
Ann Oper Res (2012) 194:439–454
DOI 10.1007/s10479-010-0708-z

An IP-based heuristic for the post enrolment course
timetabling problem of the ITC2007

J.J.J. van den Broek · C.A.J. Hurkens

Published online: 12 February 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Track 2 of the international timetabling competition 2007 was a post enrolment
course timetabling problem. A set of events has to be assigned to a timeslot and to a room
such that all students are able to attend their requested events while not violating the hard
constraints. There are also soft constraints that make the timetable “nicer”.

We present a deterministic heuristic that assigns events to timeslots based on an LP-
solution constructed with column generation. We get an integer solution by fixing columns
one at a time. This heuristic finds a solution that obeys all the hard constraint for 23 of the 24
instances of the competition. The generated solution is improved by selecting a set of events
that are reassigned by solving an integer program. This IP minimizes the number of soft
constraint violations under the restriction that no hard constraints are violated. Comparing
the results of our heuristic with the results of the five finalists of the competition, shows that
our approach is competitive.

Keywords Course timetabling · ITC2007 · Column generation · Integer programming

1 Introduction

One of the major difficulties in the field of university timetabling is that the proposed algo-
rithms are mostly tested on data of the university of the researchers. Above this almost all
universities have different timetabling problems, mainly different types of constraints. This
makes a fair comparison between different algorithms very difficult. Therefore, the second
international timetabling competition (ITC2, International Timetabling Competition 2007)
has been organized. The competition contained three tracks of which the second was the
post-enrolment course timetabling problem described in this paper.

J.J.J. van den Broek (�) · C.A.J. Hurkens
Department of Mathematics and Computer Science, Eindhoven University of Technology,
Den Dolech 2, 5600 MB Eindhoven, The Netherlands
e-mail: j.j.j.v.d.broek@tue.nl

C.A.J. Hurkens
e-mail: wscor@win.tue.nl

mailto:j.j.j.v.d.broek@tue.nl
mailto:wscor@win.tue.nl

440 Ann Oper Res (2012) 194:439–454

Course timetabling is the weekly scheduling of a set of lectures for a set of university
courses within a set of rooms and timeslots, minimizing the overlaps of lectures of courses
having common students, Schaerf (1999). In a post enrolment course timetabling problem
students select the lectures they wish to attend. The timetable is constructed according to
these choices and no overlap is allowed. The post enrolment course timetabling problem in
ITC2 was also used in ITC1, but in ITC2 two extra hard constraints are introduced to make
it more difficult to find a feasible timetable.

Carter and Laporte (1998) provide a survey on practical course timetabling problems.
Especially the last decades local search techniques became popular for solving course
timetabling problems, see for example Kostuch (2004) and Rossi-Doria et al. (2002). Also
some of the finalists of track 2 of the ITC2 applied a local search technique. Atsuta et al.
(2008) use a general CSP solver. This solver is an hybrid algorithm of tabu search and it-
erated local search. Cambazard et al. (2008) use several techniques, in particular simulated
annealing, constraint programming and hybrids of those in a large neighborhood search
scheme. With their simulated annealing augmented with a large neighborhood search move
at the low temperatures they won the competition. A stochastic local search approach con-
sisting of several heuristic modules in different phases of the solution process is applied by
Chiarandini et al. (2008). All modules are tuned with the automated algorithm configuration
procedure ParamILS (Hutter et al. 2007). They were the only finalist that found feasible so-
lutions for all instances. Müller (2008) developed a constraint-based framework containing
a series of local search algorithms that operate over feasible, not necessarily complete, solu-
tions. His solver won the tracks 1 and 3 of the ITC2007 and ended number 5 in track 2. The
fifth and last finalist of track 2 was Mayer et al. (2008). They developed a heuristic based on
ant colony optimization.

Our main contribution is a totally different solution approach for the problem of track 2.
We use integer programming techniques and introduce a new heuristic using column gener-
ation. A compact integer programming formulation of the problem was formulated. Solving
this ILP with CPLEX was impossible within the allowed computation time of the competi-
tion. For some instances CPLEX was even not able to solve the LP-relaxation within a few
minutes. Therefore we decided to develop heuristics.

The next section provides a description of the problem (Lewis et al. 2007) and introduces
our notation. In Sect. 3 a construction heuristic is described that assigns events to timeslots
based on an LP-solution that we get by applying column generation on an extended ILP for-
mulation of the problem. After construction of a solution we try to improve the solution by
solving small subproblems to optimality with a compact ILP formulation. Our improvement
procedure is presented in Sect. 4. Section 5 gives our results and compares them with the
results of the finalists.

2 Problem description

Given is a set E of events that have to be assigned to a timeslot from the set T of timeslots
(T = {0, . . . ,44}) and to a room from the set R of rooms. Every room r ∈ R has a set of
features Fr and a specific seating capacity Cr . Above this we have a set S of students that
all have a set Es of events that they are attending. Every event e has a set Te of timeslots
to which it can be assigned, a set Fe of features that it requires and Ne students attending
the event. An event e can be assigned to room r if room r satisfies all features that event e

requires (Fe ⊆ Fr) and the seating capacity of room r is sufficient for the number of students
participating (Ne ≤ Cr). We define Re as the set of rooms to which event e can be assigned.

Ann Oper Res (2012) 194:439–454 441

Also precedence constraints are given that state that certain events should be scheduled
earlier in the week than other events. Precedences between events are modeled with the
parameter pef . It has value one if e is a predecessor of f .

