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Abstract One of the most important aspect of molecular and computational biology is the
reconstruction of evolutionary relationships. The area is well explored after decades of in-
tensive research. Despite this fact there remains a need for good and efficient algorithms that
are capable of reconstructing the evolutionary relationship in reasonable time.

Since the problem is computationally intractable, exact algorithms are used only for small
groups of species. In the Maximum Parsimony approach the time of computation grows so
fast when number of sequences increases, that in practice it is possible to find the optimal
solution for instances containing about 20 sequences only.

It is this reason that in practical applications, heuristic methods are used. In this pa-
per, parallel adaptive memory programming algorithms based on Maximum Parsimony
and some known neighborhood search methods for phylogenetic tree construction are pro-
posed, and the results of computational experiments are presented. The proposed algorithms
achieve a superlinear speedup and find solutions of good quality.

Keywords Phylogenetic trees · Parallel algorithms · Local search · Adaptive memory
programming · Maximum Parsimony

1 Introduction

Phylogenetic analysis deals with a reconstruction of the evolutionary relationship of taxa
(group of species) and is widely used in biological analysis (cf. Kedziora et al. 2005). In most
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cases the cause of the evolution are random mutations in genomes. Most of such mutations
have no immediate effect on the organisms, or they are lethal for them (if such a mutation
alters the function of some important gene). However, some of them cause the genes to gain
new functionality. It may happen that an organism carrying such a modified gene becomes
better adapted to its environment. In such a situation the mutant has a greater chance of
survival and replication. This means that the mutation becomes established.

The evolutionary relationship of species is usually shown as a phylogenetic tree. In such
a tree the root represents an ancestor of all species represented by other nodes of the tree.
Leaves are the species living at present while the internal nodes of the tree represent some
hypothetical species that appeared during the course of evolution. A phylogenetic tree is
only a hypothesis about evolution. It is important to remember that it always shows only one
of the possible ways of the evolution.

Building a phylogenetic tree for a group of organisms is not easy, even for a group of
moderate size. There are at least two sources of difficulties. First, algorithms for phyloge-
netic tree construction are based on estimated models of the evolution. This is also the reason
for which an evolutionary tree is only a hypothesis. Second, for a construction of such a tree
only data concerning the species living at present are available, i.e. those that correspond to
the leaves in the tree. It means that the tree is reconstructed on the basis of the similarity
among data representing the species living at present.

There are two main classes of methods for building phylogenetic trees (cf. Gusfield 1997;
Setubal and Meidanis 1997), i.e. the ones based on similarities among the features (or char-
acters) that describe a species (character based methods), and methods based on the evolu-
tionary distances between species (distance based methods). In this paper we will focus only
on the methods of the first class.

The data used by the methods of the first class are usually sequences of nucleotides or
amino acids. Nucleotides are molecules that comprise the structural units of RNA and DNA.
The vast majority of living organisms encode their genetic information in long strands of
DNA (the only exceptions are some viruses that use RNA instead of DNA). These units are
of four types denoted by A, T, G and C, and the genetic information is encoded in the DNA
sequence. The DNA molecules are copied and inherited across generations. Traits, which are
features of organisms, are encoded in DNA as instructions for constructing and operating an
organism. The instructions are contained in segments of DNA called genes. A gene is a basic
unit of heredity in a living organism and its function is to provide information necessary for
some molecular mechanisms to build proteins that are basic blocks of tissues. First, a DNA
fragment encoding a gene is copied into a similar molecule called mRNA (this process is
called transcription). mRNA is a template for a structure called a ribosome, which translates
the sequence of nucleotides into a corresponding sequence of amino acids that compose a
protein (this process is called translation).

In the case of character based methods, a feature is a position in the nucleotide or amino
acid sequence and a nucleotide or amino acid present at this position is a value (a state) of
the feature. Similarities occurring between subsequences of given fragments of nucleic acids
or proteins are used as a basis for the tree construction, which is built in such a way that the
total number of state changes on all the paths from the root to any leaf is minimal. Such a
tree is called to be the most parsimonious one (cf. Edwards and Cavalli-Sforza 1963).

Many algorithms for phylogenetic tree construction are known. However, since the prob-
lem of such a construction is generally computationally intractable (cf. Day et al. 1986;
Foulds and Graham 1982; Setubal and Meidanis 1997), polynomial-time exact algorithms
are known only for special cases. Such algorithms are useful in a limited number of cases.
The Maximum Parsimony Problem is known to be NP-Hard (cf. Foulds and Graham 1982).
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In general, an exhaustive search may involve (2n−5)!
(n−3)!2n3 (unrooted, bifurcating tree topologies)

or (2n−3)!
(n−2)!2n2 (rooted, bifurcating tree topologies) possible solutions for a case with n taxa in-

volved (cf. Edwards and Cavalli-Sforza 1964). In general, the branch and bound algorithms
(cf. Hendy and Penny 1982; Blazewicz et al. 2004), which finds the optimal solution each
time it is applied, is not efficient enough for handling large size instances. The size of in-
stance in this case is limited to about 20. Hence, heuristic methods are proposed that are able
to construct trees based on more general models (cf. Andreatta and Ribeiro 2005; Goëffon
et al. 2005; Lin et al. 2007; Ribeiro and Vianna 2005). Another way to manage the intrin-
sic intractability of the problem is to design parallel algorithms (cf. Blazewicz et al. 2004;
Stamatakis 2004), which are able to expand the size of instances solved in practice. The last
approach is especially promising, since parallel computers and large clusters are increas-
ingly commonly.

