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Abstract This paper deals with power-aware scheduling of preemptable jobs on identical
parallel processors to minimize schedule length when jobs are described by continuous,
strictly concave functions relating their processing speed at time t to the amount of power
allotted at the moment. Power is a continuous, doubly constrained resource, i.e. both: its
availability at time t and consumption over scheduling horizon are constrained. Precedence
constraints among jobs are represented by a task-on-arc graph. A methodology based on
properties of optimal schedules is presented for solving the problem optimally for a given
ordering of nodes in the graph. Heuristics for finding an ordering which leads to possibly
short schedules are proposed and examined experimentally.

Keywords Power-aware computing · Job model · Preemptable jobs · Makespan
minimization

1 Introduction

Green computing, as a general philosophy aimed at efficient and environmentally friendly
usage of computer resources, gained recently an increasing interest among OR and IT spe-
cialists. One of the most promising directions of green computing is ecologically aware man-
agement of power/energy on different levels of computer systems. We consider the problem
on the level of a single computer system, where a particular attention is paid on processors
(CPU) as one of the most energy consuming elements of such systems. One of the research
directions towards an advanced power management on the level of a single computer system
is the use of variable speed processors (VSP) (Boyer et al. 2006). Modern operating systems
utilizing e.g. Intel’s Speedstep or Foxton as well as AMD’s PowerNow! technologies are
able to control the speed of processors to prolong the battery life or to improve computing
efficiency. Therefore, an operating system of a computer can decide not only which job to
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perform at the moment but also at what processing rate. We assume for simplicity that con-
sidered variable speed processors are able to adjust their clock period at each cycle at no
cost.

Since the processing rate of a job is related to the power/energy used during its execution,
several job processing models have been proposed in literature to represent this relation
(Bansal et al. 2005; Irani and Pruhs 2005; Pruhs et al. 2005). The power vs. speed model is
the most popular, where a single continuous, strictly convex function represents the relation.

In this paper we consider a speed vs. power model, in which jobs are characterized
by (different) continuous, strictly concave functions relating their processing speeds to the
amount of power allotted at a time (Węglarz 1981).

Of course, the assumption that speed function is continuous remains only an approxima-
tion of discrete speed increments in real processors.

Schedule length of a given set of jobs processed on processors of a single computer sys-
tem is to be minimized for a given level of energy available. Such a problem belongs to
the class of laptop problems (Bunde 2006), which are typical for portable electronic devices
driven by energy accumulated in batteries with limited capacity. However, in contrary to
the power vs. speed model in which power is not limited, we consider it as a doubly con-
strained resource for which both: consumption (i.e. energy), and temporary availability are
constrained. The similar assumption, defined as bounded speed model, where a single pro-
cessor can vary its speed between 0 and a fixed maximum value, was proposed in Bansal
et al. (2008). Nevertheless, our model is more natural in the multiprocessor setting, since it
enables to share power among processors as a common renewable resource.

We consider a set of precedence-related and preemptable jobs as well as parallel iden-
tical processors, since it is a natural way to model a set of computer applications that have
to be scheduled on contemporary computer system equipped with an advanced multicore
processor.

We represent the precedence relation among jobs by a task-on-arc directed graph. This
representation, commonly used in project scheduling, has been also used for solving ma-
chine scheduling problems by transforming them to LP problems (see Błażewicz et al. 2007
as survey) for a given ordering of nodes (i.e. events) in such a digraph. If in a digraph each
two nodes are connected by a path then the ordering of nodes is unique and correspond-
ing scheduling problem is polynomially solvable. In general, the optimal solution depends
on the ordering of nodes, and thus finding an ordering that leads to the best schedule is of
crucial importance. Unfortunately, no polynomial algorithm for finding such an ordering is
known even for the simplest case of parallel, identical machines. Thus, it is advisable to
consider various heuristic or metaheuristic approaches.

Although we consider a single computer system, presented approach may be applied to
the case of a cluster of identical computational nodes driven by a common power source and
managed on the level of a single metascheduler.

