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Abstract We present an algorithm that determines Sequential Tail Value at Risk (STVaR)
for path-independent payoffs in a binomial tree. STVaR is a dynamic version of Tail-Value-
at-Risk (TVaR) characterized by the property that risk levels at any moment must be in the
range of risk levels later on. The algorithm consists of a finite sequence of backward recur-
sions that is guaranteed to arrive at the solution of the corresponding dynamic optimization
problem. The algorithm makes concrete how STVaR differs from TVaR over the remaining
horizon, and from recursive TVaR, which amounts to Dynamic Programming. Algorithmic
aspects are compared with the cutting-plane method. Time consistency and comonotonicity
properties are illustrated by applying the algorithm on elementary examples.

Keywords Value at risk · Tail value at risk · Dynamic risk measures · Time consistency ·
Dynamic programming · Path dependency · Cutting plane method

1 Introduction

A wide range of problems in applied science involve the optimization of a performance
criterion under risk limits that guarantee a desired or required level of safety. In finance,
the dominant approach to express risk limits is in terms of Value-at-Risk (VaR) (Morgan
J. P. Inc 1996; Jorion 1997; Duffie and Pan 1997), being the maximum loss over a give time
horizon at a certain confidence level. The key to its success is that it expresses risk as a
monetary value with a transparent interpretation, which is very helpful in comparing and
aggregating risks originating from different sources. The dominance of VaR in the financial
industry is apparent from its central role in the world-wide regulation of banks for all risk
categories, including operational risk (BIS 2006). Although VaR inherently has a financial
flavor, already in the name itself, it is applicable in a non-financial context as well, if all
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types of risk under consideration can be quantified in a common unit of value loss, see e.g.
Tapiero (2003) for an application in inventory control.

A well-known shortcoming of using VaR as risk limit is that it stimulates concentration
of risk, because it is insensitive for the actual level of the worst losses that can be ignored
under a given confidence level. In the financial industry, with an abundance of opportunities
to exploit any loophole at large scale, this aspect can be really harmful, and has led to
considerable interest in TVaR as an alternative, also called Average VaR, Conditional VaR,
or Expected Shortfall (Artzner et al. 1999; Szegö 2002; Föllmer and Schied 2004; McNeil
et al. 2005; Pflug and Römisch 2007). TVaR measures the expected loss on the probability
mass that is ignored in VaR, thus avoiding the anomalies in VaR as risk limit.

We refer to Rockafellar and Uryasev (2002) for a fundamental result that links portfo-
lio optimization under TVaR constraints to Linear Programming. A strong motivation for
working with this type of constraints is the connection with optimization under second or-
der stochastic dominance constraints, see e.g. Fishburn (1964), Föllmer and Schied (2004),
Dentcheva and Ruszczyński (2003). Considerable effort has been put in efficient algorithms
that can cope with the huge amount of restrictions in the corresponding LP-problems, in par-
ticular by means of cutting-plane methods, see Klein Haneveld and van der Vlerk (2006),
Künzi-Bay and Mayer (2006), Rudolf and Ruszczyński (2008), Luedtke (2008), Fábián et
al. (2009).

The aim of this paper, however, is not primarily related to the controversy VaR vs. TVaR
(we take our starting point in TVaR, and indicate how to derive a corresponding VaR-
version), nor to optimizing performance under VaR-like restrictions (we only compute the
outcome of these constraints for a given position).

Our primary focus is the dynamics of risk measurement itself. Our findings suggest that
the evaluation of dynamic risk measures requires a new class of algorithms, more complex
than Dynamic Programming, yet with sufficient structure to maintain some weaker, iterative
form of backward recursive evaluation.

In fact, it is surprisingly difficult to extend a static notion of risk to a multiperiod setting,
without violating certain compelling rules for the consistency of risk levels over time. The
literature on dynamic risk measures and their time consistency properties is rapidly growing,
but here we just briefly sketch the situation for VaR and TVaR. Straightforward extensions,
such as TVaR over the remaining horizon, are severely time-inconsistent, in the sense that
initial risk levels may decrease with probability one in the next period (Artzner et al. 2007;
see also the discussion in Roorda and Schumacher 2007, henceforth RS07). An obvious
way to avoid time inconsistency is to adhere to a backward recursive definition, correspond-
ing to so-called (strongly) time consistent risk measures, satisfying (10.1), but for TVaR
this leads to accumulation of conservatism, as explained in RS07. In continuous time such
strongly time consistent versions do not even exist, cf. Kupper and Schachermayer (2009)
and Delbaen (2006).

Sequential Tail-Value-at-Risk (STVaR) has been introduced in RS07 as a weakly time
consistent dynamic version of static TVaR. On the one hand, it avoids the type of time in-
consistency as indicated above, by imposing so-called sequential consistency, which is the
property that risk levels should never increase or decrease for sure, as expressed in (10.2).
In fact, STVaR is the most conservative risk measure with this property that is dominated by
TVaR over the entire (and remaining) horizon. On the other hand, accumulation of conser-
vatism is avoided by deliberately giving up the backward recursive structure corresponding
to strong time consistency. We remark that STVaR does not involve any extra parameters,
besides the confidence level, unlike the proposal for multiperiod TVaR in Pflug and Römisch
(2007).
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We present an algorithm for computing STVaR in a binomial tree model, for a
path-independent payoff. In RS07 it already has been shown that the optimization re-
lated to STVaR amounts to a Linear Programming problem, but a straightforward LP-
implementation is infeasible already at a moderate scale, due to the path dependency in-
herent in STVaR.

The algorithm presented here exploits more specific features of the problem, that allow
for a solution by a finite sequence of backward recursions, despite the fact that it is, for rea-
sons indicated above, not strongly time consistent and hence does not follow the standard
backward recursive scheme of Dynamic Programming. A simple example is used to illus-
trate the working of the algorithm, and to indicate the contrast with cutting-plane methods.

The paper is organized as follows. In Sect. 2 we repeat the definition of STVaR, and
reformulate it as an optimization problem over admissible weighting functions. Section 3
introduces the notion of τ -path independency. The algorithm is described in Sect. 4 (outline)
and 5 (implementation). The proof of correctness can be found in Sect. 7, after an explana-
tion how the output of the algorithm should be interpreted in terms of weighting functions.
In Sect. 8 the working of the algorithm is further explained by an example. A comparison
with cutting-plane methods is made in Sect. 9. Time consistency aspects are discussed in
Sect. 10, and conclusions follow in Sect. 11. The Appendix contains two proofs.

1.1 Notation

Throughout the paper we work with a standard recombining binomial tree with T steps. The
root of the tree is denoted as 0. Each node ν of depth less than T has child nodes νu and νd ;
these links will be depicted in figures by resp. an up- and a down-branch. Because the tree
recombines, (νu)d = (νd)u. The set of nodes of depth t , henceforth referred to as nodes
at time t , are denoted by Nt ; in particular N0 = {0} and NT is the set of T + 1 end-nodes
(or leaves). Further, N = ⋃

t=0,...,T Nt is the set of all nodes, and N ′ := N \ NT denotes the
set of pre-final (or internal) nodes. The subtree with root ν is indicated as S(ν). A path is a
sequence of connected nodes. A full path starts in the root and ends in NT .

