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Abstract We consider a system of parallel servers handling users of various classes, whose
service rates depend not only on user classes, but also on the set of active servers. We in-
vestigate the stability under two types of allocation strategies: (i) server assignment where
the users are assigned to servers based on rates, load, and other considerations, and (ii) co-
ordinated scheduling where the activity states of servers are coordinated. We show how the
model may be applied to evaluate the downlink capacity of wireless data networks. Specif-
ically, we examine the potential gains in wireless capacity from the two types of resource
allocation strategies.

Keywords Load balancing · Coordinated scheduling · Cellular networks

We investigate the stability of a fairly general system of parallel servers handling users of
various classes. The service rate of a user depends not only on the class of the user and the
server involved, but also on the set of active servers. Users of the various classes enter the
system according to some stationary ergodic processes and leave the system after having
been served. We focus on two types of coordinated resource allocation strategies: (i) server
assignment and (ii) coordinated scheduling.

The motivation for server assignment arises from the natural principle that the overall
performance may be improved by optimizing the allocation of users to servers. This may be
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achieved by assigning users to servers not solely based on service rates, but taking load and
other relevant considerations into account as well. It is worth emphasizing that in the system
considered, the optimal assignment of users to servers is fundamentally different from a
standard load balancing problem in two crucial respects. First of all, since service rates are
highly server-dependent, moving traffic from servers offering high rates to those with lower
rates imposes extra load. This is similar to the concept of server affinity in the processor
scheduling literature, where each incoming job has some default or preferred server, and a
certain overhead or penalty is incurred when transferring a job to an alternative server, see
for instance Squillante et al. (2001). Secondly, in the system we consider, the service rates
for a given user do not only vastly differ among servers, they also strongly depend on which
subset of the servers is active. This interaction between the server capacities implies that in
general, it is not optimal to perfectly balance the load among servers.

The principle of coordinated scheduling is to decide, at each scheduling instant in a
centralized manner, which servers should be active and which users they should serve. The
rationale for coordinated scheduling stems from the simple fact that the service rates are
impacted by the activity states of other servers, so that significantly higher rates may be
achieved when certain servers are switched off. When the increase in the rates is sufficiently
large, it may outweigh the sacrifice of resources at the servers that are turned off, yielding a
net benefit.

Our primary interest is in studying the stability of the system when server assignment
and/or coordinated scheduling is allowed. With server assignment only, we can provide
capacity-optimal schemes and exactly characterize the stability region when the server ca-
pacities do not depend on the set of active servers or when the system reduces to two servers.
In other cases, we provide conservative estimates of the stability region that can be achieved
using server assignment. When coordinated scheduling is allowed, either in the absence of
or in addition to server assignment, the stability region can be completely characterized.

The analysis of such systems is motivated by the performance evaluation of the downlink
of cellular networks supporting data traffic. In such networks, file downloads are randomly
generated by clients, and cease upon transfer completion. Base stations (BS’s) are assigned
to transfer these files, and the transmission rates from the given BS’s depend not only on
the position of the corresponding clients (assumed to be fixed here over the duration of a
transfer), but also on the interference generated by the other BS’s (interference is only gen-
erated by a BS if it is active). In our model, BS’s correspond to servers, and the clients’
possible positions in the network to user classes. In data networks user-perceived perfor-
mance is mainly determined by the file transfer time. A primary criterion to ensure that the
transfer time is finite is the stability of the system. As in Bonald and Proutière (2003) we
use the notion of network capacity, the maximum amount of traffic that can be supported for
a given spatial traffic pattern. For a few illustrative examples of wireless networks, we will
examine the potential capacity gains from coordinated resource allocation strategies.

The concepts of coordinated scheduling and server assignment have each been consid-
ered in isolation before. The notion of coordinated scheduling has been exploited in the con-
text of wireless data networks in Bonald et al. (2005), while the role of server assignment in
load balancing and capacity maximization has been investigated in Das et al. (2003), Bonald
et al. (2004c), Sang et al. (2004). In the present paper we will focus on the combination of
these two concepts. In particular, we will examine the relative merits of both features as a
function of the network topology.

The remainder of the paper is organized as follows. In Sect. 1 we introduce the model and
describe the resource allocation strategies considered. In Sect. 2 we determine the system
capacity with server assignment only. We examine the system capacity with coordinated
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scheduling in Sect. 3. In Sect. 4 we apply our model to wireless data networks and discuss
the numerical experiments that we conducted to support the analytical findings. We provide
concluding remarks in Sect. 5.