The main goal of this work is not to design a new method for constructing phylogenetic
trees, but rather to develop a strategy of cooperation of distributed computational nodes
using an adaptive memory heuristics. In order to facilitate the considerations, we have not
used the well known, efficient, but complex methods of finding a phylogenetic tree such as:
parsimony ratchet (cf. Nixon 1999), TNT (cf. Goloboff 1999) or Recursive-Iterative DCM3
(cf. Roshan et al. 2004). Instead, a local search procedure with adaptive memory feature was
used. However, we believe that the proposed methods could be successfully applied to the
above mentioned algorithms of finding phylogenetic trees. Obviously, the developed method
should lead to finding phylogenetic trees of good quality in a reasonable time.

In this paper, parallel adaptive memory programming (AMP) algorithms for parsimo-
nious phylogenetic tree construction are proposed. In order to eliminate the influence of a
style of implementation of algorithms on efficiency of applications, a general framework
is designed. This work provides an architectural basis for comparison. Frameworks offer
the architecture patterns and solutions to develop a family of similar systems in the same
application domain (cf. Andreatta and Ribeiro 2005; Fayad and Schmidt 1997).

The term adaptive memory programming was introduced by Glover and was originally
related to taboo search (cf. Glover 1989, 1997). Afterwards the term was extended by Tail-
lard et al. (2001) to all algorithms that are coherent with the following scheme:

1. Initialize the memory.
2. While a stopping criterion is not met do:

2.1 Generate a new provisional solution s using data stored in the memory.
2.2 Improve s by a local search; let s ′ be the improved solution.
2.3 Update the memory using the pieces of knowledge brought by s ′.

As one can notice, the algorithms presented in Sect. 3 satisfy the above scheme.
Three sets of experiments were performed to test the proposed algorithms. In the first set

of experiments, the speedup of parallel algorithms was measured on real instances, which
usually are especially hard from the computational point of view. In the second, the qual-
ity of the obtained solutions was measured and tested against solutions obtained by other
known methods. Here instances (besides the first instance) were generated with an artificial
evolution tool Rose (cf. Stoye et al. 1998). Both tests showed good (in some cases superlin-
ear) speedup of the algorithms and good quality of the obtained results outperforming those
obtained by the existing software packages. In the third set of experiments, the comparison
with other known methods was performed on real-life benchmark instances.

The organization of the paper is as follows. In Sect. 2, the sequential versions of the
methods are described. In Sect. 3, the parallel algorithms are presented, and in Sect. 4, the
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results of the computational experiments are shown. The paper ends with a conclusion in
Sect. 5.

2 The methods of neighborhood search

The methods whose parallel versions are proposed in this paper are character-based parsi-
mony algorithms. A set of sequences representing the analyzed species is used as input to
the algorithms. The goal is to find a phylogenetic tree that explains the data best, i.e. mini-
mizes objective function f . The algorithms considered in this paper belong to the class of
neighborhood search methods. Algorithms of this type check trees that can be obtained from
a current solution by changing it in some specified way, i.e. they check the neighborhood
of this solution. For each of the elements of the neighborhood, the value of the objective
function f is calculated and the tree with the best value is chosen as the next solution. In
the character based methods, the objective function f should be chosen in such a way that
the best tree will explain the observed diversity in the input data with a minimal number of
character values substitutions.

The values of the objective function f used in this work can be calculated using Fitch’s
algorithm in the following way (cf. Fitch 1971):

The input to the algorithm is the topology of a phylogenetic tree with n nodes and set
A of possible character values, where |A| = k. The algorithm assigns the values of a single
character (let us note that here a character is equal to a position in a sequence labeling a
node) for every node in the tree.

Let us denote the value of the selected character for node v by cv .

Step 1. For each node v of the tree assign set Sv ⊆ A in the following way.
If v is a leaf, then Sv = {cv}. If v is an internal node whose immediate successors are nodes
u and w, Sv = Su ∩ Sw if Su ∩ Sw �= ∅, and Sv = Su ∪ Sw otherwise. In order to determine
set Sv for all the nodes of the tree, it is traversed in the post-order way starting with leaves
and working upwards.

Step 2. Having determined set Sv for every node v of the tree, a particular value cv from
the set is assigned to each internal node v in the following way. The tree is traversed in pre-
order, i.e. from the root downwards. If for immediate predecessor u of node v, cu ∈ Sv , the
algorithm sets cv = cu. Otherwise, randomly chosen t ∈ Sv is assigned to cv (which applies
also to the root).

Let us note that the above procedure must be repeated for every position (character) in the
labels assigned to the nodes. As a result, a fully labeled tree is obtained after the algorithm
runs for every character. The number of changes, being the value of the objective function
f (in what follows we will refer to the objective function f as to the Fitch score), is equal
to the number of times the union of character values is created in Step 1.

Searching through selected tree topologies is carried out with a local search procedure
that is described in the following way:

1. Choose some feasible solution T .
2. Generate neighborhood N(T ) of T .
3. If there is no T ′ ∈ N(T ) such that f (T ′) − f (T ) < 0 then STOP.
4. Choose some T ′ ∈ N(T ) for which f (T ′) − f (T ) < 0.
5. Set T = T ′.
6. Go to Step 2.
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Fig. 1 An example of Nearest Neighborhood Interchanges (NNI). A,B,C and D are subtrees. Subtree B is
swapped with subtrees D and C

Fig. 2 An example of Subtree Pruning and Regrafting (SPR). A,B,C,D and E are species. The rooted
subtree which contains species B and C is removed from the tree and then connected using the same root to
any edge in the tree containing species A,D and E

The above procedure is only a general framework that can be modified in many ways.
Possible variants are obtained by specifying a neighborhood generation method, a way of
choosing the solution for the next iteration of the procedure (e.g. First Improvement Move
(FIM), Best Improvement Move (BIM)) and a method of generating the starting solution.