We work with an encompassing probability space (�, F ,P ), with outcome space �

identified with full paths in the binomial tree, i.e., � = {(0, ν1, . . . , νT ) |νi ∈ Ni, νi+1 =
νiu or νi+1 = νid}, and F is the collection of all subsets of �. Assuming a fixed probability
p ∈ (0,1) for an up-branch, P is defined by P (ω) = pk(1 − p)T −k with k the number of
up-branches in the path ω.

For a given ω = (0, ν1, . . . , νT ) ∈ �, let the corresponding partial path starting in s and
ending in t be denoted by ω[s,t] := (νs, . . . , νt ). For the single node ω[t,t] we use the nota-
tion ωt . We define F(ω[0,t]) := {ω′ ∈ � |ω′

[0,t] = ω[0,t]}, and Ft is the sub-σ -algebra gener-
ated by these sets, representing the available information at time t . F(ν) denotes the set of
paths on the subtree S(ν), and the previous definitions extend in the obvious way.

A stopping time is a function τ : � → {0, . . . , T } that is measurable with respect to Ft

for all t , i.e., in obvious notation, with τ a function of ω[0,τ ]. The space of partial paths
stopped at τ is denoted by �τ := {ω[0,τ ] |ω ∈ �}, and Fτ is generated by the collection
{F(ω[0,τ ])}ω∈�, representing the available information at time τ . Nτ := {ωτ |ω ∈ �} is the
collection of leaves in �τ . The set N<τ := {ωt |ω ∈ �, t < τ(ω)} consists of all (possibly)
pre-final nodes in �τ , and N≤τ := N<τ ∪ Nτ . Further, for a function h defined on Nτ , we
define the Fτ -measurable random variable hτ : ω �→ h(ωτ ).

We mainly restrict the attention to stopping times that amount to reaching a certain subset
of nodes S ⊆ N (or an end-node in NT ) for the first time, denoted as τ(S). Such stopping
times have N<τ disjoint from S, and Nτ ⊆ S ∪ NT . This inclusion is strict when the last
union contains nodes that cannot be reached without crossing S earlier.
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In the notation that follows, notice that deterministic time is a special case of a stop-
ping time τ . X denotes the space of real random variables on �, and Xτ its restriction to
Fτ -measurable variables. Elements of Xτ are sometimes identified with random variables
on �τ , in the obvious way. Expected values are taken under P , and we use Eτ [X] as an
abbreviation for E[X|Fτ ]. We also use the notation Eν[X], but this involves some subtleties
that are explained in the next section. Further, the Fτ -conditional maximum of X is denoted
as |X|τ := min{cτ : � → R | cτ ∈ Xτ ,X − cτ ≤ 0}, where it is understood that inequalities
hold for all ω. X ∈ X is called path independent (on �) if X(ω) = x(ωT ) for some function
x : NT → R.

2 Sequentially consistent TVaR

Let be given a binomial tree model over T periods with probability p for an up-branch, and
a path-independent payoff X ∈ X . STVaR at level α ∈ (0,1] is defined as (cf. RS07)

STVaRα(X) = inf
Z∈Z

E[ZX] (2.1)

with

Z = {Z : � → R |E[Z] = 1 and 0 ≤ Z ≤ α−1Zt for t = 0, . . . , T } (2.2)

writing Zt for Et [Z]. In particular, 0 ≤ Z ≤ α−1 in Z . It turns out to be convenient to rewrite
this as

STVaRα(X) = inf
W∈W

E[WX]/E[W ] (2.3)

with W the set of admissible weighting functions, given by

W = {W : � → [0,1] | |W | = 1 and Et [W ] ≥ α|W |t for t = 0, . . . , T }. (2.4)

The equivalence of both formulations follows readily from taking W = Z/|Z| for a given Z

in Z , or, conversely, Z = W/E[W ] for a given W ∈ W .
For the interpretation of W , notice that Z and W only differ in scaling. Where Z repre-

sents a relative density, having unit expected value, W is a scaled version of Z so that its
maximum is 1. Similarly, Z/Zt is the conditional relative density, while Wt := W/|W |t is
the same object, down-scaled to maximum value 1. To avoid ambiguity where |W |t = 0, we
set Wt(ω) = 1 if |W |t (ω) = 0, similar to the common conventions in terms of Z. We remark
that in the algorithm we will also use an alternative convention when that turns out to be
more practical. Regardless the convention that will be used, the following decomposition
holds true:

W = |W |tW t . (2.5)

Intuitively, W(ω) can be seen as the survival probability of a path ω, in the sense that the
contribution of a path ω to the expectation in the numerator of (2.3) equals E[1ωX(ω)] times
the ‘probability’ W(ω) to ‘survive’ the selection of contributing paths; Wt has a similar
interpretation, conditioned on survival at till time t , whereas |W |t can be interpreted as the
(unconditional) probability of this condition.
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3 τ -path independency

The optimal weighting function is heavily path-dependent in general, even though the posi-
tion X itself is not. A full specification of W per path ω is simply not feasible for large T ,
because of the 2T different paths, each involving T linear restrictions, one in each pre-final
node. It is hence critical to avoid irrelevant path dependencies. In our approach the following
notion plays a central role.

Definition 3.1 A random variable Y ∈ X is called τ -path independent, with respect to a
given stopping time τ , if for all pairs ω,ω′ ∈ � with ω[τ,T ] = ω′

[τ,T ], Y (ω) = Y (ω′).

This notion is increasingly restrictive in τ ; for τ = 0 the condition is void, while for
τ = T it amounts to ordinary path independency.

The STVaR-algorithm is based on two findings. Firstly, as we will prove in Sect. 7, atten-
tion can be restricted to τ -path independent weighting schemes, for a decreasing sequence
of stopping times as determined by the algorithm. Secondly, the essential features of such
weighting schemes can be represented by functions on Nτ , thus avoiding a state space of
exponential magnitude in T .

To this end, we use the following notation and terminology related to a given τ -path
independent weighting scheme W . For ν ∈ N ′, let W ν denote the set of admissible weighting
schemes on F(ν), the set of all paths in the subtree S(ν), where admissibility is defined
entirely analogous to (2.4). For ν ∈ N≤τ ∩ Nt , we define

|W |ν := max{W(ω) |ωt = ν and t ≤ τ(ω)},
and Wν as the normalized restriction of W on F(ν),

Wν(ω[t,T ]) =
{

W(ω)/|W |ν if |W |ν > 0,

V if |W |ν = 0
(3.1)

where V ∈ Wν is determined by a suitable convention, e.g. V ≡ 1. Notice that Wν is well
defined because W is τ -path independent, and that |Wν | = 1. Clearly Wν ∈ W ν if W ∈ W .
We remark that the dependency of |W |ν on τ is not made explicit in the notation, but we
will take care that this does not cause confusion when several stopping times are involved.
Analogous to (2.5) we can write

W = |W |τWτ , (3.2)

so W is fully specified by the collection {Wν}ν∈Nτ , and a function w : ν �→ |W |ν for ν ∈ Nτ .
In the algorithm, w is represented as an indicator function of a set of nodes, while for the
collection of conditional measures it only keeps track of the following triple of functions on
N≤τ ,

y(ν) = Eν[Wν] ‘the probability mass in ν (under W )’,

g(ν) = Eν[WνX] ‘the raw level in ν (under W )’, (3.3)

f (ν) = g(ν)/y(ν) ‘the level in ν (under W )’.