1 Model description and resource allocation strategies

1.1 The model

We consider a set of servers indexed by N = {1, . . . ,N} which are shared by a dynamic
population of users of various classes labeled by the set X = {1, . . . ,X}. An important fea-
ture of the model is that the queues are interacting in the sense that the service rate of a
particular server depends on the activities of other servers. Specifically, we denote by Cnx,A
the service rate of a class-x user when served by server n and when the set of active servers
is A ⊆ N . We assume that the service rates Cnx,A satisfy the following natural monotonicity
property:

∀A ⊆ B, ∀n,x, Cnx,A ≥ Cnx,B. (1)

Class-x users arrive according to a Poisson process of intensity λx and have i.i.d. expo-
nentially distributed service requirements with mean σx . We denote by ρx = λx × σx the
traffic load associated with class-x users, and by px = ρx/ρ the proportion of the total traf-
fic load ρ = ∑

x∈X ρx . The model and the presented results can be easily generalized to the
case of renewal processes for arrivals and service requirements.

1.2 Resource allocation

The resource allocation problem consists in determining when a given user should be served
by a certain server. In the present paper, we consider three scenarios that differ in terms of
the allowable resource allocation strategies.

Case 1. Server assignment only (SA) In the first scenario, there is no scheduling coordi-
nation between the servers: if a given server has a user to serve in its queue, it will be active.
Each server is assumed to serve users in its queue according to some work-conserving ser-
vice discipline. When a class-x user arrives, it is assigned to one of the queues according to
some server selection strategy, possibly depending on the state of the system, for the entire
duration of service. Denote by SA the set of all server assignment strategies.

Case 2. Coordinated scheduling only (CS) In the second scenario, users of a given class
are always assigned to the same server. Denote by Xn the set of user classes assigned to
server n. (Xn)n∈N constitutes a partition of X . The service capabilities can be described
by a set of service profiles J = {1, . . . , J }. Each of the profiles corresponds to a particular
allocation of the server resources among the various user classes: a transmission profile j

is determined by a set A of active servers and a set of user classes {xn ∈ Xn, n ∈ A} served
by these active servers. We denote by Rx,j the service rate of class-x users when profile j

is used. Thus Rx,j = Cnx,A if n ∈ A and xn = x, Rx,j = 0 otherwise. At any time, one ser-
vice profile can be selected for operating the system. The transmission profiles are selected
according to some scheduling policy and may or may not depend on the system state. We
denote by CS the set of coordinated scheduling strategies.
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Case 3. Combined server assignment and scheduling (SACS) In the third scenario, we
combine the coordinated scheduling and server assignment capabilities. Again, the service
capabilities can be described by a set of service profiles H = {1, . . . ,H }, with each of the
profiles corresponding to a particular allocation of the server resources among the various
user classes: a service profile is determined by a set A of active servers and a set of user
classes {xn ∈ X , n ∈ A} served by the active servers (note that the only difference with
the second scenario is that server n may serve any user class, xn ∈ X instead of xn ∈ Xn).
At any time, one transmission profile can be selected for operating the network. As in the
second scenario, the service profiles are selected according to some scheduling policy, and
may or may not depend on the system state. We denote by SACS the collection of resource
allocation strategies applying both coordinated scheduling and server selection.

1.3 System stability and capacity

We describe the system state by a stochastic process {Z(t)}t≥0. Depending on the resource
allocation scenario considered, Z(t) includes enough information for the corresponding
process to be Markovian. In scenario 1 (SA only), Z(t) = (Qn,x(t), n ∈ N , x ∈ X ), where
Qn,x(t) is the number of class-x users in the queue associated with server n at time t . In
scenarios 2 and 3 (with coordinated scheduling), Z(t) = (Qx(t), x ∈ X ), where Qx(t) is the
total number of class-x users in the system at time t .

For a given scenario, we are interested in the stability of the system, i.e., the positive
recurrence of the Markov process {Z(t)}t≥0, depending on the resource allocation strat-
egy π considered. For any fixed load distribution among classes (px)x∈X , we define the
capacity of the strategy π as the maximum total traffic load Cπ such that for all ε > 0, the
system is stable under π when the traffic load is Cπ − ε. For any set of strategies S , let
CS = maxπ∈S Cπ . We further define the stability region under the set of strategies S as the
X-dimensional set of traffic loads (ρx)x∈X such that there exists a strategy π ∈ S stabilizing
the system.

2 Capacity with server assignment only

In this section we analyze the system capacity when smart server assignment strategies
can be used only. A resource allocation scheme is then determined by the work-conserving
discipline used by each server and by the server assignment strategy.

2.1 No server interaction

We first discuss the case of non-interacting servers, where the service rates of users at a
given server do not depend on the activity states of the other servers. In other words, for all
x ∈ X , n ∈ N , A ⊆ N , Cnx,A = Cnx .

Define T N = {α ∈ R
N+ : ∑N

n=1 αn ≥ 1} and T X = {β ∈ R
X+ : ∑X

x=1 βx ≤ 1}. Also, define

RSA =
{

r ∈ R
X
+ : ∀x,∃αx ∈ T N s.t. ∀n,

∑

x∈X

αx,nrx/Cnx ≤ 1

}

.