In Sect. 2 we describe and compare two models of job processing. Scheduling problem
is formulated in Sect. 3. In Sect. 4 we present a methodology for finding optimal schedules
for independent jobs. This methodology is generalized in Sect. 5 for the case of dependent
jobs. In this section we also propose two heuristics for finding an ordering of nodes leading
to possibly short schedules. A computational experiment and its results are described in
Sect. 6. Section 7 contains final remarks and future research directions.
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2 Job processing models

Let us start with the model commonly used in the literature (e.g. Bansal et al. 2005; Irani and
Pruhs 2005) concerning power management in microprocessor systems. The following form
of the function (power usage function) is utilized to express the relation between processing
speed s of a processor, and power p consumed during job processing:

p(s) = sα, α > 1 (1)

It is easy to notice that function p(s) is strictly convex. In particular, for microprocessors
based on CMOS technology α is assumed to be equal to 3 (Bunde 2006).

Moreover, it is assumed that job i is characterized by the parameter wi > 0 being the
number of CPU cycles needed by job i to be processed. Of course, processing time of job i

depends on its size wi and on the processing speed of a processor executing this job. A job i

started at time ai is accomplished at completion time Ci if the following equation is fulfilled:

∫ Ci

ai

s(t)dt = wi (2)

During the execution of job i the energy amount Ei given by the formula

Ei =
∫ Ci

ai

p(s(t))dt (3)

is consumed.
It is worth to notice that in model (1) the processing speed of a processor is treated as

a decision variable and determines power p. Moreover, s is not limited, i.e. s ∈ [0,∞). As
a consequence, the resulting power is theoretically unlimited too. However, power directly
determines the temperature of a microprocessor (nearly all energy consumed by a processor
is released as heat). Thus, no limits for power may lead to a processor overheating and, in
consequence, to a serious damage of a computer system.

Let us pass to the model which determines a temporal rate of the job execution. As a
consequence, instead of power usage functions we have so called processing speed functions
(speed functions in short). Formally the model is expressed as follows:

ẋi (t) = dxi(t)

dt
= si(pi(t)), xi(0) = 0, xi(Ci) = wi (4)

where

• xi(t)—is the state of job i at time t , i.e. the amount of data processed by t for job i,
• si(·)—is a continuous, strictly concave function, si(0) = 0,
• pi(t)—is an amount of power allotted to job i at time t .

Model (4) was studied in Węglarz (1981) in the problem of allocating continuously-
divisible, doubly constrained resource among project activities. In this problem power p(t)

allotted to a job at time t is doubly constrained, i.e.

n∑
i=1

pi(t) ≤ P for every t > 0 (5)
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n∑
i=1

∫ C max

0
pi(t)dt ≤ E (6)

where P > 0, E > 0 are known.
The constraint (5) guarantees that a total usage of power at every moment does not ex-

ceed the available amount P , whereas the constraint (6) ensures that a total consumption of
energy up to the end of the last job (Cmax) in a schedule meets the known limit E.

It is easy to notice that the models (1) and (4), (5), (6) are equivalent if

si(·) = s(·) = p−1(·) = p
1/α

i , i = 1,2, . . . , n,α > 1

However, the model (4), (5), (6) is much more general. First of all, time t enters directly
into this model, and thus power allotted to jobs can vary over time. Secondly, functions
si(·) can be different for different jobs. This is very important since power consumption per-
cycle may differ for various instructions executed by a processor designed basing on one of
modest architectures (see e.g. Boyer et al. 2006).

Moreover, functions si(·) can be also not only power functions but arbitrary continuous,
strictly concave ones. Thus this model may be useful even when future technologies and
microcomputer architectures will require another type of functions.

Since power is limited: pi(t) ∈ [0,P ] in model (4), (5), (6), thus temperature of a micro-
processor executing computational jobs is limited too.

3 Problem formulation

Consider a set of n precedence-related, preemptive jobs and m parallel identical processors.
All jobs are ready to be processed at time 0. Each job requires for its processing a processor
and an amount of power. Each job is performed by at most one processor at a time and a
processor is able to process at most one job at a time. Processing rate of a job depends on the
amount of power pi(t) allotted to job i at a time t and this relation is expressed by (4). Job i

is characterized by the speed function si(·) and the size wi . Precedence relations among jobs
are represented by a task-on-arc digraph. Both power and energy are limited and available
in amounts P and E, respectively.

This formulation allows to model practical situations, where a set of dependent modules
of programs have to be executed on a multiprocessor portable device with processors driven
by the common energy source—a battery of limited capacity. To prevent the computer sys-
tem from overheating a power usage limit is established. We assume that processing rate
function of job i in model (4) is increasing and strictly concave since this corresponds to
the real relation between the temporal power usage and the processing rate in contemporary
microprocessor systems.