In summary: The input consists of:

– set T of 45 timeslots → T = {0, . . . ,44}.
– set R of rooms.
– set E of events.

– ∀e, f ∈ E : pef = 1 if event e has to be scheduled before event f .
– ∀e ∈ E : Ne = number of students attending event e.
– ∀e ∈ E : set Te of timeslots to which event e can be assigned.
– ∀e ∈ E : set Re of rooms to which event e can be assigned.

– set S of students.
– ∀s ∈ S : set Es of events that student s is attending.

Two events are colliding if they can not be assigned to the same timeslot. This arises if
they have a student in common, if both have only one possible room which is the same or if
there is a precedence relation between the two events. We define ce as the number of events
colliding with event e.

Above the fact that a timetable has to be created such that all students can attend the
events they request, a timetable should be ‘nice’. Therefore, the constraints in the timetabling
problem can be divided into soft- and hard constraints. The hard constraints need to be
satisfied in order for the timetable to be feasible. Soft constraints make the timetable nicer
for the people who are supposed to use it and have to be satisfied as much as possible.

The five hard constraints that have to be satisfied to produce a feasible timetable are:

1. No student can attend more than one event at a time.
2. An event e can only be assigned to a room r ∈ Re .
3. At most one event is assigned to each room in any time slot.
4. An event e can only be assigned to a time slot t ∈ Te .
5. Events have to be scheduled in the prescribed order during the week.

The soft constraints that have to be satisfied are:

– Events should not be assigned to the last timeslots of a day (that is: t = 8,17,26,35 and
44).

– Students should not have to attend three or more events in successive timeslots on the
same day.

– Students should not be required to attend only one event a day.

Because feasibility could be difficult the organizers made the distinction between a valid
timetable and a feasible timetable. For both timetables hard constraint violations are not
allowed. For a valid timetable it is allowed that events are left out of the timetable. A feasible
timetable is one in which there are no hard constraint violations and all events are assigned.
All solutions have to be valid. The quality of valid solutions is evaluated with two measures:

1. Distance to feasibility (dtf)
2. Total number of violated soft constraints.

The distance to feasibility is equal to the number of students that require an unplaced
event. A feasible timetable always has a distance to feasibility of zero. The valid solution
with the lowest distance to feasibility is the better solution. If two valid solutions have the
same distance to feasibility, then the solution with the minimum number of violated soft
constraints is preferred.

442 Ann Oper Res (2012) 194:439–454

3 Heuristic based on LP-solution

It is possible to formulate the problem as a compact integer program, including the soft
constraints. Such an IP formulation will be presented in Sect. 4. In the current section the
focus is on constructing a feasible solution. Even solving the compact IP formulation with-
out the soft constraints is not possible within the allowed computation time of the ITC. Even
worse, CPLEX did not start branching within this allowed computation time. Therefore, we
formulated the problem without the soft constraints as an extended integer programming for-
mulation. We solve the LP-relaxation of this extended ILP using column generation. After
solving the LP-relaxation we assign a set of events to a certain timeslot and solve the LP-
relaxation again. By solving the LP-relaxation every iteration, we guarantee that the events
are spread over the week.

An introduction to column generation is provided by Desrosiers and Lübbecke (2005)
and Lübbecke and Desrosiers (2005). They also give an overview of recent papers on this
topic. Numerous applications in which column generation is used are described in litera-
ture. Desaulniers et al. (2001) apply column generation for vehicle routing problems. Crew
scheduling is another hot topic for which column generation is used a lot, see for example
Desaulniers et al. (2001) and Borndörfer et al. (2003). Much more examples of applications
can be found in Desrosiers and Lübbecke (2005). A far as we know nobody ever applied a
column generation approach on a course timetabling problem.

Our main goal of the heuristic described in this section is the construction of a good
feasible solution. Therefore, our focus is on assigning all events to a room and timeslot
without violating one of the hard constraints. In the first subsection the LP-formulation is
introduced. The column generation procedure to solve this LP is described in the second
subsection. How we generate new columns is presented in Sect. 3.3. Section 3.4 covers the
heuristic that constructs an integer feasible solution using the feasible solution of the LP.

3.1 The LP formulation

The LP-formulation described in this subsection is a formulation of the timetabling problem
without the soft constraints. We first introduce K as the set of slot-schedules. A slot-schedule
k ∈ K is characterized by a timeslot tk , a set Ek of events and a matching ρk : Ek → R. The
matching ρk describes a feasible room assignment for all events in the slot-schedule. A slot-
schedule k is feasible if:

– all e ∈ Ek are not colliding.
– ∀e ∈ Ek : tk ∈ Te.

– ∀e ∈ Ek : ρk(e) ∈ Re & ∀r ∈ R : |{e|ρk(e) = r}| ≤ 1.

For all slot-schedules k ∈ K and all events e ∈ E we introduce the parameter aek , that is one
if e ∈ Ek and zero otherwise.

The LP-formulation has three different types of decision variables. These are:

– ∀k ∈ K : xk is the number of times slot-schedule k is selected.
– ∀e ∈ E : ye = 0 if event e is assigned to a timeslot, strictly positive otherwise.
– ∀e, f ∈ E,pef = 1 : zef ∈ Z+ is the violation of the precedence constraint between e

and f .

Note that a feasible solution has ye and zef equal to zero. The constraints together with the
objective function ensure that decision variables x and y are not set to higher than one.