We remark that all these values can be derived from the three functions w, yτ and gτ on
Nτ . Notice that f (0) = E[WX]/E[W ] evaluates the STVaR criterion for W and a given
position X. Admissibility of W can be characterized as follows.
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Lemma 3.2 Let be given a τ -path independent weighting scheme W : � → [0,1] with the
corresponding triple of functions (y, g,f ) on N≤τ as defined above. W is admissible if and
only if |W | = 1, Wν ∈ W ν for all ν ∈ Nτ , and

y(ν) ≥ α for all ν ∈ N≤τ . (3.4)

Proof It is clear that the conditions are necessary; recall that in case |W |ν = 0, by convention
still Wν ∈ W ν , and hence y(ν) ≥ α also in that case. That the conditions are sufficient for
admissibility of W , see (2.4), follows directly from Et [W ](ω) = y(ν)|W |ν for all ω ∈ �

with ν = ωt and t ≤ τ(ω). �

For the intuition we remark that ordinary Tail Value at Risk, over [0, T ] as a single period,
only imposes the restriction (3.4) for ν = 0, which always allows for a path independent
optimal weighting function. However, it lacks the property of sequential consistency, as is
illustrated by Example 10.1.

4 Outline of the algorithm

The algorithm determines a finite sequence of decreasing admissible weighting functions
W(0), . . .W(K) =: W ∗ so that W ∗ is a solution of (2.3). It starts with taking W = W(0) ≡ 1,
corresponding to initial probability mass one in all nodes, and computing g(0) = f (0) =
E[WX] = E[X]. If α = 1, the algorithm is already finished, so we assume that α < 1.

The main idea behind the algorithm is simple: in each loop it maximally reduces weights
of paths leading to nodes with maximum level, and it stops, roughly speaking, when the
probability mass at the root has been decreased to α.

In the first step it hence maximally reduces the weight of those nodes ν ∈ N ′ that have
maximum level f (ν) = M := max{X(ω) |ω ∈ �}, which are called M-nodes. This reduces
the probability mass in nodes on paths to M-nodes (not in the M-nodes themselves). Notice
that also nodes ν before T can be M-nodes (under W ≡ 1), namely if X = M on the entire
subtree S(ν), cf. (3.3).

If in every pre-final node ν ∈ N ′, P (X = M|ν) ≤ 1 − α, we can simply annihilate all
weights for paths to M-nodes, i.e., set W = 1X<M . If not, we backward recursively construct
a weighting function W ∈ W that corresponds to maximal reduction at rate M in each node,
respecting the STVaR condition (3.4). This typically involves weights between 0 and 1 for
some paths to M-nodes, as is illustrated by the example in Sect. 8. Nodes that arrive at
minimum probability mass α by this construction are called STVaR-nodes.

The algorithm can be stopped at this point if y(0)(= E[W ]) = α, i.e., if 0 itself has
become an STVaR node. Then f (0)(= E[WX]/E[X]) = STVaRα(X). This also holds if
the root itself has become an M-node, so if f (0) = M , which can only happen in the first
loop if X is the constant M .

For the next loop, all nodes with minimal probability mass α (if any) are collected in the
set S , and all M-nodes in Ex. These are considered as stopping nodes, and the corresponding
stopping time τ(Ex∪S) replaces the role of T . This is justified because the constructed
weighting scheme W is τ -path independent. It turns out that Wν is an STVaR solution on
the subtree S(ν), not only for ν ∈ S , but also for ν ∈ Ex, even though the probability mass
in the root ν may be larger than α. Then we again perform maximal reduction, similarly as
before, but now in �τ , of probability mass at the maximum possible rate M , which is now
decreased to M = max{f (ν) |ν ∈ Nτ \ Ex}, the set of stopping nodes that not already have
been exploited. New nodes with f (ν) = M and with y(ν) = α are added to resp. Ex and S .
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This construction is repeated until τ = 0. Then 0 ∈ S and/or 0 ∈ Ex, and in both cases
f (0) = STVaRα(X).

5 The algorithm

Let be given x : NT → R as the specification of a path-independent position X ∈ X as
function of final nodes, x(ωT ) = X(ω). The algorithm determines STVaRα(X) for a given
level α ∈ (0,1]. The basic variables are the triple (y, g,f ) as defined in (3.3), the set S for
collecting all nodes with y(ν) = α, and Ex for the set of all nodes that have functioned as
an M-node in a loop; then τ = τ(Ex∪S). They are initialized according to the weighting
function W ≡ 1.

• y(ν) := 1 for all ν ∈ N

• g(ν) := x(ν) for ν ∈ NT , and, backward recursively, g(ν) := pg(νu) + (1 − p)g(νd)

• f (ν) := g(ν)/y(ν) = g(ν)

• S := ∅, Ex := ∅, τ := T

If α = 1, f (0) = STVaRα(X), and the algorithm stops, otherwise repeat the following loop
as long as τ > 0, or, equivalently, y(0) > α and 0 �∈ Ex.

1. M := max{f (ν)|ν ∈ Nτ \ Ex} (the reduction rate of the loop)
NM := {ν ∈ N≤τ |f (ν) = M} (the set of (new) M-nodes in the loop)

2. For t = T − 1 down to 0, for all ν ∈ (Nt ∩ N<τ ) \ NM (the active nodes at t )
When f (νu) = M > f (νd), Case (i)
yred := (1 − p)y(νd)

If yred < α

w := (α − (1 − p)y(νd))/(py(νu))

y(ν) := α, g(ν) := wpg(νu) + (1 − p)g(νd), f (ν) := g(ν)/α (R1)

else

y(ν) := yred, f (ν) := f (νd), g(ν) := y(ν)f (ν) (R2)

When f (νd) = M > f (νu), Case (ii)
yred := py(νu)

If yred < α

w := (α − py(νu))/((1 − p)y(νd))

y(ν) := α, g(ν) := pg(νu) + w(1 − p)g(νd), f (ν) := g(ν)/α (R3)

else

y(ν) := yred, f (ν) := f (νu), g(ν) := y(ν)f (ν) (R4)

When f (νu) ∈ Ex Case (iii)
yred := (1 − p)y(νd)

If yred < α

ȳ := y(ν) − α

y(ν) := α, g(ν) := g(ν) − ȳM, f (ν) = g(ν)/α (T1)
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else

y(ν) := yred, f (ν) := f (νd), g(ν) := y(ν)f (ν) (T2)

When f (νd) ∈ Ex Case (iv)
yred := py(νu)

If yred < α,

ȳ := y(ν) − α

y(ν) := α, g(ν) := g(ν) − ȳM, f (ν) = g(ν)/α (T3)

else

y(ν) := yred, f (ν) := f (νu), g(ν) := y(ν)f (ν) (T4)

Otherwise Case (v)

y(ν) := py(νu) + (1 − p)y(νd)

g(ν) := pg(νu) + (1 − p)g(νd) (T5)

f (ν) := g(ν)/y(ν)

3. Adjust bookkeeping variables
Ex := Ex∪NM

S := S ∪ {ν ∈ N<τ |y(ν) = α}
τ := τ(Ex∪S)

Here ends the loop. After the last loop, f (0) = STVaRα(X).