The objective is to find a vector function p∗(t) = [p∗
1(t),p

∗
2(t), . . . , p

∗
n(t)],p∗

i (t) ≥
0, i = 1,2, . . . , n which, under the constraints imposed, minimizes the schedule length
Cmax = T . Knowing p∗(t) we are able to calculate the energy consumption for job i by
integrating p∗

i (t) up to the completion time Ci . We will show that finding p∗(t) may be
decomposed into two strongly interrelated subproblems: the subproblem of determining of
the optimal sequence of jobs on processors and the subproblem of optimal power allocation
to jobs already sequenced.
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4 Independent jobs

Assume hypothetically that a job does not require any processor to be performed and may be
processed using an amount of power only. In consequence, we deal with the subproblem of
T -minimal allocation (respecting limits P and E) of power to jobs only and the following
theorem is valid (Węglarz 1981).

Theorem 1 If jobs are independent and si(·), i = 1,2, . . . , n are strictly concave then all
jobs finish simultaneously and are processed using constant amounts of power given by the
formula

p∗
i (t) = p∗

i = s−1
i (wi/T ∗), i = 1, . . . , n, t ∈ 〈0, T ∗〉 (7)

where T ∗ is the (unique) positive root of the equation:

T

n∑
i=1

s−1
i (wi/T ) = E if

n∑
i=1

s−1
i (wi/T ) ≤ P (8)

or
n∑

i=1

s−1
i (wi/T ) = P (9)

otherwise. T ∗(w1,w2, . . . ,wn) is a convex function.

Notice that (8) and (9) are direct consequence of (6) and (5). In the first case the active
constraint is from the side of E, not P . It means that (7), with T ∗ calculated from (8), is the
optimal solution of the problem since it does not exceed the power limit P . It may happen
however that P is a critical constraint for the given instance of the problem, and then the
minimum schedule length is found from (9).

Let us comment now on Theorem 1 from the view point of finding optimal solutions. To
find the schedule of the minimum length it is better to start with (8), since it is usually of
simpler form than (9). For example, for functions:

si(·) = cip
1/αi

i , ci > 0, αi ∈ {2,3,4} (10)

both (8) and (9) are analytically solvable algebraic equations of an order less than or equal to
4, however (8) is of an order less by 1, and thus is analytically solvable also for αi = 5. If the
sum of power allocated to jobs using (8) exceeds available amount P , we have to solve (9),
but the information obtained by solving (8) is valuable anyway.

Let us pass now to the problem formulated in Sect. 3 assuming that jobs are independent.
It is easy to notice that if n ≤ m, then the optimal schedule is defined by (7), (8), (9) with
n = m.

However, if n > m, then for finding the optimal schedule we have to consider all m-
element combinations from the set of n jobs. Each combination represents a single group of
jobs that may be performed in parallel on limited number of processors. Since the proces-
sors are identical, an order of jobs in such combination may be neglected. Although the jobs
are preemptable, we assume that preemption of a job within a combination is forbidden.
However, a job is still able to migrate among processors because in consecutive combina-
tions it may be allotted to different processors at no additional cost. Denote combinations
by Zk , k = 1,2, . . . , r = ( n

m

)
. Denote also by Ki, i = 1,2, . . . , n, the set of indices of Zk’s



240 Ann Oper Res (2014) 213:235–252

containing job i and wik part of job i processed in Zk . Let Tk and Ek , k = 1,2, . . . , r , de-
note respectively: the length of the part of the schedule corresponding to Zk and an amount
of energy consumed for processing parts of jobs from Zk . Notice that for a given level of
P,Tk = Tk({wik}i∈Zk

,Ek), k = 1,2, . . . , r , where wik , Ek are unknown a priori. Since for
each Zk we have n = m, we can apply Theorem 1. For the simplest situation of processing
speed functions (10) where αi = α > 1, ci = 1, i = 1,2, . . . , n, Tk is calculated from:

Tk = max

⎛
⎝ α−1

√√√√ 1

Ek

∑
i∈Zk

(wik)α, α

√√√√ 1

P

∑
i∈Zk

(wik)α

⎞
⎠

Finally, we get the following corollary for the general case of arbitrary strictly concave
processing speed functions.