In the parsimony problem, a neighborhood of a given solution T is a set of trees obtain-
able from T by some elementary changes in the tree topology. The most common strategies
for changing the topology are Nearest Neighborhood Interchanges (NNI), Subtree Pruning
and Regrafting (SPR), and Tree Bisection and Reconnection (TBR) (cf. Felsenstein 2004).

For the NNI strategy, the neighborhood is obtained by swapping subtrees attached to
some edge (cf. Fig. 1).
In the SPR strategy the elements of the neighborhood of T are constructed by removing
some edge from T that results in a creation of two trees t and T − t . The root of tree t can
be later connected (regrafted) to any edge of T − t (cf. Fig. 2).
The TBR strategy is similar to the SPR except that after a bisection of tree T , subtree t can
be reconnected to T − t by some new edge connecting an arbitrarily chosen edge of t with
any edge of T − t (cf. Fig. 3). Note that in the SPR method the connection point of t has to
be the root.
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Fig. 3 An example of Tree Bisection and Reconnection (TBR). A,B,C,D,E and F are species. Bisection
divides the whole tree T into subtree t representing organisms A,B and C and subtree T − t representing
species D,E and F . The reconnection can be made by an addition of a new edge which joins arbitrary edges
from t and T − t

3 Parallelization of the methods

The presented approach is based on the character data and the neighborhood generat-
ing strategies described in the previous section. The solution space is searched by the
local search procedure with an adaptive memory mechanism. All of the proposed par-
allel algorithms are based on the same framework; this way the influence of imple-
mentation details on the obtained results is minimized (cf. Andreatta and Ribeiro 2005;
Fayad and Schmidt 1997). The framework includes classes responsible for communication,
generation of starting random solutions and starting solutions obtained by a decomposition
of local optima, construction of the neighborhood, etc.

The only elements of the algorithms by which they differ are strategies of generating the
starting points of the local search procedure. The starting points are created based on local
optima already visited.

Three versions of the parallel local search algorithms were created (they are described
momentarily). Each of the versions was combined with three neighborhood generation
strategies (i.e. NNI, SPR, and TBR) as well as with a Variable Neighborhood Search (VNS)
method (cf. Mladenović and Hansen 1997). The last method is based on a simple princi-
ple: systematic change of neighborhood to a wider neighborhood when a local optimum is
found, in order to counteract getting stuck in a local optimum. (The proposed algorithms
use VNS as a combination of the NNI, SPR, and TBR methods. The algorithms try to find
a local optimum using the NNI. When found, such an optimum becomes a starting point for
the local search procedure combined with the SPR. Next, the solution becomes a starting
point for the local search procedure combined with the TBR.) The combinations of the local
search procedures with neighborhood generation strategies result in twelve versions of the
algorithms. Each of them can be further modified by combining with different methods of
choosing a solution for the next iteration, i.e. the FIM or the BIM.

The parallel algorithms have the master-slave structure. At the beginning of computa-
tions, the master process generates 30 starting solutions (i.e. phylogenetic trees), which are
then sent on the request to slave processes. A starting tree is generated by adding to the tree
at random points of the tree (based on a uniform distribution) species from the set of species
not yet added to the tree. A species is chosen from the set randomly also based on a uniform
distribution.
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Each of the slaves takes the tree obtained from the master as a starting point for the local
search procedure. When a local optimum has been found by a slave, it is sent to the master
process, which collects the local optima that are used to create new starting solutions for
slave processes. The motivation for such a strategy is the hypothesis that local optima can
contain fragments of the global optimum. These fragments are subtrees of local optima, and
hence the master builds a new starting solution using “good” subtrees of locally optimal
trees. A subtree is “good” if it has not been changed in a number of iterations.

We have assumed that a subtree remains unchanged during the local search procedure
when it is hard to find a better subtree or if such a subtree does not exist. In order to identify
such subtrees the number of iterations during which the structure of the subtree rooted in a
given node has not been changed, is stored.

3.1 Parallel version #1 (PV1)

In this version of the algorithm the master stores the local optima received from slaves in
a FIFO queue. When a slave requests a new starting point, the master selects the first tree
from the queue and extracts from it all subtrees for which the number of iterations without
structure change is greater than some threshold. These subtrees are then connected in order
to create a new complete tree for the considered set of species. If the tree is incomplete
(which is the most common case) the remaining internal nodes are added to the tree in a
random way. If the queue is empty, the master creates a fully random tree. The method
of adding nodes to the tree or creating a fully random tree is the same as the method of
generation of starting solutions.

The new starting solution is sent to the requesting slave and the tree used for its construc-
tion is removed from the queue.