6 The weighting function determined by the algorithm

In this section we explain how to interpret the algorithm in terms of admissible weighting
functions, and describe the structural properties that are preserved after each loop. Optimal-
ity properties are addressed in the next section.

Notation requires some extra attention in carefully discriminating between values of vari-
able at the beginning and the end of a loop. To suppress indices, we simply write W for the
weighting function corresponding to the end of the loop under consideration, and use M ,
S , τ , etc. for the value of the other variables in that stage. By a subscript prev we indi-
cate the values of variables as determined by the previous loop, so we write Wprev, Mprev,
Exprev, Sprev etc. For convenience, we write τ for τprev, and y,g,f for the value of the triple
as determined by the previous loop. These are hence the initial values for the loop under
consideration. We also need Mnext := max{f (ν)|ν ∈ Nτ \ Ex}, the reduction rate in the next
loop, not to be confused with M = max{f (ν)|ν ∈ Nτ \ Exprev}.

We make use of an auxiliary stopping time, in between τ and τ , given by

τ ′ := τ(NM ∪ Exprev ∪Sprev). (6.1)

This corresponds to reaching Nτ or an M-node. The loop acts only before τ ′, i.e., on nodes
in A := N<τ ′ , which we call the set of active nodes. This reflects the fact that no reductions
take place at or after τ ′, i.e., by definition,

Wτ ′ = Wτ ′
prev. (6.2)
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Below we show that Wprev ∈ W is τ -path independent, hence also τ ′-path independent, so
that this is well defined. Correspondingly,

(y, g,f ) = (y, g,f ) on Nτ ′ . (6.3)

This provides the ‘initial’ values for the loop’s backward recursion in time t . Notice that if
τ ′ = 0, the loop is ineffective, i.e., W = Wprev.

The backward recursive assignments for the active nodes at time t , ν ∈ Nt ∩A, are trans-
lated to weighting schemes as follows. In Case (i), (R1) and (R2) take the form

y(ν) = wpy(νu) + (1 − p)y(νd),

g(ν) = wpg(νu) + (1 − p)g(νd), (6.4)

f (ν) = g(ν)/y(ν)

where w = 0 in (R2) and 0 < w < 1 such that y(ν) = α in (R1). We refer to w as the
branch-weight of the reduction. This corresponds to

Wν(ω[t,T ]) :=
{

wWνu(ω[t+1,T ]) if ωt+1 = u,

Wνd(ω[t+1,T ]) if ωt+1 = d.
(6.5)

Notice that in Case (i), Wνu = Wνu
prev, because ν ∈ NM . The actual reduction is due to the

scaling by w, while possible reductions already determined for Wνd are just transferred. The
interpretation of Case (ii) is similar, with the role of up- and down-branches interchanged.
The Cases (i) and (ii) perform the actual reduction of the loop, the corresponding nodes ν

are called pre-M-nodes.
The assignment (T2) in Case (iii) corresponds to (6.5) with w = 0. In contrast to the case

where (R2) applies, this just recognizes that the branch to νu has already been cut before
the loop. This means that Wprev satisfies the same equation (6.5), also with w = 0, but of
course with Wνd replaced by Wνd

prev. If (T2) would bring y(ν) below α, it is not admissible,
and (T1) is used instead, reflecting the assignment

Wν(ω[t,T ]) :=
{

0 if wt+1 = u,

V (ω[t+1,T ]) if wt+1 = d
(6.6)

for some admissible V ∈ W νd that, like Wνd , corresponds to reduction at rate M , but to a
lesser extent, so that y(ν) = α. The existence of such a V is shown below, and V need not
be determined explicitly.

A remark on the notation is in order here, because the value of Wνd is ‘overwritten’
by (6.6). This can only occur for paths that cross S , hence end after τ . As suggested by
the notation, however, Wνd will always be the conditional weighting scheme on F(νd), as
defined by (3.1), for all paths to νd that belong to �τ .

Finally, (T5) in Case (v) corresponds to (6.5) with w = 1. This also transfers possible
reductions in child nodes, like (T2) and (T4) do, but because no branch is cut, y(ν) ≥ α is
guaranteed, so this condition need not be checked.

The weighting scheme W resulting from the loop has the following structure. The proof
is in the Appendix.
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Lemma 6.1 W is a τ -path independent admissible weighting scheme in W satisfying (3.3).
If 0 ∈ Ex, W = Wprev, otherwise it has the following properties. Firstly, |W |τ = 1B with
B := {ω ∈ � |f (ωτ ) < M}. Consequently, for ω ∈ �, and ν := ωτ ,

W(ω) =

⎧
⎪⎨

⎪⎩

0 if ν ∈ Ex,

1 if ν ∈ NT \ Ex,

Wν(ω[τ,T ]) if ν ∈ S \ Ex .

(6.7)

Secondly, W ≤ Wprev, W �= Wprev, and all reductions in the loop are at rate M , i.e.,

g − g = M(y − y) ≥ 0 on the region N≤τ . (6.8)

The stopping time τ can be given the following intuition on the basis of this lemma. It
is the first moment that a path reaches minimum probability mass α and/or level at least M ,
and then it arrives in resp. S and/or Ex. If such moment does not exists, the path ends at T ,
outside Ex.

7 Proof of correctness

We have to show that if the algorithm stops, f (0) = STVaRα(X), and furthermore that the
number of loops is finite. The claim on correctness will be derived mainly the following
optimality property of the weighting scheme W as determined at the end of a loop. We keep
the notation of the previous section; in particular, (y, g,f ) is the corresponding triple of
functions, as defined by (3.3). Further, let

Rν := {(ỹ, g̃, f̃ ) | ỹ = Eν[V ], g̃ = Eν[V X], f̃ = g̃/ỹ for some V ∈ W ν},

denote the set of reachable triples in ν, i.e. corresponding to an admissible weighting scheme
in W ν .

Lemma 7.1 W is optimal at τ , i.e., for all ν ∈ Nτ , for all (ỹ, g̃, f̃ ) ∈ Rν , f̃ ≥ f (ν).

The proof is in the Appendix. From this lemma, correctness of the algorithm is straight-
forwardly verified.

Theorem 7.2 The algorithm terminates within (T +1)(T +2)/2 loops (the number of nodes
in the tree) and then f (0) equals STVaRα(X).

Proof The algorithm starts with Ex = ∅, and in each loop this set is extended by at least one
M-node. If the algorithm would not have terminated before the (T + 1)(T + 2)/2-th loop,
then after that loop Ex = N , hence 0 ∈ Ex, and the algorithm stops. In fact 0 ∈ Ex already
one loop earlier, because it cannot be the case that the root is the only element outside Ex.

At termination, τ = 0, so either 0 ∈ S or 0 ∈ Ex. If 0 ∈ S , it follows from the previous
lemma that W is optimal at τ = 0, which means that W must solve the STVaR-problem
(2.3). Otherwise, 0 ∈ Ex. This can only be the case if f (ν) = M for all ν ∈ Nτ . From (IH1)
in the Appendix it then follows that Wprev already is optimal in 0, and indeed the last loop
was ineffective, so that W = Wprev solves the STVaR-problem (2.3). �



Ann Oper Res (2010) 181: 463–483 473

8 Example

We illustrate the working of the algorithm by an example. Meanwhile we discuss some
aspects of it that may be less obvious.