Corollary 2 For strictly concave si(·), i = 1,2, . . . , n, the optimal schedule for indepen-
dent, preemptable jobs is obtained by solving the following convex programming problem:

Minimize:

T =
r∑

k=1

Tk

({wik}i∈Zk
,Ek

)
(11)

Subject to:
r∑

k=1

Ek ≤ E (12)

∑
k∈Ki

wik = wi i = 1,2, . . . , n (13)

wik ≥ 0, Tk ≥ 0, i = 1,2, . . . , n; k ∈ Ki (14)

where Tk are calculated as functions of Ek and {wik} for i ∈ Zk using Theorem 1. Of
course, in (8), (9) it has to be assumed that n = m. Values of p∗(t) (i.e. p∗

ik , i ∈ Zk and
k = 1,2, . . . , r) are calculated for the optimal values of wik , Ek and Tk , using (7) for
each Zk .

Corollary 2 describes the simplest way for finding an optimal solution of the problem of
scheduling independent jobs for arbitrary strictly concave si(·). Of course, it may be applied
to small instances only, since the number of variables in (11)–(14), grows exponentially
with n.

5 Dependent jobs

We assume that a task-on-arc digraph represents the precedence relation in the set of jobs.
Moreover, the nodes are numbered in such a way that, if arc (ja, jb) represents a job, then
ja < jb . Nodes ja, jb are called respectively head and tail ones for this job. Of course, for
each directed graph without cycles such an ordering is always possible, and may be found
in O(n2) time. We assume, without loss of generality, that node 1 (beginning node) is the
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only node without predecessors, and node q (terminal node) is the only node without suc-
cessors. Moreover, two nodes may be linked by at most one arc in a task-on-arc digraph.
Let Qj , j = 1,2, . . . , q − 1, denote the set of jobs that may be processed between the oc-
currences of events represented by nodes j and j + 1. Such sets are called main sets. Of
course, parts of jobs processed in particular Qj are independent. Notice that there exist only
one sequence S = [Q1,Q2, . . . ,Qq−1] of main sets for a particular ordering of nodes O . An
example of the task-on-arc digraph and related main sets is presented in Fig. 1.

5.1 Optimal solution for a given ordering of nodes

Let us assume that the sequence S is given representing ordering of nodes O . Since parts of
jobs processed in particular Qj ’s are independent, we can apply the approach described in
Sect. 4 for each Qj , j = 1,2, . . . , q − 1. This means that we have to consider all m-element
combinations from all Qj ’s for which |Qj | > m. Let us keep for these combinations the
denotations Zk , k = 1,2, . . . , r . If we denote by A the set of main sets with the size greater
than m, then total number r of all combinations Zk for a given ordering of nodes O equals:

r = q − |A| − 1 +
∑

Qj ∈A

( |Qj |
m

)

An example of combinations Zk for a given sequence of main sets and m = 2 is showed in
Fig. 2.

In consequence, for finding an optimal schedule for a given ordering of nodes O , one
has to solve the problem (11)–(14) where Zk , k = 1,2, . . . , r are constructed as presented
above.

Using Theorem 1 one can formulate two properties of an optimal schedule.

Fig. 1 Example of a sequence of
main sets
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Fig. 2 Example of a set of combinations Zk
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Corollary 3 The minimum energy level which ensures the minimum schedule length for a
given power level P , ordering of nodes O and corresponding combinations Zk , is equal to:

Emin =
r∑

k=1

T ∗
k

∑
i∈Zk

s−1
i (w∗

ik/T ∗
k ) (15)

where T ∗
k ,w∗

ik , k = 1,2, . . . , r, i ∈ Zk are the optimal values obtained by solving problem
(11), (13), (14) where T ∗

k are calculated for the level of power P from the equations:

∑
i∈Zk

s−1
i (wik/Tk) = P, k = 1,2, . . . , r

Corollary 4 The minimum level of power which ensures the minimum schedule length for a
given energy level E, ordering of nodes O, and combinations Zk , is equal to:

Pmin = max
k

{∑
i∈Zk

s−1
i (w∗

ik/T ∗
k )

}
(16)

where T ∗
k ,w∗

ik , k = 1,2, . . . , r , i ∈ Zk are the optimal values obtained by solving problem
(11)–(14) in which “=” should be put in (12), and T ∗

k are calculated from the equations:

Tk ·
∑
i∈Zk

s−1
i (wik/Tk) = Ek, k = 1,2, . . . , r

Let us underline another interesting aspect of numerical solving of the convex program-
ming problem (11)–(14). It is easy to observe, that quite often a situation may appear where
for a given sequence of main sets S, two or more processor feasible sets contain the same
combination of job indices. Such a situation may also be observed in Fig. 2 (e.g. see com-
binations Z3 and Z6). It is easy to show that an optimal schedule obtained by replacing all
duplicated combinations by a single combination will never be longer than the original one.
Thus it is practically justified to propose a simple procedure (Algorithm 1) of generating
combinations without repetitions.