Ann Oper Res (2012) 194:439–454 443

Now the decision variables and parameters have been introduced, we are able to present
the LP:

min
∑

e∈E

ye +
∑

e,f ∈E|pef =1

zef

ye +
∑

k∈K

aekxk ≥ 1 ∀e ∈ E, (1)

∑

k∈K|tk=t

xk ≤ 1 ∀t ∈ T , (2)

zef +
∑

k∈K

tk(af k − aek)xk ≥ 1 ∀e, f ∈ E|pef = 1, (3)

xk ≥ 0 ∀k ∈ K, (4)

ye ≥ 0 ∀e ∈ E, (5)

zef ≥ 0 ∀e, f ∈ E|pef = 1 (6)

Constraint (1) together with the first term of the objective function ensure that all events
are assigned at least once. If the decision variable ye is set to zero this implies that a slot-
schedule containing event e is used. For every timeslot at most one slot-schedule can be
selected, which is enforced by constraint (2). A precedence relation between two events is
taken care of by constraint (3) together with the second part of the objective function.

3.2 Solving the relaxed LP-formulation with column generation

There are instances with a lot of precedence constraints which caused a too large computa-
tion time for solving the LP. Therefore, we choose to relax the LP-formulation by leaving
out the precedence relations (3). The precedence relations are taken care of in the proce-
dure described in Sect. 3.4. Our master problem (MP) is the LP-formulation without the
precedence constraints.

We could consider the complete set of possible slot-schedules, but we cannot handle such
a big LP and it would already cost too much computation time to generate them. Therefore
we try to solve MP using column generation. The restricted master problem (RMP) is MP
with a restricted set of possible slot-schedules Kr . The main idea of the column generation
approach is to generate only the slot-schedules that with high probability are in the basis of
an optimal feasible solution of MP.

Solving RMP gives shadowprices for all constraints. The shadowprice of a particular
constraint of an LP is the value of the optimal dual solution variable associated with that
constraint. It also represents the change in the value of the objective function per unit in-
crease or decrease of the right-hand-side value of that constraint. So shadowprices give us
information that we use to generate good feasible slot-schedules. We denote the shadow-
prices of constraint (1) by αe and of constraint (2) by βt .

To start with a column generation procedure enough variables are needed to find an initial
basis. The ye variables are in the initial formulation and for each timeslots in T we create a
slot-schedule k with Ek = ∅.

After solving RMP we use the shadowprices to generate (“to price”) new columns. These
columns are generated by the column generator that we describe in detail in Sect. 3.3. The
column generator generates feasible slot-schedules for a certain timeslot t that can be added

444 Ann Oper Res (2012) 194:439–454

to the set Kr . The input of the column generator consists of a set Ecg of events that can
be scheduled on timeslot t . Then the reduced cost ck of slot-schedule k, generated by the
column generator is:

ck =
∑

e∈Ek

αe + βt

We proceed generating new columns until for all timeslots no new slot-schedules are found
or until a certain amount of columns has been generated. Therefore, the column generation
procedure does not always generate an optimal solution of MP.

The column generator generates a set Kcg of feasible slot-schedules. We are only inter-
ested in slot-schedules that are with high probability in an optimal MP-solution. Therefore
a slot-schedule k ∈ Kcg is only added to Kr if the reduced costs ck of the column are larger
than zero and larger than a percentage of the average reduced costs c of the most recently
added slot-schedules.

We now present our column generation procedure in more detail:

1. Initialize Kr , set t = 0 and factor = 0.75.
2. Solve RMP → αe,βt and objrmp.
3. If objrmp ≤ 0, then quit.
4. Generate set Kcg of feasible slot-schedules for timeslot t .
5. Add column k ∈ Kcg to Kr if ck > factor ∗ c. Add at most 10 columns.
6. t = t + 1
7. If |Kr | > 2(|E| + |T |) or ∀t ∈ T no column has been added, then quit.
8. Go to step 2.

In step 3 we quit if the objective value of RMP is zero, because then we found an optimal
solution of MP. Step 4 generates feasible slot-schedules for a certain timeslot. This procedure
generates 120 feasible slot-schedules as is described in the next subsection. To take care of
enough varying columns, only the best 10 columns are added. To prohibit that too much
computation time is used for generating columns the column generation procedure stops
if we have a number of columns that is twice the number of rows. In step 7 the column
generation procedure is terminated if this number of columns in RMP is reached or when
there is no promising column found for any timeslot.

3.3 The column generator

The column generator generates a set Kcg of feasible slot-schedules for a certain timeslot t .
The input of the column generator is a set Ecg ⊆ E of events with for each event e ∈ Ecg a
corresponding shadowprice αe . The goal is to generate feasible slot-schedules with a large
sum of the shadowprices of the assigned events.

It is possible to determine the slot-schedule with the maximum sum of the shadowprices.
This can be done by solving an IP that uses the decision variable y ′

e = 1 − ye that is one
if event e is assigned to a room, else it is zero. Also the following decision variable is
defined ∀r ∈ Re:

yer :=
{

1 if event e is assigned to room r

0 otherwise

The integer programming problem is:

max
∑

e∈Ecg

αey
′
e

Ann Oper Res (2012) 194:439–454 445

∑

r∈Re

yer = y ′
e ∀e ∈ Ecg, (7)

∑

e∈Ecg |e∈Es

y ′
e ≤ 1 ∀s ∈ S, (8)

∑

e∈Ecg |r∈Re

yer ≤ 1 ∀r ∈ R, (9)

y ′
e + y ′

f ≤ 1 ∀e, f ∈ Ecg|pef = 1, (10)

yer ∈ {0,1} ∀e ∈ Ecg,∀r ∈ Re, (11)

y ′
e ∈ {0,1} ∀e ∈ Ecg (12)

Constraint (7) takes care that an event is assigned to at most one room or it is not assigned.
Students with more than one event assigned are not allowed, this is fulfilled by constraint (8).
Constraint (9) imposes that only one event is assigned to each room. If there is a precedence
relation between two events they can not be assigned both, this is enforced by constraint (10).