8.1 First step

We consider a binary tree with p = 1/2, T = 4, and payoff X as indicated in the picture
below, with maximum value M = 4. E[X] = 2 15

16 . We apply the first loop of the algorithm
for STVaR at level α = 3/8. The end result of the first step can be visualized as follows.

The M-nodes are indicated by open circles. The pre-M-nodes are nodes A and B , they
have exactly one branch to an M-node. Starting in node A, the last one, we see that the
branch to its M-node can be cut completely, by (R2). Formally, we set WA(Au) = 0, and
keep WA(Ad) = 1. This leaves node A with probability mass 1/2, which is not below α, as
required. Obviously, the level in node A after this cut is given by f (A) = 3.

For node B the branch to the M-node cannot be cut completely, taking into account that
node A has not full probability mass anymore: this would yield probability mass 1/4 in
B , which is below α. According to (R1), setting the transition weight equal to w = 1/4,
as depicted above, the probability mass in B is reduced to α exactly. This brings the value
f (B) down to (wp4+ (1−p)23)/α = 3 1

3 . This is actually the STVaRα value of X on F(B),
and therefore B is called an STVaR-node.

The probabilities and levels in the other nodes follow (T5), corresponding to unit transi-
tion weights. This gives y(0) = 23

32 , f (0) = 2 12
23 .

At the end of the loop, the stopping time τ equals τ(B). Intuitively speaking, in the
backward recursions of later loops, node B will pass its STVaRα value to earlier nodes,
regardless of any further reductions of nodes in its subtree S(B). So, in forward perspective,
for paths through B there is no reason to ‘look behind’ node B . Formally, the outcome space
can now be restricted to �τ . Notice that the path duuu still belongs to �τ . It is the only path
that arrives at τ in Ex, hence the only one with zero weight in �τ , in line with Lemma 6.1.

We remark that it is not crucial that the reduction in node A is passed through to node B .
Alternatively, one could take e.g. weight 1/6 for all paths to M-nodes via B . The choice in
the algorithm is best in line with the backward recursion in time.

8.2 Second step

Taking starting point in the end result of the first step, now the maximum reduction rate M

has become 3 1
3 , and B becomes the new M-node. Reduction now takes place in the only pre-

M-node C, through (R2), and it turns out that cutting its branch to B reduces its probability
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mass exactly to y(C) = α. The corresponding level is f (C) = 2 2
3 , copied from the node

below B . So the picture now becomes

This updates the stopping time τ to τ(B ∪ C) = τ(C). Notice that B , which was already a
stopping node in S , now also belongs to Ex. At the root now y(0) = 5

8 and f (0) = 2 2
5 .

Notice that not all paths from C to X < M have unit weight after reduction at rate M . For
example, the path ω = uudd leads to X(ω) = 3, yet W(ω) = 0. By giving this path some
extra weight in WC the pair y(C), g(C) would increase to y(C)+ δ, g(C)+ 3δ. This seems
to contradict Lemma 7.1, which states that the increase rate in g is at least M = 3 1

3 , hence
cannot be 3. However, this extra weight would make WC (and hence W ) an inadmissible
weighting scheme, violating (3.4) in node B . The admissible minimum rate of increase is
indeed exactly M = 3 1

3 , corresponding to giving back the cut branch to B some positive
weight.

This is the crucial difference with considering TVaR over the remaining period, as dis-
cussed in Sect. 10. It also illustrates that W is not closed under increasing weighting schemes
bounded by 0 and 1, if it is allowed to increase the support of W .

8.3 Remaining steps

In the third loop, the reduction rate is M = 3, and there are two M-nodes, D and A. Reduc-
tion at this rate takes place in the pre-M-nodes E by (R2) and then in F by (R1). This leads
to the following situation after the third loop.

The value in F is now 2 1
3 . The reachable pre-final stopping nodes for τ are now C and F .

Notice that the reduction in F is not affecting the level of the STVaR-node C, and hence the
newly constructed WF does not apply to paths via C. This illustrates the difference between
ordinary and τ -path independency. At the root, y(0) = 15

32 , still beyond α, and f (0) = 2 1
5 .

Finally, node C becomes M-node with level M = 2 2
3 . Maximum reduction at this rate

corresponds to weight w = 1/2 for the first up-branch, and level f (0) = 2 1
12 for the root,



Ann Oper Res (2010) 181: 463–483 475

which is the outcome of STVaRα(X). The end situation is depicted below.

We remark that (T1,3) never have been applied; they typically become relevant for
smaller α and larger regions with constant payoff. An example for which (T1) is relevant is
provided by taking α = 3/16 and payoff 2,2,2,1,0 instead of 4,4,3,2,1.

8.4 Final state

The final state in the example is typical: the root has one branch to a node in S (u in this
case), with level equal to the last reduction rate, i.e., f (u) = M . The other node, d in this
case, has level f (d) < M , and probability y(d) > α. Optimality of the final weighting
scheme is reflected by the fact that in node d , probability mass can only be increased at
increase rate beyond M , and decreased at rate below M . Intuitively, instead of taking the
STVaR value in d as well, the node is filled with extra probability mass until the increase
rate begins to exceed the level f (u).

It is clear that in the final situation, in obvious notation, Ex = {ν ∈ N | STVaRα(X|ν) ≥
M}. So at termination τ(Ex) must be the stopping time of reaching STVaRα level M for the
first time. There are hence three types of paths in �τ(Ex): those ending in T without reaching
Ex, hence in X < M , having weight 1, those reaching S before stopping in Ex, having level
below M , and mass α, and those having in the last step a cut link to Ex.

So, abstract from the iterations, the end result of the algorithm can be summarized as
follows. It determines the region Ex of nodes where the STVaRα level exceeds a certain level
M and maximally reduces the last branch weight of paths arriving at Ex, giving priority
to branches to Ex-nodes with higher level, while respecting (3.4). The level M (the final
reduction rate) is determined as the highest level for which then the root gets probability
mass α, or level equal to the reduction rate.

9 A comparison with cutting-plane methods

Cutting-plane methods have been successfully applied for solving portfolio optimization un-
der TVaR constraints, as mentioned in the introduction. A natural question is, to what extent
they could be applied for STVaR. Intuitively, the (primal) cutting-plane method first ignores
most restrictions in a given LP-problem, then checks the solution for violated restrictions,
and adds some of these to the problem, until no violated restrictions are found. In this way it
detects the binding constraints out of a typically huge set of restrictions, thus reducing com-
putation time by a factor hundred or more for applications at realistic scale, as described in
the references cited in the Introduction.

We first sketch how the method could be applied to the example in the previous section.
Here it is convenient to use the path-specific notation E[W |ω[0,t]]. An obvious choice for the
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initial problem is standard TVaR, i.e., (2.2) with all restrictions for t > 0 removed. In terms
of weighting schemes W = Z/|Z|, this results in W(ω) = 1 in case X(ω) ≤ 2, W(ω) = 1/6
for all six paths with X(ω) = 3, and W(ω) = 0 otherwise. This yields TVaR(X) = 2.