3.2 Parallel version #2 (PV2)

In this version the way of collecting local optima is analogous to the one used in version #1.
The new starting point for a slave process is assembled by the master from subtrees of the
trees stored in the FIFO queue. The tree from the top of the queue is taken and the biggest
stable subtree is selected. Like in version #1 a subtree is considered to be stable when the
number of iterations without change of its structure is greater than some threshold. This
subtree becomes a part of a new starting solution. Next, the second tree from the queue is
taken and its biggest stable subtree is added to the constructed new tree. Here, if some group
of species in the subtree that is to be added to the new starting point already exists in the
partially constructed new tree, then this group is removed from the subtree. The remaining
part of the subtree (the subtree that is to be added to the new starting point) is added to
the newly created starting solution. This procedure is continued until a complete tree is
created or until there are no trees in the queue. In the second case, the remaining species are
randomly joined to a new tree. When the new starting point is sent to the slave the tree from
the top of the queue is removed.

3.3 Parallel version #3 (PV3)

In this version every node in the locally optimal tree received by the master is labeled by a
value of the product of the number of iterations without subtree (rooted in this node) struc-
ture change and the number of leaves in this subtree. This value measures subtree “good-
ness”. Roughly speaking, a subtree is “good” if it is big and stable. It should be noted that
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the number of iterations without subtree structure change decreases when the level of a sub-
tree root decreases. The explanation of this fact is very simple. Subtrees that are closer to
the root of a tree contain more internal nodes than subtrees that are more distant. Hence, it
is more probable that after a given number of iterations a bigger subtree (with a higher level
of its root) has changed than a subtree with a lower level of its root. The measure defined
above is a compromise between high stability (which is the highest for subtrees composed
of only two nodes) and the size of the subtree.

In this version of the algorithm, subtrees with the greatest value of the measure are stored
in the queue (instead of the whole trees, as in versions #1 and #2). The elements of the queue
are ordered according to the value of the measure. From each locally optimal tree, subtrees
which cover at least 60% of species in total are extracted. However, if the subtree with
greatest value of the measure is composed of only one species, the extraction is stopped.

The ordering of the extraction of the subtrees is determined by the measure. A new start-
ing solution is created from the subtrees having the greatest value of the measure, i.e. being
at the top of the queue. The missing nodes (nodes that are not present in the subtree) are
added to the new tree in random places of the tree structure. At the end, the best subtree is
removed from the queue.

Before the insertion of any subtree into the queue, the algorithm checks whether the
subtree has been already used to construct a starting tree. Since comparing the subtree with
the list of all subtrees used so far would be time consuming, the algorithm checks only if a
subtree with the same Fitch score (the score is calculated using Fitch’s algorithm presented
in Sect. 2) and with the same group of species has not been used so far. A special list is
used to perform this checking. The elements of the list are sets of species composed from
subtrees, and the corresponding Fitch scores.

The value of a subtree measure is decreased by some factor if from the above mentioned
checking it follows, that a subtree with the same Fitch score and the same group of species
has already been used to construct a starting tree. The factor increases every time such a
subtree is going to be inserted into the queue. This mechanism should prevent the method
from falling into a loop where the new starting points are constructed from a few locally
optimal trees (which leads the slaves to find the same trees many times and put their subtrees
at the top of the queue).

4 Computational experiments

The algorithms described in the paper were implemented in C++ using the MPI library
and tested on the Sun Fire 6800 machine (UltraSPARC III+ 900 MHz processor) of the
Poznan Supercomputing and Networking Center. Several types of experiments were per-
formed. In the first set of experiments, the speedup of parallel algorithms was measured on
real instance, especially hard from the computational perspective. In the second set of ex-
periments, the quality of the obtained solutions was measured and tested against solutions
obtained by other known methods. Here, the instances (besides the first instance) were gen-
erated with the use of an artificial evolution tool Rose (cf. Stoye et al. 1998). In the third set
of experiments, the comparison with other known methods based on Maximum Parsimony
local search procedures was performed. We used real-life benchmark instances taken from
(Ribeiro and Vianna 2005), which were initially presented in Luckow et al. (1985).

The first and the second sets of tests were carried out on three instances. The first one,
denoted as TI-1, was composed of 100 real sequences encoding part of the E1 protein of
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HCV virus (in fact, the sequences belong to different mutations of this virus). The se-
quences for this instance were taken from the HCV database located at the following ad-
dress: http://s2as02.genes.nig.ac.jp/. The length of these sequences was equal to 465 nu-
cleotides. The Fitch score of the best known solution for this instance equals 2644.

The second and the third instances, denoted as TI-2 and TI-3, were composed of 100 arti-
ficial sequences created by the “Rose—random model of sequence evolution” tool (cf. Stoye
et al. 1998), which provides a probabilistic model of the evolution of RNA-, DNA-, or
protein-like sequences. Rose is commonly used, and its results are useful for the evaluation
of methods for multiple sequence alignment construction and the prediction of phylogenetic
relationships (cf. Nelesen et al. 2008). During this artificial evolutionary process, the ‘true’
history is logged and the ‘correct’ multiple sequence alignment is created simultaneously.
Hence, on this basis we could compare resulting trees generated by our methods with the
trees that were artificially evolved. The lengths of these sequences were equal to 500 and
1000 nucleotides, respectively. The Fitch score of the best known solutions for these in-
stances as well as the score for the trees originally generated by Rose are equal to 7905 and
15844, respectively.

Before starting the tests, the sequences composing each of the instance were pre-
processed to remove characters in the sequences whose impact on the score (i.e. the value
of the objective function computed by Fitch’s algorithm) could be determined on the basis
of other positions. The preprocessing involves selecting all pairs of columns such that some
bijection is satisfied between these columns. For each pair for which the bijection holds,
an arbitrary column from the pair is removed from the input sequences and a weight of the
remaining column is increased by the weight of the removed column. The Fitch procedure
calculates the score for the remaining column and afterwards multiplies the calculated score
by its weight. The length of the sequences was equal to 319 nucleotides for the first in-
stance after pre-processing. This process did not alter the second (TI-2) and the third (TI-3)
instances.