Solving this IP to optimality and adding the generated column to RMP would guarantee
that we find an optimal solution of MP (Lübbecke and Desrosiers 2005). But unfortunately
solving the IP takes too much computation time. Therefore, we developed a procedure that
generates quickly a set of feasible slot-schedules by a greedy assignment procedure. This
procedure is the central topic of the rest of this Section.

The procedure starts with sorting all e ∈ Ecg according to the following criteria:

1. Decreasing order of αe .
2. Decreasing order of ce .
3. Decreasing order of Ne .
4. Increasing order of |Re|.
5. Increasing order of |Te|.
We denote the sorted set of events with E

cg
s . The procedure generates 120 different columns

by selecting 120 times a set of three not colliding events on top of the sorted list for which a
room assignment is possible. After those three events are assigned we try to greedily fill up
the slot-schedule. The full procedure to generate columns will now be presented in pseudo
code:

1: Kcg = ∅.
2: for (first 20 events e1 of E

cg
s) do

3: for (first 3 events e2 of E
cg
s after e1 not colliding with e1) do

4: Assign e1 and e2 to rooms.
5: for (first 2 events e3 of E

cg
s after e2 not colliding with e1 and e2 and with possible

room assignment) do
6: Assign e3 to a room.
7: repeat
8: e is next event of E

cg
s .

9: if (e does not collide with an already assigned event) and (e can be assigned
to a room) then

10: Assign e to a room.
11: end if
12: until (There is no event left in E

cg
s)

13: Add generated slot-schedule to Kcg .

446 Ann Oper Res (2012) 194:439–454

14: end for
15: end for
16: end for

Every time an event e is a candidate for adding it to a slot-schedule it has to be verified
whether there is a room available for e given the current room assignment of the already
assigned events. Assigning events to rooms is a bipartite matching with the set of rooms
and set of events as the vertices of the graph. Two vertices are connected if an event can
be assigned to a room. Given the already assigned events to rooms it costs at most one
augmenting path step to determine whether e can be added to the given matching.

3.4 Fix generated columns

Solving MP as described in the last subsections provides a solution for MP which is not nec-
essarily optimal. The solution is probably even not feasible for the LP-formulation, because
some of the precedence relations are probably violated. The generated solution consists of
non-integer x-variables. To get a feasible integer solution we developed a heuristic that fixes
one column at a time, which is the same as setting one x-variable to one. This heuristic is
described in this section.

During the column generation procedure a lot of feasible slot-schedules are generated. Of
those generated slot-schedules we fix the generated slot-schedule k with the highest value
of objk = ck − penalties with ck = ∑

e∈E aekce . A penalty is subtracted if one or more events
are left with hardly any possible timeslots after selecting the slot-schedule. Also we subtract
a penalty if fixing a column would violate a lot of three in a row constraints.

After fixing a column we delete a lot of slot-schedules that have been generated in
the last iterations. Of course columns containing events that were in the fixed column and
columns with the same timeslot are deleted. Also slot-schedules that are not feasible any-
more, because of violated precedence constraints, are deleted. Next to those we delete “bad”
columns. An example of such a column: If an event e has to be assigned earlier in the week
then f , we delete a slot-schedule with timeslot on the first day if it contains f . Deletion of
all these columns gives an enormous speed up in solving MP.

Before we present the heuristic, we define the set Ec of events that have not been assigned
and the set Tc of timeslots that do not have a fixed slot-schedule. The heuristic to construct
a valid solution goes as follows:

1. Initialize Tc = T \{8,17,26,35,44} and Ec = E.
2. Apply column generation procedure → Kr .
3. Fix slot-schedule k′ = maxk∈Kr objk .
4. Tc = Tc\tk′ , Ec = Ec\Ek′ and delete columns.
5. If |Tc| > 5 and |Ec| > 0, then go to step 2.
6. If |Ec| > 0, then solve the compact IP presented in Sect. 4 to assign all e ∈ Ec to a

timeslot t ∈ Tc ∪ {8,17,26,35,44}.
To take into account the soft constraint of no events on the last timeslot of the day, these

timeslots are not added to the set Tc . In step 6 we solve the compact formulation of the
problem with the events that are left. This IP is introduced in Sect. 4. Because CPLEX is
able to find a very good feasible solution quickly for the last 10 timeslots we quit in step 5
when |Tc| = 5.

Ann Oper Res (2012) 194:439–454 447

4 Improvement heuristic by integer programming

Section 3 introduced a heuristic that constructs a valid solution. The heuristic focuses on
assigning the events to timeslots and does hardly take into account the soft constraints.
Constructing this valid solution costs only a small part of the computation time that was
allowed within the competition. Therefore, we also developed a procedure that improves
the solution constructed by the LP-based heuristic. The first subsection presents an integer
programming formulation of the timetabling problem including all soft constraints. The
introduced ILP is used to improve the solution found by the LP-based heuristic. Section 4.2
presents our improvement heuristic.