STVaR requires that J (t,ω) := W(ω) − α−1E[W |ω[0,t]] ≤ 0 for each path ω ∈ �,
and all t . Violations occur for path uddd in C (J (1, uddd) = 1/2), for path uudd

in B (J (2, uudd) = 1/18), and for both paths uddd and dudd in F (J (2, uddd) =
J (2, dudd) = 1/9).

A choice has to be made which violated restriction(s) should be added. We choose for
the restriction with the highest J -value, i.e., the one that is violated in C. This is the most
severe violation, scaled in units of weights, and may be expected to have the largest effect
on the solution.

So we add the restriction αW(uddd)−E[W |u] ≤ 0, and solve by LP. This yields weight-
ing function W with weight 4/9 for the three paths through C with X(ω) = 3, 2/3 for uddd ,
1 for all other paths ending with X(ω) ≤ 2, and zero otherwise. The (only) violation is now
for dudd in F , where J (2, dudd) = 1/3.

Adding this restriction as well in a third step, yields a solution with weight 1/3 for the
three paths through C with X(ω) = 3, 1/2 for uddd , 1/4 for duud and dudu, and again 1
for all other paths ending with X(ω) ≤ 2.

Then E[W ] = α, and the outcome of α−1E[WX] is already at the correct level 2 1
12 , yet

there still one violation to be removed, for path uudd at B . After adding this restriction,
the same solution as from the STVaR algorithm is obtained, with the only (ineffective) dif-
ference of having weights 1/4 for paths duud and dudu, where the original solution has
weights resp 1/2 and 0.

This illustrates that the cutting plane method can be quite efficient in avoiding non-
effective restrictions. At the start, a number of 32 restrictions is ignored (16 at t = 1, 16
at t = 2, the ones at t = 3 are apparently ineffective for α = 3/8), while only 4 were added
to arrive at a feasible solution.

Path dependency, however, severely limits the number of time steps T for straightfor-
ward applications of the cutting-plane method. In larger scale applications, it is not only the
number of restrictions that hurts, but already the number of variables involved. The outcome
space contains 2T elements, which effectively blocks the mere representation of the STVaR
in a cutting plane routine for, say, N = 50, let alone the optimization involved. In contrast,
the STVaR algorithm can cope with this size without any problem.

The crux of the STVaR algorithm is that it exactly knows where the path dependencies
may arise, in particular at the STVaR-nodes, and that this dependency only requires to store
the level in such nodes, not the weighting function on the corresponding subtree.

Clearly, more advanced applications of the cutting-plane method may also be much more
effective in reducing the number of variables by avoiding irrelevant path dependencies. The
development of such methods, which could also involve dual cutting-plane methods, goes
beyond the scope of this paper.

10 Time consistency aspects

The raison d’être of STVaR is that it avoids time inconsistency problems in defining Value-
at-Risk in a multi-period setting. We briefly illustrate this aspect in the context of the algo-
rithm. First we will summarize some basic notions, see RS07 and Roorda and Schumacher
(2010) for a more extensive description. This involves the extension of a risk measure φ0,
such as STVaRα , to a sequence of refined risk measures {φt }t=0,...,T , also called updates of
φ0, that take t as initial time.
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A sequence of updates {φt }t=0,...,T is called strongly time consistent if the ‘risk-
equivalence’ principle

φ0(φt (X)) = φ0(X) (10.1)

holds, and sequentially consistent if the weaker requirement

φt (X) ≥ 0 ⇒ φu(X) �< 0 and φt (X) ≤ 0 ⇒ φu(X) �> 0 for t < u (10.2)

is satisfied. Intuitively, this means that φt (X) is in the range of φu(X), or, for binomial trees,
that φν(X) ∈ {λφνu(X) + (1 − λ)φνd(X) |λ ∈ [0,1]}.

A fundamental observation is that initial risk measures φ0 admit only one specific update
at t that has a chance of being sequentially and/or strongly time consistent, so (weak) time
consistency can also be seen as a property of the initial risk measure itself. For a coherent
risk measure φ0, which is representable as the worst expected value operator over a set
of probability measures, this update φt amounts to conditioning expected values on the
information at t , cf. RS07. We refer to Roorda and Schumacher (2010) for a much more
general result on updating convex and even non-convex risk measures, for an even weaker
type of time consistency.

Applying this to φ0 = STVaRα[·], as defined in (2.3), we have

φt (X) = inf
W∈W

Et [WX]/Et [W ] (10.3)

which is nothing else than STVaRα over subtrees with roots in Nt .
It may be illuminating to compare this to taking the initial measure equal to TVaR over

the entire horizon, cf. the remark after (3.4). This is not sequentially consistent, as is shown
by the following small example. Other examples, involving a path-dependent payoff, can be
found in RS07 and in Artzner et al. (2007).

Example 10.1 Consider a binary tree with two steps, � = {uu,ud, du, dd}, and X(uu) = 0,
X(ud) = X(du) = 1, and X(dd) = −1. Assume probability 3/4 for up, 1/4 for down.
Consider TVaRα with α = 1/2. Then in u and d , the outcome is 0, while for the entire
period [0, T ] the algorithm yields outcome −1/16.

STVaR is in fact the most conservative risk measure dominated by TVaR that is sequen-
tially consistent. So, combining the restriction that risk should not be seen as higher than
TVaRα over the entire horizon, with the natural requirement that risk levels should never
increase or decrease for sure, automatically leads to the STVaR concept. This also holds for
each subtree separately.

The violations for TVaR, as determined in the previous section, show that TVaR allows
a degree of conservatism in future states, that will be considered as too excessive when that
state actually materializes. It is exactly this type of inconsistency that STVaR avoids. We
remark that in other examples this difference can be much more pronounced.

On the other hand, STVaR is not strongly time consistent, and we argued in RS07 why
this can be a desirable property, in particular in the context of capital requirements (as op-
posed to pricing measures). Examples of strongly time consistent risk measures dominated
by TVaR over the entire period correspond to taking TVaRαt over each period [t, t + 1], e.g.
αt = α1/T . These can be computed backward recursively according to the Dynamic Pro-
gramming principles. This prescribes the level of TVaR in each period a priori, as if the
time profile of most adverse events is time homogeneous or predetermined, regardless the
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position. Moreover, for large T there is in fact no reasonable approximation of TVaR that
is strongly time consistent, and for continuous time the whole concept fails, as already indi-
cated in the introduction. In contrast, STVaR lets the induced level of conservatism depend
on the position X, without making any ad hoc choice on the timing of risk. It is the position
X that determines whether nodes contribute at most conservative level (the ones in S and
Ex), or less conservatively, just as it turns out to be most adverse.

This clearly indicates that STVaR is fundamentally different from strongly time consis-
tent versions of TVaR per period, on the one hand, and TVaR over the remaining horizon, on
the other. This discrepancy is further underlined by the fact that STVaR is not comonoton-
ically additive, and hence can also not be represented as a mixture of TVaR with different
confidence levels (Kusuoka 2001; Föllmer and Schied 2004, Thm 4.87). We conclude this
section by a counter example for comonotonic additivity.