We considered two stopping criteria. The first was a value of the solution obtained while
the second was based on a limit on computation time. According to the latter all processes
stopped the computation after a given period of time.

In the first set of experiments, computation times of the parallel algorithms for instance
TI-1 were measured. Each of the parallel versions was combined with the NNI local search
procedure and the FIM method of choosing the solution for the next iteration. The computa-
tions were stopped and the time was measured if a solution with the Fitch score not greater
than 3400 was found. The value 3400 is about 30% worse than the best known solution for
that instance, so it seems to be a good stopping point for the tested algorithms. The results
are shown in Table 1. Because the result of each execution of a given algorithm can be differ-
ent (due to heuristic strategy and a nondeterministic behavior of the parallel environment),

Table 1 Computation time in seconds of the parallel algorithms for instance TI-1

Method No. of processors

1 4 8 16

Time Std. dev. Time Std. dev. Time Std. dev. Time Std. dev.

PV0 4905.31 5646.48 1578.76 1224.40 768.50 649.54 342.02 357.96

PV1 659.19 257.41 147.33 55.43 69.68 34.38 51.42 24.88

PV2 1300.41 1178.79 178.69 91.02 109.81 71.63 63.76 25.37

PV3 6395.28 6495.89 759.13 1027.61 570.93 705.75 182.55 195.88

http://s2as02.genes.nig.ac.jp/
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Table 2 Speedup of the
algorithms obtained for instance
TI-1 where the reference
computation time of sequential
algorithm is a given algorithm
executed on one processor

Method No. of processors

1 4 8 16

PV0 1.0 3.1 6.4 14.3

PV1 1.0 4.5 9.5 12.8

PV2 1.0 7.3 11.8 20.4

PV3 1.0 8.4 11.2 35.0

Table 3 Speedup of the
algorithms obtained for instance
TI-1 where the reference
computation time of sequential
algorithm is PV0 algorithm
executed on one processor

Method No. of processors

1 4 8 16

PV0 1.0 3.1 6.4 14.3

PV1 7.4 33.3 70.4 95.4

PV2 3.8 27.5 44.7 76.9

PV3 0.8 6.5 8.6 26.9

each entry contains an average over 20 runs. The abbreviations: PV1, PV2 and PV3 denote
parallel versions #1, #2 and #3, respectively. PV0 means that new starting points were gen-
erated randomly. This row shows the impact of the applied adaptive memory mechanisms
and the parallelization strategy on the algorithms’ efficiency.

Tables 2 and 3 present the speedup of the parallel versions of the algorithms. The speedup
presented in Table 2 is a ratio of the computation time of a given algorithm and the compu-
tation time of this algorithm run on one processor. Table 3 presents the speedup calculated
as a ratio of the computation time of a given algorithm and the computation time of a se-
quential algorithm without the adaptive memory (PV0) run on one processor. Analyzing
Table 2 one notices that versions PV2 and PV3 have bigger speedups than the number of
processors. Furthermore, from Table 3 it follows that all versions have superlinear speedup,
which shows that the cooperation of processors and adaptive memory programming has an
influence on the computation time and the obtained results. Table 3 shows that the proposed
mechanisms used in versions PV1 and PV2, even for sequential algorithms (see results in
the column where the number of processors equals 1), gives much better results than the
algorithm where a starting point for a local search procedure is generated randomly (PV0).

In the second experiment, results obtained by the parallel algorithms combined with var-
ious local search procedures were compared. The FIM method of neighborhood generation
was used. Here the sequences comprising all three instances were used. The Fitch scores of
the trees found within a time limit equal to 600 seconds applied to the whole parallel system
are shown in Table 4 (for instance TI-1), where again each entry contains an average over 20
runs. VNS1 is a variant of VNS method where the NNI and the SPR local search procedures
are used, while in VNS2, the NNI and the TBR are applied.

In the test whose results were presented in Tables 1 and 4 the FIM method for choosing
a solution for the next iteration was applied. The BIM method was not used because of its
poor time efficiency and solution quality similar to the one of the FIM. A comparison of the
computation time necessary for finding a local optimum by various local search algorithms
combined with the BIM and the FIM, respectively, is shown in Table 5. In Table 6 the Fitch
scores of the local optima found by the local search methods are presented.
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Table 4 The Fitch scores of the trees found by the algorithms in the time limit of 600 seconds for instance
TI-1

Method No. of processors

1 4 8 16

Score Std. dev. Score Std. dev. Score Std. dev. Score Std. dev.