4.1 The ILP-formulation of the problem

We define the set D of days and the set T ′ as the set containing the first 7 timeslots of all
days. All other parameters have been introduced in Sect. 2. Left to define are the decision
variables:

zert :=
{

1 if event e is assigned to room r on timeslot t

0 otherwise

ye :=
{

1 if event e is not assigned

0 otherwise

ue :=
{

1 if event e is assigned to a last timeslot of the day

0 otherwise

vst :=
{

1 if student s is assigned to an event on timeslots t, t + 1 and t + 2.

0 otherwise

wsd :=
{

1 if student s is assigned to exactly one event on day d

0 otherwise

w′
sd :=

{
1 if student s is assigned to at least one event on day d

0 otherwise

Events can not be assigned to all possible timeslots and rooms. Therefore, zert is only
defined for the triples (e, r, t) if t ∈ Te and r ∈ Re . This already ensures hard constraints two
and four.

The objective function consists of two parts. The first part of the objective function takes
care that the number of students that have a requested event not assigned is minimized. The
second part consists of three terms that account for the number of soft constraint violations.
Finding a solution with a distance to feasibility of zero is the most important goal. Therefore,
we introduced the weighting factors Wh and Ws . We always applied the values Wh = 20
and Ws = 1.

Now we are able to present the MIP:

minWh

∑

e∈E

Neye + Ws

(
∑

e∈E

Neue +
∑

s∈S

∑

t∈T ′
vst +

∑

s∈S

∑

d

wsd

)

448 Ann Oper Res (2012) 194:439–454

∑

e∈Es |t∈Te

∑

r∈Re

zert ≤ 1 ∀s ∈ S,∀t ∈ T , (13)

∑

e∈E|r∈Re&t∈Te

zert ≤ 1 ∀r ∈ R,∀t ∈ T , (14)

∑

r∈Re

∑

t∈Te

zert + ye = 1 ∀e ∈ E, (15)

∑

t∈Te |t<t ′

∑

r∈Re

zert ≥
∑

t∈Tf |t≤t ′

∑

r∈Rf

zf rt ∀e, f ∈ E|pef = 1,∀t ′ ∈ [1,44], (16)

∑

t∈{8,17,26,35,44}

∑

r∈Re

zert − ue ≤ 0 ∀e ∈ E, (17)

t ′+2∑

t=t ′

∑

e∈Es |t∈Te

∑

r∈Re

zert − vst ′ ≤ 2 ∀s ∈ S,∀t ′ ∈ T ′, (18)

9∗d+8∑

t=9∗d

∑

e∈Es |t∈Te

∑

r∈Re

zert − Mw′
sd ≤ 0 ∀s ∈ S,∀d ∈ D, (19)

9∗d+8∑

t=9∗d

∑

e∈Es |t∈Te

∑

r∈Re

zert + wsd ≥ 2w′
sd ∀s ∈ S,∀d ∈ D, (20)

zert ∈ {0,1} ∀e ∈ E,∀r ∈ Re,∀t ∈ Te, (21)

y ′
e ≥ 0 ∀e ∈ E, (22)

ue ≥ 0 ∀e ∈ E, (23)

vst ≥ 0 ∀s ∈ S,∀t ′ ∈ T ′, (24)

wsd ≥ 0 ∀s ∈ S,∀d ∈ D, (25)

w′
sd ∈ {0,1} ∀s ∈ S,∀d ∈ D (26)

Constraint (13) ensures that no student has to attend more than one event at a time. Only
one event can be put into each room on any timeslot. This is enforced by constraints (14).
Constraint (15) imposes that every event is assigned to at most one timeslot and one room.
If there exists a precedence relation between two events, they should be scheduled in the
correct order during the week. This is fulfilled by constraint (16). Constraint (17) accounts
for the soft constraint that no student has to attend an event at the last time slot of a day.
Students do not have to attend more than two events consecutively. This is taken into ac-
count by constraint (18). Constraints (19) and (20) together account for that a student is
not assigned to one event on a certain day. Note that all decision variables except for the
z-variables are elements of R

+. They are automatically put on zero or one, because of the
binary z-variables.

4.2 The improvement heuristic

The introduced MIP is too big to solve in a reasonable amount of time, but it can be used
to fill up a partial solution. A partial solution is represented by a set Ep of events that have

Ann Oper Res (2012) 194:439–454 449

been assigned to a timeslot. The timeslot to which an event e ∈ Ep is assigned is denoted
by τe . The events in Ep have not been assigned to a room, but it is known that a feasible
room assignment exists for those events. Given a partial solution, the number of decision
variables in MIP is reduced a lot by setting ∀e ∈ Ep,∀t ∈ T \ τe : zert = 0. If the set Ep

contains enough events, then MIP is able to reassign each event e ∈ Ep to a room and each
events f ∈ E \ Ep to a room and timeslot within a small computation time.

Given the solution constructed by the LP-based heuristic we try to find better solutions by
solving MIP with input a partial solution derived from the known valid solution. We denote
MIP with input a partial solution represented by Ep with MIP(Ep). An advantage of using
an integer program is that always a solution is found with quality as good as the currently
best known solution.

We first describe what the number of soft constraint violations NSCV(e) of an event e is.
This number is determined for all events assigned to a timeslot and room in the current valid
solution. It is counted as follows:

1. If τe is a last timeslot of the day, then NSCV(e) is increased by Ne .
2. If e has a student for whom e is the only event on a day, then NSCV(e) is increased by

one.
3. If a student has three events in a row and one of the events is e, then NSCV(e) is increased

by one.