Example 10.2 In the same setting as the previous example, consider now the comonotone
family of positions {Xμ}μ∈(0,1) with Xμ(uu) = 1, Xμ(ud) = Xμ(du) = 0, and Xμ(dd) = μ.
Take α = 3/4 and p = 1/2. The STVaR algorithm starts with creating an STVaR node in the
node u (in obvious notation) with corresponding level f (u) = 1/3. If μ < 1/3, the algorithm
proceeds with reducing the branch weight to u, and results in STVaR(Xμ) = 1

9 + 1
3μ. If

μ ≥ 3, the second loop reduces the branch weight to dd , which creates first an STVaR-node
in d of level 1

3 μ, and then, in the same loop, determines the STVaR value of Xμ in the
root as 1

6 + 1
6μ. Now it is easily verified that for a pair of positions Xμ,Xμ′ with 0 < μ <

1/3 < μ′ < 1, STVaR(Xμ)+STVaR(Xμ′) < STVaR(Xμ +Xμ′) = 2 STVaR(X(μ+μ′)/2). For
instance, for μ = 1/6 and μ′ = 1/2, the left-hand side equals 1

6 + 1
4 , while the right-hand

side is 4
9 .

11 Conclusions

We showed how STVaR can be computed by a sequence of backward recursions, and used
the algorithm to illustrate and motivate the difference with other versions of multiperiod
TVaR. This has been done in a very simple setting, for path-independent positions on a
binomial tree, so that attention can be focussed on conceptual aspects. The algorithm illus-
trates how exactly the weakly time consistent dynamics of risk processes can deviate from
the certainty equivalence principle for value processes.

It is straightforward to generalize the results to multinomial trees, and mild forms of path
dependency in the position. Time steps can be refined in order to approximate continuous
time STVaR. The interpretation of τ as the first time that conditional STVaR hits a level M

suggests a link with optimal stopping problems in the spirit of American option pricing. This
may serve as a blueprint for computing weakly time consistent risk measures in continuous
time, and to develop stochastic calculus for this type of risk processes.

The notion of path independency with respect to a stopping time was crucial in sup-
pressing the number of parameters involved in its representation as an LP-problem. In this
respect it is somewhat complementary to (primary) cutting-plane methods, which have been
successfully applied in coping with a huge number of restrictions in the LP problem corre-
sponding to portfolio optimization under TVaR-constraints. It would be interesting to com-
bine the strong points of both methods for optimizing under STVaR-constraints.

Finally, we would like to emphasize that it is crucial for the acceptance of a risk measure
in the industry that it allows for an absolutely transparent interpretation. In this respect VaR



Ann Oper Res (2010) 181: 463–483 479

over a single period still sets the standard, despite its shortcomings that have been widely
addressed in the literature. Now VaR can be reconstructed from TVaR by the rule

VaRα := lim
δ↘0

(α + δ)TVaRα+δ

α + δ
,

obtained from the well-known expression of TVaR as a VaR-average,

TVaRα = 1

α

∫ α

0
VaRγ dγ.

Inspired by this rule, one could develop a ‘sequential’ version of Value-at-Risk at confidence
level 1 − α. Such a notion can be helpful in further developing sequentially consistent risk
measures that can compete with VaR in terms of transparency.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

Appendix

Proof of Lemma 6.1 The case 0 ∈ Ex is obvious. We will prove the two claims for the case
0 �∈ Ex. Notice that in the first claim, indeed (6.7) follows from |W |τ = 1B , using (3.2).

As induction hypothesis (IH) for Wprev, assume that Wprev is a τ -path independent admis-
sible weighting scheme in W , satisfying (3.3) with (y, g,f ), and that |Wprev|τ = 1B with
B := {ω ∈ � |f (ωτ ) < Mprev}. Then (6.7) holds for Wprev with Ex, S and ν replaced by
resp. Exprev, Sprev and ν := ωτ . (IH) is easily verified for the initial weighting scheme with
all weights equal to 1 (taking Mprev any value larger than the maximum of X).

We first analyze Wprev in detail. From (3.2) it follows that E[Wprev] = E[1BWτ
prev] =

E[1BEτ [Wτ
prev]] = E[1Byτ ]. Translated in terms of function triples, it must hold that

y(ν) = Eν[1Byτ ] and g(ν) = Eν[1Bgτ ] for ν ∈ N<τ . (12.1)

Because 1Bf
τ ≤ M , also f ≤ M on N<τ . For those ν ∈ N<τ with both f (νu) ≤ M and

f (νd) ≤ M , the triple hence follows the straightforward backward recursion,

y(ν) = py(νu) + (1 − p)y(νd),

g(ν) = pg(νu) + (1 − p)g(νd), (12.2)

f (ν) = g(ν)/y(ν) = λf (νu) + (1 − λ)f (νd)

with λ = py(νu)

y(ν)
∈ [0,1]. If f (νu) > M , then f (νd) ≤ M (otherwise ν �∈ N<τ ) and

y(ν) = (1 − p)y(νd), g(ν) = (1 − p)g(νd), f (ν) = f (νd) (12.3)

and similarly, if f (νd) > M , then f (νu) ≤ M , and

y(ν) = py(νu), g(ν) = pg(νu), f (ν) = f (νu). (12.4)
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According to (6.3), the loop keeps these values for all ν that are outside the active region
A = N<τ ′ = N<τ \ NM , so the relevant ‘initial’ values for (y, f, g) are given by

(y(ν), g(ν), f (ν)) = (y(ν), g(ν), f (ν)) for ν ∈ Nτ ′ .

By assumption, 0 �∈ Ex, so f (0) < M , hence τ ′ �= 0, and the set of active nodes A is non-
empty. Regarding to the classification, notice that all active nodes ν ∈ A must have at least
one child node at level strictly below M . Now if the other one is at level M , (R1-4) applies,
if its level is higher, (T1-4), and if it is also below M , (T5) is applied. So the classification
used in the loop is indeed exhausting A.

The first claim, that |W |τ = 1B , is proved at the end, because in the loop recursions it is
not yet clear which nodes eventually belong to Nτ . For all other claims, we use the following
(inner) induction hypothesis (ih) for the backward recursion in time, which is trivially true
for t = T .

For all ν ∈ N≤τ ′ ∩ Nt ′ , for all t ′ ≥ t ,

(ih1) Wν ∈ W ν satisfying (3.3)
(ih2) Wν ≤ Wν

prev, and for every ω ∈ � for which the inequality is strict, f (ωτ ′) = M

(ih3) for all ỹ ∈ [y(ν), y(ν)], there is a V ′ ∈ W ν with Eν[V ] = ỹ, Wν ≤ V ′ ≤ Wν
prev, also

satisfying the strictness property in (ih2)

A straightforward consequence of (ih2) is

g(ν) − g(ν) = M(y(ν) − y(ν)) ≥ 0. (12.5)

For the intuition, this equality will also be proved directly. V ′ in (ih3) satisfies a similar
equation, taking for y and g resp. ỹ and g̃ := Eν[V ′X].

In the sequel we only consider the three cases with f (νd) < M ; the other Cases (ii) and
(iv) are symmetric to resp. Case (i) and (iii).