The procedure in Algorithm 1 assumes in step 4 that effective algorithm of generating of
all combinations in lexicographic order is known. An example of such an algorithm may be
found in Er (1985).

5.2 Heuristics for nodes ordering

To find an optimal schedule for the problem with dependent jobs it is necessary to find
an ordering O∗ of graph nodes which leads to an optimal sequence of main sets S∗. To
this end, the full enumeration approach over the full spectrum of feasible node orderings is
needed. Alternatively, one can apply a metaheuristic approach where searching over the set
of all feasible node orderings is directed by algorithm-specific rules. A metaheuristic method
produces results relatively fast but quality of found solutions is unpredictable and highly
depends on the proper preliminary tuning of parameters and/or operators of the algorithm.
Of course, both approaches are applicable for small instances of the problem only or for
the instances with a dense task-on-arc precedence graph, since for each ordering a problem
(11)–(14) has to be solved.
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Algorithm 1
1. j = 1; B = ∅
2. Let set C contains all the jobs beginning in node j ,
3. Index anew (starting from 1) all the jobs from C in arbitrary order, if B 
= ∅ index jobs

from B consecutively (starting from |C| + 1) in arbitrary order.
4. if (|B| + |C| ≤ m)

then
generate only one combination of all jobs from B and C,

otherwise
generate all combinations of m jobs over set B ∪ C in lexicographic order of its
indices until the first job from set B appears on the first position in a new
combination (the combination triggering stopping criteria is excluded from the
current combination set).

5. if (j < q)

then
j = j + 1; let the set B contain all the jobs not completed in node j ; go back to step

2;
otherwise

stop.

Below we propose several simple constructive heuristics which create a single ordering
of nodes for a given problem instance.

Notice that the processing time of a job is unknown a priori in the considered scheduling
problem. Instead, the size of a job may be taken as its base metrics used in a heuristic.
Unfortunately, the relation between power allocation for a job and its effective processing
time defined by (4) is ignored in this approach. Therefore, a job size may have only an
auxiliary meaning when a power allocation is unknown. Thus, a preliminary allocation of
power to jobs is necessary in order to respect processing times of jobs in a heuristics. We
propose the approach where the preliminary allocation of power is found by solving (11)–
(14) for an arbitrary feasible ordering of nodes in a graph. In consequence, we are able to
calculate both: a preliminary processing time, as well as an energy consumption for each
job. These two metrics may be further directly utilized in the heuristics.

We will consider three variants of the proposed heuristics, each of them taking into ac-
count one of the following parameters as a job metrics:

variant 1—size wi ,
variant 2—processing time τi ,
variant 3—energy consumption ei .
It is worth stressing that the metrics of jobs in variants 2 and 3 base on some preliminary

ordering O . It is an open question, how far a particular ordering O determines the final
ordering produced by a heuristics. We will try to estimate this relation on the bases of the
computational experiment described in Sect. 6.

5.2.1 Level based heuristics

Levord is a method which has proved its efficiency for the classical problem of scheduling
preemptable jobs on parallel identical processors (Józefowska et al. 2004). It exploits the
intuition that jobs with greater sizes should be performed longer and thus they have to be
present in a greater number of main sets than the jobs with small sizes.
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We propose two methods of calculating a node level.
Let us denote by pLevord(a) the method where the level of node j is calculated as the

length of the longest path from the node j to node q assuming that the weight of each arc
on this path is equal to the chosen metrics a, a∈ {wi,, τi , ei} of the represented job.

Second method, denoted by sLevord(a), finds the level of node j as the sum of weights
a of all arcs belonging to at least one path from the node j to node q .

5.2.2 Load based heuristic

An impact of the limited number of processors m on a constructed schedule is not respected
in the level based heuristics described in Sect. 5.2.1. We will use the Nodord algorithm
proposed in Słowiński (1978) as a load driven heuristic for node ordering. The algorithm was
originally developed for the resource constrained project scheduling problem and further
successfully applied to the aforementioned machine scheduling problem (Józefowska et al.
2004). We propose three variants of the algorithm denoted by Nodord(a) for the considered
problem, each one basing on a single job metrics a, a ∈ {wi,, τi , ei}. Let us present the
original algorithm (Słowiński 1978) with necessary modifications.