Given the current valid solution we have to remove events from the set Ep to construct a
partial solution. It seems obvious to remove events which a high number of soft constraint
violations. The problem then is that it is almost impossible to assign the removed events into
the partial solution on different timeslots than in the old solution. Therefore the improve-
ment heuristic chooses one event e∗ from E to remove from Ep . The other events removed
from Ep are events that increase the probability that a new solution is found with e∗ assigned
to a timeslot with lower soft constraint violations. These are for example events assigned to
the same room or events colliding with e∗ assigned to a timeslot t ∈ Te∗ .

The heuristic always starts by choosing an event e∗ that is not assigned in the given valid
solution. If the current solution is feasible, then event e with maximum NSCV(e) is chosen
as e∗. To prohibit that always the same event e∗ is chosen, a list L of length 15 is used that
contains the events that were most recently used as event e∗.

The parameter c(t, e∗) is the number of events e ∈ Ep with τe = t that collide with e∗.
With T c we denote the set of timeslots for which all assigned events are removed from Ep .
The timeslots in T c are feasible timeslots for e∗ with the largest probability that e∗ can
be assigned to one of those timeslot in a better solution. These are the timeslots with the
minimum number of colliding events with e∗. If this is equal the timeslot with the maximum
number of soft constraint violations is chosen.

The improvement heuristic goes as follows:

1. Initialize L = ∅ and NOT = 5.
2. Ep = E \ L.
3. Select e∗ ∈ Ep : e∗ is not assigned or e∗ = maxf ∈E\L NSCV(f).
4. T c = Te∗ .
5. Delete timeslots from T c for which event e∗ is not feasible, because of precedence

constraints.
6. Reduce T c to NOT timeslots with mint∈T c c(t, e∗) or maxt∈T c

∑
f ∈E|t=τf

NSCV(f).
7. ∀f ∈ Ep : If τf ∈ T c , then remove f from Ep .
8. If |Re∗ | ≤ 1, then ∀f ∈ Ep with Re∗ = Rf : remove f from Ep .

450 Ann Oper Res (2012) 194:439–454

9. ∀f ∈ Ep : If c(τf , e∗) <= 2 and f collides with e∗, then remove f from Ep .
10. Solve MIP(Ep).
11. Add e∗ to L and delete the last element of L.
12. If no improvement found for 15 iterations, then NOT = NOT + 1.
13. If optimal solution not found and there is computation time left, then go to step 2.

If e∗ has only one possible room, then step 8 removes the events from Ep that also have
only one possible room which is the same as the room of e∗. To enlarge the probability
that an event e∗ is assigned to a different timeslot, the events colliding with e∗ in timeslots
feasible for e∗ and that do not have more than two colliding events with e∗ are removed
from Ep in step 9. The solution found in step 10 is always as good as the old one, therefore
the new solution is always accepted.

5 Computational results

We start with presenting the results of the LP-based heuristic described in Sect. 3. To solve
RMP, CPLEX 10.0 is used. The results of the heuristic are given in Table 1 for all 24 in-
stances. The column with head c.t.(s) gives the computation time of the heuristic. The col-
umn with dtf presents the distance to feasibility. The next column represents the number of

Table 1 Computational results of the LP-based heuristic

I |E| |R| |S| c.t.(s) dtf 3 cons 1 a day eod s.c.

1 400 10 500 50 0 1391 20 640 2051

2 400 10 500 55 0 1429 19 677 2125

3 200 20 1000 5 0 339 595 0 934

4 200 20 1000 5 0 417 581 81 1079

5 400 20 300 34 0 823 14 186 1023

6 400 20 300 38 0 1002 24 239 1265

7 200 20 500 6 0 291 287 73 651

8 200 20 500 4 0 244 259 110 613

9 400 10 500 58 0 1594 24 802 2420

10 400 10 500 73 0 1356 17 692 2065

11 200 10 1000 5 0 343 566 167 1076

12 200 10 1000 5 0 462 573 0 1035

13 400 20 300 33 0 789 8 262 1059

14 400 20 300 44 0 898 30 274 1202

15 200 10 500 5 0 316 325 74 715

16 200 10 500 4 0 252 285 74 611

17 100 10 500 7 0 295 6 0 301

18 200 10 500 5 0 860 36 233 1129

19 300 10 1000 24 0 489 525 485 1499

20 400 10 1000 56 0 734 605 297 1636

21 500 20 300 75 0 783 21 215 1019

22 600 20 500 331 18 1414 14 756 2184

23 400 20 1000 48 0 2791 28 654 3473

24 400 20 1000 35 0 711 666 233 1610

Ann Oper Res (2012) 194:439–454 451

Table 2 Computational results after the improvement heuristic

I |E| |R| |S| dtf 3 cons 1 a day eod s.c.

1 400 10 500 0 1033 18 585 1636

2 400 10 500 0 903 14 717 1634

3 200 20 1000 0 102 253 0 355

4 200 20 1000 0 237 407 0 644

5 400 20 300 0 342 2 181 525

6 400 20 300 0 469 7 164 640

7 200 20 500 0 0 0 0 0

8 200 20 500 0 113 128 0 241

9 400 10 500 0 1095 12 782 1889

10 400 10 500 0 1080 19 578 1677

11 200 10 1000 0 261 354 0 615

12 200 10 1000 0 236 292 0 528

13 400 20 300 0 309 2 174 485

14 400 20 300 0 459 12 268 739

15 200 10 500 0 136 194 0 330

16 200 10 500 0 86 159 15 260

17 100 10 500 0 33 2 0 35

18 200 10 500 0 443 8 52 503

19 300 10 1000 0 211 309 443 963

20 400 10 1000 0 379 495 355 1229

21 500 20 300 0 481 6 183 670

22 600 20 500 0 1172 14 770 1956

23 400 20 1000 0 1899 16 453 2368

24 400 20 1000 0 389 435 121 945

times a student is assigned to three consecutive events. The number of times a student has
only one event on a day is given in the column ‘1 a day’ and the number of students having
an event on the last timeslot of the day is given in the column eod. The right most column
gives the total number of soft constraint violations.