First consider Case (i), where f (νu) = f (νu) = M > f (νd) ≥ f (νd); recall that νu ∈
Nτ ′ , implying that Wνu = Wνu

prev. In this case, Wν is given by (6.5) with branch-weight 0 <

w < 1 if (R1) applies, and w = 0 if (R2) does. By construction, y(ν) ≥ α, and hence Wν ∈
W ν , cf. Lemma 3.2. From (6.5), it follows that

Wν
prev − Wν =

{
(1 − w)Wνu

prev on {ω′ ∈ F(ν) |ωt = νu},
Wνd

prev − Wνd on {ω′ ∈ F(ν) |ωt = νd}, (12.6)

and (ih2) for ν follows from νu ∈ Nτ , f (νu) = M , and (ih2) for νd . To verify (12.5) directly,
note that (12.6) yields

y(ν) − y(ν) = (1 − w)py(νu) + (1 − p)(y(νd) − y(νd)), (12.7)

g(ν) − g(ν) = (1 − w)pg(νu) + (1 − p)(g(νd) − g(νd)), (12.8)

and use (12.5) for νu and substitute g(νu) = g(νu) = My(νu) = My(νu).
The verification of (ih3) for ν is straightforward. To reduce the left-hand side in (12.7)

by a factor γ ∈ [0,1], choose V ′ as in (6.5) with w replaced by γw + 1 − γ , and with
Wνd replaced by V ′′ ∈ W νd satisfying the conditions in (ih3) for νd , taking for ỹ the value
γy(νd) + (1 − γ )y(νd).

If (T1) applies, it is easily verified that (12.7) and (12.8) hold with 1 − w = 0, reflecting
that the up-branch is already cut before the loop. All claims (ih1-3) follow in a similar
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way. For (T2), the only extra complication is the existence of V in (6.6), but this follows
immediately from (ih3) for νd .

So we proved (ih1-3), from which all claims of the lemma follow, except the claim
that |W |τ = 1B , or, equivalently, (12.1). To derive this, observe that by construction, for
all ν ∈ N<τ , y(ν) > α and f (ν) < M . Because y(ν) �= α, (R1) and (T1) (and of course,
by symmetry, (R3) and (T3)) never have been applied on the region N<τ . This implies that
(6.5) (or its symmetric counterpart) applied in all nodes with branch-weight w = 1, except
precisely for those nodes ν with f (ν) ≤ M , where w = 0 due to (R2,4) if f (ν) = M , and
due to (T2,4) if f (ν) > M . It follows that |W |τ = 1B . �

Proof of Lemma 7.1 We will prove the slightly stronger claims that for any (ỹ, g̃, f̃ ) ∈ Rν ,

for ν ∈ N<τ : g̃ ≥ g(ν) + M [̃y − y(ν)]+ − Mnext [̃y − y(ν)]−, (12.9)

for ν ∈ Ex : g̃ ≥ g(ν) + Kν [̃y − y(ν)]+ − f (ν)[̃y − y(ν)]−, (12.10)

for ν ∈ S : g̃ ≥ g(ν) + Mν(ỹ − y(ν)) and ỹ ≥ y(ν) (12.11)

with Mν > f (ν) the reduction rate in the loop that made ν belong to S , Kν > f (ν) the
reduction rate in the loop before ν became an M-node (for M , Mnext see Sect. 6).

To see that this indeed implies optimality at τ , substitute f (ν) for Kν in (12.10) and for
Mν in (12.11), which is justified because f (ν) < Kν,Mν (the strictness of the inequality is
not needed here). For both inequalities this yields g̃ ≥ g(ν) + f (ν)(ỹ − y(ν)) = f (ν)ỹ, so
f̃ = g̃/ỹ ≥ f (ν) for all ν ⊆ Ex∪S . Optimality at NT is trivial, and hence optimality at τ

follows.
We prove the three claims by backward recursion in time, using as induction hypothesis

that they hold at the end of the previous loop, i.e., on �τ we have

for ν ∈ N<τ : g̃ ≥ g(ν) + Mprev [̃y − y(ν)]+ − M [̃y − y(ν)]−, (IH1)

for ν ∈ Exprev : g̃ ≥ g(ν) + Kν [̃y − y(ν)]+ − f (ν)[̃y − y(ν)]−, (IH2)

for ν ∈ Sprev : g̃ ≥ g(ν) + Mν(ỹ − y(ν)]) and ỹ ≥ y(ν). (IH3)

We first derive (12.10). For ν ∈ Ex∩Exprev, f (ν) = f (ν), and (12.10) is identical to the
induction hypotheses (IH2). For ν ∈ Ex\Exprev = NM , (IH1) must hold, with, by definition
of Kν , Kν = Mprev, and this also implies (12.10).

Next we consider (12.11). For ν ∈ S ∩ Sprev, this just coincides with the induction hy-
pothesis (IH3). For ν ∈ S \ Sprev, we have to derive (12.11) with Mν = M from (IH1).
Substituting (12.5) in (IH1), yields

g̃ ≥ g(ν) + M(y(ν) − y(ν)) + Mprev [̃y − y(ν)]+ − M [̃y − y(ν)]−

and (12.11) follows from Mprev > M and y(ν) = α.
So we proved (12.10) and (12.11), and hence the claims are verified for all nodes in Nτ .

It remains to derive (12.9) for ν ∈ N<τ . The crucial point is to show that no further reduction
at rate M is possible in these nodes. Besides the global induction hypothesis (IH1), we also
need the ‘inner’ induction hypothesis

(12.9) holds for all ν ′ ∈ A ∩ Nt ′ , for all t ′ ≥ t. (ih)

Consider ν ∈ A ∩ Nt−1. To streamline the exposition, we use the following notation for
splitting probability mass in ν according to the incoming branch. Let V ∈ W ν correspond to
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(ỹ, g̃, f̃ ) ∈ Rν , and decompose V = 1uV +1dV , where 1d and 1u are the indicator functions
for paths through resp. νd and νu. We define

δu := Eν[1u(V − Wν)] ‘the change in probability mass via the up-branch’,

δd := Eν[1d(V − Wν)] ‘the change in probability mass via the down-branch’,

δ := δd + δu = ỹ − y(ν) ‘the (total) change in probability mass.’

Rewriting (12.9), we have to prove that

g̃ ≥ g(ν) + Mδ+ − Mnextδ
−. (12.12)

We consider the cases where (R2), (T2) or (T5) apply. Notice that (R1,3) and (T1,3) never
apply to ν �∈ S , and that (R4) and (T4) follow from symmetry.

If (R2) applies, then νu ∈ NM , and f (νu) = M . From (12.10) for νu, with Kνu =
Mprev > M , and (ih) for νd , it follows that

g̃ ≥ g(ν) + Mδu + Mδ+
d − Mnextδ

−
d . (12.13)

Now (12.12) follows from the fact that δu ≥ 0, because 1uW
ν = 0 as an effect of cutting the

up-branch.
If (T2) applies, then νu ∈ Exprev, and f (νu) > M . Then also 1uW

ν = 0, in fact already
1uW

ν
prev = 0. From (12.10) for νu, with Kνu > Mprev > M , and (ih) for νd , (12.13) also

holds true in this case, again with δu ≥ 0, and (12.12) follows.
Finally, if (T5) applies, (12.12) is immediate from (ih) for both child nodes νu and νd . �
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