Algorithm 2 Nodord(a)

1. Number the nodes in the directed graph from 1 to q , so that for each arc (ja, jb), ja < jb .
2. Number the arcs (jobs) in the graph from 1 to n according to the increasing number of

their head nodes, and if two or more arcs share the same head node, solve ties according
to the increasing tail-node number.

3. Using a heuristic method for scheduling nonpreemptable jobs on m identical parallel pro-
cessors and assuming that processing time of a job is equal to its value of metrics a, find
job start times ti i = 1,2, . . . , n that satisfy precedence constraints and the nonpreempt-
ability condition.

4. For each node except the beginning and terminal ones calculate the value of the parameter

dj = min
i∈Dj

{ti}, j = 2,3, . . . , q − 1,

where Dj is the set of jobs beginning in node j and dj is the latest possible time of
occurrence of node j for the task start times defined in step 3.

5. Number the nodes from 2 to q − 1 according to increasing values of parameter dj .

The heuristic method used in step 3 determines the quality of the Nodord(a) algorithm.
It constructs a nonpreemptable schedule on m machines via a series of partial schedules
(Józefowska et al. 2004). A precedence feasible job scheduled as next in a partial schedule
is chosen basing on its priority. Applying the results of Józefowska et al. (2004), we calculate
a priority of a job as the total length (defined by metrics a) of all its successors.

6 Computational experiment

To evaluate efficiency of the proposed heuristic approaches we have performed a compu-
tational experiment. The algorithms were implemented in C++ and run on SUN Fire V490
equipped with UltraSPARC IIIi processor and 32 GB RAM memory. Due to the fact that no
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standard library of instances is available for the considered problem, the test instances were
generated randomly.

The experiment was limited to small instances since we were interested in comparing the
results with the optimal ones. Thus we assumed that the number of nodes q ∈ {6,7}, and
the number of processors m equals 2 and 3. The density μ of the graph was set to the three
values: 0.3, 0.5, 0.7. Of course, the number of jobs n is related to the number of nodes q

and the density of the graph μ and was calculated as Round(q(q − 1) · μ/2). For each set
of parameters m, q , μ, (instances for q = 7 were limited only to the case of μ = 0.5) 10
instances were generated. The job sizes were generated uniformly from the interval [0,100].
Moreover, each job i was characterized by a processing speed function si(·) of the form:
si(·) = p

1/αi

i , where αi have been set to the one of values: 2 or 3, with equal probability.
Different combinations of amounts of power P and energy E were tested. First, we

set these values in the way that each one of constraints (5) or (6) was active exclusively.
Moreover, we established P and E to the levels where both the constraints remained active
for tested instances.

We used CFSQP 2.5 solver (Lawrence et al. 1997) for solving the non-linear program-
ming problem (11)–(14). Algorithm 1 was applied to minimize the number of the variables
in (11)–(14).

We utilized optimal solutions as the reference results in our experiment. Optimal sched-
ules have been found by a full enumeration procedure which explored the set of all prece-
dence feasible job orderings for a given problem instance. In Table 1 we show data repre-
senting the relative range R of schedule lengths for different problem sizes estimated basing

Table 1 Relative range of schedule lengths and average computational time (E = 1000)

# q/m μ R [%]

(AvgTime [s])

P = 5 P = 30 P = 100

1 6/2 0.3 1.57 1.67 2.11

(1.60) (2.53) (2.34)

2 6/2 0.5 7.20 7.65 5.0

(22.52) (9.91) (7.76)

3 6/2 0.7 4.31 4.22 3.16

(51.75) (16.94) (18.89)

4 6/3 0.3 3.7 3.6 3.8

(1.33) (0.82) (1.07)

5 6/3 0.5 4.6 5.1 7.0 7.0

(139.21) (33.12) (31.40)

6 6/3 0.7 3.1 4.5 4.6

(572.83) (406.43) (379.53)

7 7/2 0.5 13.74 8.22 10.88

(295.42) (165.17) (153.49)

8 7/3 0.5 10.09 16.70 18.86

(293.72) (1120.31) (1089.71)
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on all precedence feasible nodes ordering. This value was calculated as:

R = 1

H

H∑
h=1

CW
hmax − C∗

hmax

C∗
hmax

· 100%

where
C∗

hmax—is the best schedule length for instance h

CW
hmax—is the worst schedule length for instance h

H—is the number of tested instances.
In Tables 2, 3, 4 the results obtained by heuristics are presented. In consecutive rows the

following metrics for each algorithm are placed:

– average relative deviation from the optimum,
– maximum relative deviation from the optimum,
– number of instances for which the algorithm found an optimal solution.