PV0+NNI 3573.90 125.23 3470.00 117.56 3356.15 119.41 3342.65 132.81

PV0+VNS1 2653.67 4.06 2650.25 2.12 2648.80 1.36 2648.20 1.44

PV0+VNS2 2651.05 2.58 2648.80 1.51 2648.60 1.19 2647.95 1.10

PV0+TBR 2651.40 2.21 2649.20 1.51 2649.15 1.39 2647.80 1.15

PV1+NNI 3410.80 153.35 3080.50 124.70 2995.10 111.20 2963.50 89.31

PV1+VNS1 2652.16 3.89 2651.10 2.29 2649.10 1.41 2648.25 0.97

PV1+VNS2 2652.95 2.87 2649.30 1.87 2648.90 1.12 2647.10 0.97

PV1+TBR 2651.20 3.40 2649.00 1.41 2648.75 0.91 2647.45 0.76

PV2+NNI 3461.30 183.66 3086.70 160.91 2947.00 135.62 2795.70 60.58

PV2+VNS1 2653.00 3.88 2650.70 1.95 2649.15 1.79 2648.20 1.28

PV2+VNS2 2651.60 1.96 2649.40 1.60 2648.15 1.27 2646.65 0.59

PV2+TBR 2652.20 2.65 2649.90 1.55 2648.10 1.80 2646.65 0.93

PV3+NNI 3588.50 172.76 3418.05 150.47 3354.65 147.24 3272.25 141.12

PV3+VNS1 2653.94 4.89 2649.75 1.86 2649.15 1.18 2648.60 1.05

PV3+VNS2 2651.80 1.88 2649.05 1.19 2648.10 1.25 2647.65 1.14

PV3+TBR 2652.40 2.58 2649.95 0.89 2648.70 1.38 2647.10 1.02

Table 5 Computation time in seconds for local search procedures for instance TI-1

BIM/FIM Local search procedure

NNI SPR TBR

Time Std. dev. Time Std. dev. Time Std. dev.

FIM 6.05 2.03 2698.82 917.80 205.00 38.97

BIM 5.55 0.91 1415.67 108.14 8745.57 549.91

VNS1 VNS VNS2

Time Std. dev. Time Std. dev. Time Std. dev.

FIM 341.69 121.22 363.31 125.47 145.69 27.72

BIM 975.22 126.11 1143.05 115.69 6099.24 333.88

In both cases, the searching was started from a randomly generated tree. As previously,
each entry provides an average for 20 runs of an algorithm. The results presented in these
two tables justify using only the FIM method in the other tests.

The tests, whose results are presented in Table 1, showed that the fastest version of the
parallel algorithm is PV1, but the difference between computation times of PV1 and PV2
decreases if the number of processors increases.

Moreover, the NNI local search procedure finds poor solutions in comparison to all other
tested methods, as follows clearly from Table 4. On the other hand, this method quickly
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Table 6 The Fitch scores of trees found by local search procedures for instance TI-1

BIM/FIM Local search procedure

NNI SPR TBR

Score Std. dev. Score Std. dev. Score Std. dev.

FIM 4470.95 241.00 2652.20 3.25 2654.20 3.55

BIM 5279.60 250.64 2658.80 5.36 2654.65 3.77

VNS1 VNS VNS2

Score Std. dev. Score Std. dev. Score Std. dev.

FIM 2654.60 5.33 2654.55 5.39 2656.45 4.22

BIM 2656.40 3.91 2655.55 5.20 2655.20 3.62

Table 7 P -values of Mann-Whitney-Wilcoxon test applied to the series of Fitch scores presented in Table 4
(obtained using 16 processors within the time limit of 600 seconds)
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PV0+NNI 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00

PV0+VNS1 1.00 0.63 0.39 0.00 1.00 0.01 0.05 0.00 0.80 0.00 0.00 0.00 0.27 0.21 0.01

PV0+VNS2 1.00 0.78 0.00 0.41 0.03 0.17 0.00 0.69 0.00 0.00 0.00 0.07 0.41 0.03

PV0+TBR 1.00 0.00 0.23 0.05 0.28 0.00 0.50 0.00 0.00 0.00 0.03 0.60 0.06

PV1+NNI 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PV1+VNS1 1.00 0.00 0.01 0.00 0.62 0.00 0.00 0.00 0.16 0.09 0.00

PV1+VNS2 1.00 0.23 0.00 0.01 0.04 0.10 0.00 0.00 0.18 1.00

PV1+TBR 1.00 0.00 0.08 0.00 0.01 0.00 0.00 0.67 0.28

PV2+NNI 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PV2+VNS1 1.00 0.00 0.00 0.00 0.11 0.23 0.01

PV2+VNS2 1.00 0.82 0.00 0.00 0.00 0.10

PV2+TBR 1.00 0.00 0.00 0.01 0.18

PV3+NNI 1.00 0.00 0.00 0.00

PV3+VNS1 1.00 0.01 0.00

PV3+VNS2 1.00 0.17

PV3+TBR 1.00

finds local optima (but, as we mentioned, they are rather poor). It should be also noticed
that increasing the number of processors has the greatest impact on the quality of the results
provided by the NNI method, while the quality of the solutions found by the other methods is
almost independent of the number of processors used. In addition, all these methods (except
for the NNI) found trees with the Fitch scores being in a very narrow range and very close
to the best known. The standard deviation for these methods is low.

As can be noticed, the methods where new starting points are constructed on the basis of
already found local optima (PV1-3) provide better or comparable results than the methods
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Table 8 Statistical significance of differences between various version of the algorithms. The tests were
applied to the series of Fitch scores presented in Table 4 (obtained using 16 processors within the time limit
of 600 seconds)
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PV0+NNI – + + + + + + + + + + + – + + +
PV0+VNS1 – – – + – + – + – + + + – – +
PV0+VNS2 – – + – + – + – + + + – – +
PV0+TBR – + – + – + – + + + + – –

