316721 332041 5% 393500 19% 385565 16%

NFL18 272834 282258 3% 327990 16% 325215 15%

NFL16 223800 231483 3% 272457 18% 270253 17%

NL16 249477 261687 5% 301728 15% 300744 15%

NL14 183354 188728 3% 236692 25% 230874 22%

NL12 108629 110729 2% 125887 14% 125086 13%

NL10 59436 59436 0% 70149 18% 69958 18%

NL8 39721 39721 0% 50521 27% 47128 19%

Super 14 557354 571632 3% 776848 36% 758382 33%

Super 12 453860 463876 2% 557219 20% 547023 18%

Super 10 316329 316329 0% 408950 29% 408950 29%

Brazil24 500756 540127 8% 536218 7%

7 Conclusions and outlook

In this paper, we present the first constant factor approximation for TTP(k) with k > 3.
Furthermore, we show that this algorithm is also applicable to real-world applications as it
produces solutions of high quality in a very short amount of time. It was able to find so-
lutions for the benchmark instances Galaxy22, Galaxy24, Galaxy26, Galaxy28, Galaxy30,
Galaxy32, Galaxy34, Galaxy36, Galaxy38, and Galaxy40 which are better than the previ-
ously known ones.
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Table 3 Comparison of
computational results for TTP(k)
with k ∈ {3,4,5,6}

Instance k = 3 k = 4 k = 5 k = 6

Galaxy40 249230 216863 197972 187762

Galaxy38 210787 183485 167055 157613

Galaxy36 173827 154286 141957 130661

Galaxy34 147817 132513 121076 113055

Galaxy32 120683 104433 98196 92327

Galaxy30 96979 86506 79198 76432

Galaxy28 77577 69249 63956 60569

Galaxy26 60962 54367 49798 47519

Galaxy24 45910 40832 38252 35341

Galaxy22 35767 31989 30084 27844

Galaxy20 27780 24350 22060 21436

Galaxy18 21528 19890 18294 17485

Galaxy16 16175 14365 13816 12863

Galaxy14 12613 11015 10638 10074

Galaxy12 8131 7722 7480 7371

NFL32 962631 809725 737306 674746

NFL30 786965 685848 612329 579228

NFL28 652106 565601 513224 479321

NFL26 588890 507154 461236 429653

NFL24 498651 436531 401375 365126

NFL22 445282 390626 360905 332744

NFL20 385565 332649 298316 290757

NFL18 325215 292881 264251 253576

NFL16 270253 235936 224367 207604

NL16 300744 263745 247209 228885

NL14 230874 203782 187499 179239

NL12 125086 116634 112713 109144

Super 14 758382 648891 587686 533056

Super 12 547023 486546 440843 423627

Brazil24 536218 464921 421079 387046

The reason for this behavior might be that for leagues with only a small number of teams,
it is possible to scan a big portion of the search space in a sophisticated way and this is
basically how many algorithmic approaches for the TTP work. As our algorithm only does
one smart guess, we cannot hope to find solutions as good as those which can be found by
enumerative approaches for a small number of teams, but we can expect to find reasonable
results even for big leagues in a very short amount of time.

For the future, it would be promising to implement some more local-search techniques.
We have only implemented a greedy heuristic making use of SwapHomes which is just one
out of several neighborhoods.

Furthermore, one could think about how to apply these concepts to cases in which other
constraints are placed on the schedule. For example, how does the approximation ratio
change, if certain matches have to be put in certain rounds or some teams cannot play at
home at the same time?
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