Each single row in Tables 2, 3, 4 represents the values of above metrics for a specific problem
size.

For each instance size we mark the best value of a particular metric by bold font.
The full enumeration approach applied for finding optimal orderings of nodes in a graph

allows to recognize characteristics of a search space of all precedence feasible orderings
from the schedule length point of view. Schedules most distant from the optimum were
obtained for instances with an average value of graph density. The graphs with density μ set
to 0.5 led to the variability of schedule lengths, measured by R, up to approx. 19%. It may be
justified by the fact that the number of different feasible schedules takes the highest values
in this case. Another interesting property is that the smaller amount of available power P

we set in a instance, the smaller value of average computational time for finding optimum
we get. Since the main part of computational time is consumed for the solution of problem
(11)–(14), it may be interpreted in such a way that finding the optimal power allocation for
instances with relatively small value of P by a non-linear solver is probably simpler.

A general observation resulting from the computational experiment is that efficiency of
the proposed heuristics do not differ much. It is especially visible if we take into account the
maximum relative deviation from the optimum. One can also conclude that in most cases all
the heuristics are misled by the same instance of the problem. Notice that in the worst case
(see the seventh instance size in Table 4) the schedule related to the node ordering generated
by all heuristics was longer by 12.4% than the optimal one. It is obvious, that various mech-
anisms implemented in our heuristics are insufficient for such malicious problem instances.
However, all the heuristics found the results worse on average by approx. 2.5% only than
the optimal ones. In general, the number of the optimal orderings found ranges from 10% to
100% and it depends mainly on the density of the graph and amounts of P and E.

Let us analyze sensitivity of proposed heuristics on the values of P and E. It is easy
to observe that when the amount of power P is relatively small compared to an amount of
energy E, then the heuristics found relatively better results than in the case of big P . It may
denote that the instances with an amount of energy E as most tight limit are harder to solve
then instances where power P should be respected only.

It is difficult to compare a computational time of the proposed heuristic algorithms since
their computations are significantly dominated by solving the non-linear programming prob-
lem (11)–(14). The time needed by heuristics for constructing a single, potentially optimal
ordering may be taken as negligibly small.
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Even if it is difficult to indicate the best heuristic for the considered problem, we propose
the following recommendation. Use Nodord algorithm in variant 1, 2 and 3, for each instance
of the problem. From among three orderings obtained choose the one giving the smallest
schedule length. As it is ease to notice in Tables 2, 3, 4, such a combining effect of the
three heuristics guarantees the best values of algorithm metrics for each problem size and
combination of parameters P/E.

7 Summary

In this paper the problem of power-aware scheduling of preemptable jobs on parallel iden-
tical processors to minimize the schedule length was studied. Two job processing models:
one based on a power vs. processor speed function, and the second based on a job process-
ing speed vs. temporary amount of power function have been compared. In the sequel the
second, more general model, has been applied to study basic properties of optimal sched-
ules for independent and precedence-related jobs. Methods for finding optimal schedules
using these properties have been presented. Although these methods, based on solving con-
vex programming problems, can be practically solved for rather small problem sizes, they
are important from the viewpoint of evaluating heuristic vs. optimal solutions. Heuristics
for finding ordering of nodes in a task-on-arc digraph which led to possibly short schedules
from among all possible orderings in the general case of precedence constraints among jobs
have been proposed and tested experimentally.

Further research can be directed towards the construction of heuristics for finding sched-
ules for independent jobs, as well as for dependent ones for a given ordering of nodes. Some
concepts of the heuristics proposed in Józefowska et al. (2002) for the case of a nonpreemp-
tive scheduling of independent tasks seem to be a good starting point for such interesting
study. Combinations of similar heuristics with the ones presented in this paper, tested ex-
perimentally, should lead for an efficient finding of good quality power-aware schedules in
the general case. Let us underline that situation where the non-linear solver is substituted
by a good heuristic may also be profitable in combination with a metaheuristic approach
effectively exploiting dependencies among jobs.
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