PV1+NNI – + + + + + + + + + + +
PV1+VNS1 – + + + – + + + – – +
PV1+VNS2 – – + + + – + + – –

PV1+TBR – + – + + + + – –

PV2+NNI – + + + + + + +
PV2+VNS1 – + + + – – +
PV2+VNS2 – – + + + –

PV2+TBR – + + + –

PV3+NNI – + + +
PV3+VNS1 – + +
PV3+VNS2 – –

PV3+TBR –

where the starting points are generated randomly (PV0), while the computation times are no-
ticeable lower. It is important to verify if the observed differences are significant. To check
whether differences between the results produced by the proposed methods are statistically
significant we used the Mann-Whitney-Wilcoxon test. We used this test because the result
of the Shapiro-Wilk test was negative. The test was applied to the series of the Fitch scores
presented in Table 4 which was executed on 16 processors. Table 7 presents the obtained
p-values. Table 8 shows (using the “+” symbol) the statistically significant differences be-
tween the results produced by the methods, when the significance level was 0.05. The tests
were performed in the R environment for statistical computing (cf. Development Core Team
2008). The tests have shown that in most cases the differences between the results provided
by the various variants of the proposed methods are statistically significant. However, it can
be observed that in the case of PV0 algorithm the influence of the various neighborhood gen-
eration strategies on the obtained results is insignificant (except NNI which gives very poor
solutions). On the other hand, the most significant are the differences between the results
generated using PV2 and the rest of the methods.

In order to estimate distance from an optimum solution, we used the artificially generated
instances, i.e. TI-2 and TI-3. Tables 9 and 10 present the Fitch scores of the trees found
within a time limit. In the first of these tables the limit is equal to 300 seconds and is applied
to instance TI-2 while in the second one the limit is equal to 500 seconds and is applied to
instance TI-3.

In almost all cases, the algorithms in the given time limit reached the best known solution.
Only the versions based on the TBR could not find satisfactory solutions. This is probably
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Table 9 The Fitch scores of the trees found by the algorithms in the time limit of 300 seconds for instance
TI-2

Method No. of processors

1 4 8 16

Score Std. dev. Score Std. dev. Score Std. dev. Score Std. dev.

PV0+NNI 7905.00 0.00 7905.00 0.00 7905.00 0.00 7905.00 0.00

PV0+VNS1 7905.00 0.00 7905.00 0.00 7905.00 0.00 7905.00 0.00

PV0+VNS2 7905.00 0.00 7905.00 0.00 7905.00 0.00 7905.00 0.00

PV0+TBR 16025.50 2857.10 15851.50 2796.97 14984.60 3732.46 13135.00 4501.74

PV1+NNI 7905.00 0.00 7905.00 0.00 7905.00 0.00 7905.00 0.00

PV1+VNS1 7905.00 0.00 7905.00 0.00 7905.00 0.00 7905.00 0.00

PV1+VNS2 7905.00 0.00 7905.00 0.00 7905.00 0.00 7905.00 0.00

PV1+TBR 17000.70 219.84 16794.30 120.47 16759.90 110.58 16635.30 131.30

PV2+NNI 7905.00 0.00 7905.00 0.00 7905.00 0.00 7905.00 0.00

PV2+VNS1 7905.00 0.00 7905.00 0.00 7905.00 0.00 7905.00 0.00

PV2+VNS2 7905.00 0.00 7905.00 0.00 7905.00 0.00 7905.00 0.00

PV2+TBR 15108.20 3800.90 16873.00 69.66 15043.00 3762.97 13168.80 4530.85

PV3+NNI 7905.00 0.00 7905.00 0.00 7905.00 0.00 7905.00 0.00

PV3+VNS1 7905.00 0.00 7905.00 0.00 7905.00 0.00 7905.00 0.00

PV3+VNS2 7905.00 0.00 7905.00 0.00 7905.00 0.00 7905.00 0.00

PV3+TBR 15229.60 3862.46 16812.60 94.30 16745.60 59.78 14931.70 3703.86

Table 10 The Fitch scores of the trees found by the algorithms in the time limit of 500 seconds for instance
TI-3

Method No. of processors

1 4 8 16

Score Std. dev. Score Std. dev. Score Std. dev. Score Std. dev.

PV0+NNI 15844.00 0.00 15844.00 0.00 15844.00 0.00 15844.00 0.00

PV0+VNS1 17616.30 5604.50 15844.00 0.00 15844.00 0.00 15844.00 0.00

PV0+VNS2 15844.00 0.00 15844.00 0.00 15844.00 0.00 15844.00 0.00

PV0+TBR 28017.30 6809.85 24902.20 6256.37 19317.10 1156.19 17924.90 1233.79

PV1+NNI 15844.00 0.00 15844.00 0.00 15844.00 0.00 15844.00 0.00

PV1+VNS1 15844.00 0.00 15844.00 0.00 15844.00 0.00 15844.00 0.00

PV1+VNS2 15844.00 0.00 15844.00 0.00 15844.00 0.00 15844.00 0.00

PV1+TBR 31622.70 5397.27 22778.80 4050.11 19407.30 1321.66 18592.20 2081.94

PV2+NNI 15844.00 0.00 15844.00 0.00 15844.00 0.00 15844.00 0.00

PV2+VNS1 15844.00 0.00 15844.00 0.00 15844.00 0.00 15844.00 0.00

PV2+VNS2 19473.00 7654.02 15844.00 0.00 15844.00 0.00 15844.00 0.00

PV2+TBR 28231.40 8359.21 22232.50 6407.21 20326.80 1861.12 17274.50 998.22

PV3+NNI 15844.00 0.00 15844.00 0.00 15844.00 0.00 15844.00 0.00

PV3+VNS1 15844.00 0.00 15844.00 0.00 15844.00 0.00 15844.00 0.00

PV3+VNS2 15844.00 0.00 15844.00 0.00 15844.00 0.00 15844.00 0.00

PV3+TBR 24221.30 6915.56 22905.00 4782.39 18909.10 2383.01 18225.50 1614.08
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Fig. 4 A relation of the Fitch score for instance TI-1 and the time of the algorithm’s execution

caused by the huge neighborhood generated by the TBR, and because of this fact the method
could not perform sufficient number of steps of local search.