The LP-based heuristic is able to assign all events to a timeslot and a room for 23 out
of 24 instances. For instance 22 one event with 18 students could not be assigned. The
number of soft constraint violations is quite large, but we took them into account only in a
minor way. So we can conclude that our LP-based heuristic succeeds in fulfilling our main
goal, which was providing a solution with distance to feasibility as small as possible.

For a fair comparison of computational results the organizers provided a benchmark pro-
gram to determine the maximum allowed computation time on a machine. This allowed
computation time on the machine we used was 429 seconds. Looking at Table 1 it can
be seen that for most instances a lot of computation time is left to improve the solution
found. The improvement heuristic is run until this allowed computation time is fully used
or until an optimal solution has been found. Table 2 presents the computational results if
the improvement heuristic is used with the solution found by the LP-based heuristic as
input.

After the improvement heuristic also instance 22 has a distance to feasibility of zero. One
of the first MIP(Ep) that was solved found a solution with distance to feasibility zero. The

452 Ann Oper Res (2012) 194:439–454

Table 3 Comparison with solutions of the five finalists

I dtf 1 dtf 2 dtf 3 dtf 4 dtf 5 dtf TUe sc1 sc2 sc3 sc4 sc5 scTUe

1 8.3 0.0 0.0 445.5 22.2 0 647.6 883.4 1730.5 1071.2 1927.0 1636

2 30.4 ∗0.0 0.0 335.8 171.9 0 884.6 ∗1252.7 1913.6 677.9 2201.8 1634

3 0.0 0.0 0.0 0.0 0.0 0 529.9 237.3 389.7 732.6 333.9 355

4 0.0 0.0 0.0 0.0 0.0 0 683.2 370.0 480.2 727.5 559.7 644

5 0.0 0.0 0.0 0.0 0.0 0 21.0 6.8 679.9 128.3 20.9 525

6 0.0 0.0 0.0 3.9 0.0 0 64.5 4.2 977.4 391.9 266.6 640

7 0.0 0.0 0.0 0.0 0.0 0 97.7 7.5 354.1 3.8 183.6 0

8 0.0 0.0 0.0 0.0 0.0 0 24.1 0.0 1.3 80.6 24.5 241

9 79.9 0.0 0.0 684.3 346.5 0 832.9 1868.6 2100.4 1080.5 2407.7 1889

10 8.1 +0.0 37.1 0.0 577.5 0 231.7 +555.0 2272.3 0.1 2319.0 1677

11 0.0 0.0 0.0 0.0 5.4 0 716.0 288.3 352.6 898.0 742.9 615

12 0.0 0.0 0.0 112.8 14.1 0 1046.8 352.7 616.4 1275.3 1293.1 528

13 0.0 0.0 0.0 6.5 0.0 0 102.6 128.3 911.1 478.6 475.6 485

14 0.0 0.0 0.0 0.0 0.0 0 0.4 4.1 983.5 97.0 407.9 739

15 0.0 0.0 0.0 0.0 0.0 0 460.6 93.1 310.6 142.7 268.2 330

16 0.0 0.0 0.0 0.0 0.0 0 251.8 17.1 5.8 131.2 178.4 260

17 0.0 0.0 0.0 0.0 0.0 0 19 4.9 9.8 116.4 106.2 35

18 0.6 0.0 0.0 0.0 0.0 0 39.4 14.1 339.9 264.8 314.3 503

19 348.7 −0.0 0.0 89.7 755.1 0 1838 −405.4 2081 233.1 2314 963

20 16.4 0.0 0.0 771.2 0.0 0 1288 505 640.5 2383 919.3 1229

21 0.0 0.0 0.0 14.3 0.0 0 3.6 27.1 876.3 326.6 336.8 670

22 0.0 =0.0 0.0 0.0 0.0 0 0.0 =550.8 1839 82.7 1593.7 1956

23 3.4 0.0 0.0 239.8 0.0 0 573.9 330.5 1043 1274 701.3 2368

24 13.1 0.0 0.0 0.0 0.0 0 911.1 124.2 963.4 129.2 518 945

∗8 out of the 10 runs gave a valid solution. The average score of these 8 solutions is given
+3 out of the 10 runs gave a valid solution. The average score of these 3 solutions is given
−2 out of the 10 runs gave a valid solution. The average score of these 2 solutions is given
=9 out of the 10 runs gave a valid solution. The average score of these 9 solutions is given

number of soft constraint violations decreased a lot. Especially shortly after the start of the
improvement heuristic a lot of large improvements are found.

To get an impression of how good the total algorithm performs, we compare our results
with the results of the five finalists of the competition. For these five finalists the organizers
did 10 runs with different random seed for every instance. This makes it very difficult to
compare the results, because our heuristic is deterministic. Table 3 shows the average of the
10 runs for each of the five finalists (1–5) and the results of our heuristic (TUe).