In the successive computational experiments, whose results are presented in Table 11,
the comparison of our algorithms with related methods published in the literature, was
performed. Here we used eight real-life test instances (ran on 16 processors) taken from
(Ribeiro and Vianna 2005), which were initially presented in Luckow et al. (1985). Columns
“Score” and “Time” show the results obtained using selected versions of our proposed algo-
rithms. Subcolumns “Avg.”, “Std. dev.” and “Best” of “Score” column show average score,
its standard deviation and the best solution found, respectively. Subcolumns “Avg.” and “Std.
dev.” of “Time” column show average time in seconds and its standard deviation, respec-
tively. Each entry in these columns has been calculated on the basis of at least 10 runs of a
given algorithm and a given instance.

In the next columns we present results of computational experiments published in the
literature for these test instances. The column Grasp+VND shows the best values found
by Grasp+VND procedure (cf. Ribeiro and Vianna 2005) in subcolumn “Best” and the
average computation time in seconds in subcolumn “Time”, measured on 2 GHz Pentium IV
processor. The authors did not published the average scores. One observes that in most cases
our methods also reached the best known solutions, however in noticeable lower average
times.

The PMN column shows results, obtained by parallel multi-neighborhood local search
heuristic, published by the authors of the work (cf. Viana et al. 2009). The experiments
were run on Intel/Celeron 1.6 GHz processor. The authors did not explain for the score
and time columns whether the values denote best or average measures. They did not also
mention how many processors were used in the experiment. Assuming that the columns
present average values one notices, that our methods generate similar results for instances
Angi, Ethe, Gris, better results for Golo, Ropa, Tenu, and worse results for Carp and Schu.
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Table 12 The Fitch scores of the
trees found by different known
methods for the first instance

Method

DNAPARS MEGA LVB

Average 2650.30 2662.25 2650.70

Standard deviation 2.92 5.25 3.03

The differences between the quality are slight, but comparing the execution times of the
algorithms in most cases our methods dominate the parallel multi-neighborhood local search
heuristic algorithm.

The results obtained using Local Search with Progressive Tree Neighborhood published
in Goëffon et al. (2008) are presented in column PPN. The tests were conducted on 2.4 GHz
Opteron 850 processor. The average scores of our methods are better than these presented
by the authors.

It is also interesting how the quality of the found solutions evolves in time, i.e. how it is
related with the number of iterations of the algorithms. It has been checked for the variants
of PV1 method and the results are shown in Fig. 4, where the relation of the Fitch score and
the execution time is presented. The relation was observed for instance TI-1. The tests have
been run on 16 processors and the computation times have been measured for the whole set
of processors working in parallel. It can be seen that the Fitch score is rapidly improved at
the beginning of computation, however attaining good, near optimum solution can take a lot
of time. This experiment confirms the previous observation that the method based on VNS2
reach better solutions within a comparable limit of computation time.

To check the quality of our algorithms, in Table 12 the results obtained by different
known sequential methods for the first instance were compared. The methods used in the
comparison include: DNAPARS, MEGA and LVB. The Fitch scores of the trees found by
the methods are shown. Each entry provides an average over 20 runs. DNAPARS (cf. Felsen-
stein 1989, 2005) estimates phylogenies by the parsimony method using DNA sequences.
This program carries out unrooted parsimony (analogous to Wagner trees) on DNA se-
quences. The MEGA results were obtained using the Maximum Parsimony method (cf. Eck
and Dayhoff 1966) and the Close-Neighbor-Interchange algorithm (cf. Nei and Kumar 2000)
with search level 4 (cf. Tamura et al. 2007) in which the initial trees were obtained with the
random addition of sequences (30 replications). LVB (cf. Barker 2004) uses parsimony to
reconstruct phylogeny from a nucleotide alignment, using a simulated annealing heuristic
search procedure.

Analyzing Table 4 and Table 12, we see that our proposed algorithms generate trees
of good quality which in most cases are better than those ones generated by other known
phylogenetic methods.

5 Conclusions

In this work, three adaptive memory programming parallel algorithms for phylogenetic tree
construction have been presented. The algorithms have master-slave structure. The slave
processes are local search procedures exploring a part of a solution space, namely a neigh-
borhood of some starting solution determined by the master process. This starting solution
is constructed on the basis of locally optimal trees already found, stored in a memory. Such
an approach leads the slave processes to explore fragments of the solution space containing
potentially good solutions. The algorithms described in the paper can be easily modified
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by changing the local search procedures executed by slave processors. Here, several ver-
sions of the methods differing in the way the solution space is searched have been tested
and compared. The most important conclusion is that applying adaptive memory program-
ming (AMP) gives better results than an algorithm, where the starting points are generated
randomly. AMP in connection with parallel processing related to the sequential algorithm
without AMP gives a superlinear speedup, proving high efficiency of the proposed approach.
The quality of the solutions obtained was measured and tested against solutions from other
methods. The tests again demonstrated the advantage of these parallel algorithms over the
existing software packages.
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