Our heuristic provides a solution with distance to feasibility of zero for all 24 instances.
In comparison with the average distance to feasibility of the finalists our algorithm performs
well. Especially if one takes into account that for most instances the distance to feasibility is
found in a small computation time. Looking at the number of soft constraint violations we
are competitive with the finalists. It clearly depends on the instance how well we perform.
Because it is not known which soft constraints are violated by the finalists, we can also not
say much about which algorithm can deal the best with a certain type of constraint.

Ann Oper Res (2012) 194:439–454 453

6 Conclusions

We presented a heuristic that constructs a feasible solution for the post-enrolment course
timetabling problem of the second international timetabling competition. The heuristic fixes
a set of events for a timeslot given a feasible solution of an LP-relaxation which we find
by using column generation. Our construction heuristic is able to assign all the events to a
timeslot and a room without violating any of the hard constraints in 23 out of 24 instances
of the competition. In comparison with the five finalists of the competition our heuristic
performs very well in generating a solution with distance to feasibility of zero. Most finalists
have one or more instances where their algorithm does not find a feasible solution

A second step to decrease the number of soft constraint violations of the solution is
presented. Every iteration a set of event is released and assigned again by solving an integer
program to optimality. Looking at the number of soft constraint violations our total heuristic
is competitive with the finalists.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

Atsuta, M., Nonobe, K., & Ibaraki, T. (2008). ITC-2007 Track2: an approach using general CSP solver.
Submission to ITC2007 track 2.

Borndörfer, R. M., Grötschel, & Löbel, A. (2003). Duty scheduling in public transit. In W. Jäger & H.-J. Krebs
(Eds.), Mathematics-key technology for the future (pp. 653–674). Berlin: Springer.

Cambazard, H., Hebrard, E., O’Sullivan, B., & Papadopoulos, A. (2008). Local search and constraint pro-
gramming for the post-enrolment course timetabling problem. In Proceedings of the conference on the
practice and theory of automated timetabling (PATAT 2008), Montreal, Canada, 2008.

Carter, M. W., & Laporte, G. (1998). Recent developments in practical course timetabling. In E. K. Burke &
M. W. Carter (Eds.), Lecture notes in computer science: Vol. 1408. Practice and theory of automated
timetabling II. Berlin: Springer.

Chiarandini, M., Fawcett, C., & Hoos, H. H. (2008). A modular multiphase heuristic solver for post enrol-
ment course timetabling. In Proceedings of the conference on the practice and theory of automated
timetabling (PATAT 2008). Montreal, Canada, 2008.

Desaulniers, G., Desrosiers, J., & Solomon, M. M. (2001). Accelerating strategies in column generation
methods for vehicle routing and crew scheduling problems. In C. C. Ribiero & P. Hansen (Eds.), Essays
and surveys in metaheuristics (pp. 309–324). Boston: Kluwer.

Desrosiers, J., & Lübbecke, M. E. (2005). A primer in column generation. In Desaulniers, G., J. Desrosiers,
& M. M. Solomon (Eds.), Column generation, Chap. 1 (pp. 1–32). New York: Springer.

Hutter, F., Babic, D., Hoos, H. H., & Hu (2007). Boosting verification by automatic tuning of decision pro-
cedures. In Formal methods in computer aided design (FMCAD).

International Timetabling Competition (ITC) (2007). http://www.cs.qub.ac.uk/itc2007.
Kostuch, P. (2004). The university course timetabling problem with a three-phase approach. In E. K. Burke

& M. Trick (Eds.), Lecture notes in computer science: Vol. 3616. Practice and theory of automated
timetabling V (pp. 109–125). Berlin: Springer.

Lewis, R., Paechter, B., & McCollum, B. (2007). Post enrolment based course timetabling: a description of
the problem model used for track two of the second international timetabling competition (Technical
Report). Cardiff University.

Lübbecke, M. E., & Desrosiers, J. (2005). Selected topics in column generation. Operations Research, 53(6),
1007–1023.

Mayer, A., Nothegger, C., Chwatal, A., & Raidl, G. R. (2008). Solving the post enrolment course timetabling
problem by ant colony optimization. In Proceedings of the conference on the practice and theory of
automated timetabling (PATAT 2008), Montreal, Canada, 2008.

Müller, T. (2008). ITC2007 solver description: a hybrid approach. In Proceedings of the conference on the
practice and theory of automated timetabling (PATAT 2008), Montreal, Canada, 2008.

http://www.cs.qub.ac.uk/itc2007

454 Ann Oper Res (2012) 194:439–454

Rossi-Doria, O., Sampels, M., Birattari, M., Chiarandini, M., Dorigo, M., Gambardella, L. M., Knowles, J. D.,
Manfrin, M., Mastrolilli, M., Paechter, B., Paquete, L., & Stützle, T. (2002). A comparison of the per-
formance of different metaheuristics on the timetabling problem. In E. K. Burke & P. De Causmaecker
(Eds.), Lecture notes in computer science: Vol. 2740. Practice and theory of automated timetabling IV
(pp. 329–351). Berlin: Springer.

Schaerf, A. (1999). A survey of automated timetabling. Artificial Intelligence Review, 13(2), 87–127.

	An IP-based heuristic for the post enrolment course timetabling problem of the ITC2007
	Abstract
	Introduction
	Problem description
	Heuristic based on LP-solution
	The LP formulation
	Solving the relaxed LP-formulation with column generation
	The column generator
	Fix generated columns

	Improvement heuristic by integer programming
	The ILP-formulation of the problem
	The improvement heuristic

	Computational results
	Conclusions
	Open Access
	References