The variable αx,n may be interpreted as the fraction of class-x users assigned to server n.
Taking βn,x = αx,nrx/Cnx , it is easily seen that RSA may be equivalently defined as

RSA =
{

r ∈ R
X
+ : ∀x,∃βn ∈ T X s.t. ∀x, rx ≤

N∑

n=1

βn,xCnx

}

.
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The variable βn,x may be interpreted as the fraction of resources allocated to class-x users at
server n. The next proposition provides the capacity of server assignment strategies for any
work-conserving discipline.

Proposition 1 For any work-conserving discipline used at each server, we have:

CSA = max{ρ : ρ × (p1, . . . , pX) ∈ RSA}. (2)

Furthermore there exists a set of vectors αx ∈ T N , x ∈ X such that:

CSA =
(∑

x∈X

αx,npx

Cnx

)−1

, ∀n ∈ N . (3)

Finally, fix the load distribution (px)x∈X . Any static server assignment strategy defined by
vectors αx ∈ T N , x ∈ X , that stabilizes the system for all ρ < CSA, satisfies (3).

Observe that (3) simply reflects the fact that under the capacity-maximizing assignment
the loads of all servers are equal to one.

Proof The proof follows from the interpretation of the coefficients α and β involved in
the definition of RSA. Indeed, assume that the server assignment strategy achieves stabil-
ity. Then define αx,n as the stationary proportion of class-x users assigned to server n.
We must have αx ∈ T N . Furthermore, the load of each server has to be less than 1, i.e.,∑

x∈X αx,nρpx/Cnx ≤ 1. This implies that ρ = max{u : u × (p1, . . . , pX) ∈ RSA}. Con-
versely, if the previous inequality holds, we can simply construct a static server assignment
strategy stabilizing the system.

Now the proof of (3) involves a swapping argument. Define the vectors αx ∈ T N such
that for all n, CSA × ∑

x∈X
αx,npx

Cnx
≤ 1. Also, define n1 = arg maxn∈N

∑
x∈X

αx,npx

Cnx
and n2 =

arg maxn∈N \{n1}
∑

x∈X
αx,npx

Cnx
. Now assume that for δ > 0,

∑
x∈X

αx,n1 px

Cn1x
>

∑
x∈X

αx,n2 px

Cn2x
+δ.

Now define for a given x, α′
x,n = αx,n, for all n 	= n1, n2, and α′

x,n1
= αx,n1 − ε, α′

x,n2
=

αx,n1 + ε, where ε = δ min(Cn1x,Cn2x)/(2px). Then α′
x ∈ T N , and by definition of n1, n2,

for all n, CSA(1 + ν) × ∑
x∈X

α′
x,npx

Cnx
≤ 1, where

ν = ε min
n∈N

(
px min(1/Cn1x,1/Cn2x)

∑
x∈X

αx,npx

Cnx

)

> 0.

This contradicts the definition of CSA. Applying this argument recursively, we obtain (3). �

The above results imply that the stability region of server assignment strategies is ŘSA,
the largest open subset of RSA, and that static server assignment strategies suffice to achieve
the full stability region and thus the network capacity. From a practical perspective, however,
static strategies are less useful, since there generally exists no single server assignment strat-
egy that guarantees stability whenever possible. Determining the specific server assignment
strategy that achieves stability for a given (ρx)x∈X ∈ ŘSA requires detailed information on
the traffic loads of the various user classes, which is typically impractical to obtain.

In contrast, there do exist simple and parsimonious dynamic load balancing schemes that
are more robust and ensure stability for all (ρx)x∈X ∈ ŘSA without any explicit knowledge of
the actual traffic loads. Denote by Vn(t) = ∑

x∈X Qn,x(t)σx/Cnx the ‘workload’ of server n
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at time t . In Stolyar (2005), the MinDrift server assignment scheme is proposed and proved
to achieve stability for any ρ ∈ ŘSA, irrespective of the chosen work-conserving discipline
considered. The MinDrift rule assigns a class-x user arriving at time t to server n∗

x(t) where:

n∗
x(t) = arg min

n=1,...,N
Vn(t)/Cnx.

Note that unfortunately the above scheme depends on the mean service requirements σx of
the various user classes, which is usually information that is not available. The first natural
dynamic server assignment strategy that does not require the information on the mean ser-
vice requirements is the Join-the-Shortest-Queue policy (JSQ). This policy achieves maxi-
mum stability when the service rate at a given server does not depend on the user class (Foley
and McDonald 2001). It was proved in Chernova and Foss (1998) that unfortunately it does
not stabilize the system in general for class-dependent service rates, when the discipline at
each server is FCFS. The stability of the JSQ policy in conjunction with other disciplines
remains largely unknown.

2.2 With server interaction

We now examine the case where the service rates at a given server depend on the activity
states of the other servers. As observed in Bonald et al. (2004a), the intricate correlation
among the various servers renders an exact analysis elusive in general. In the special case of
a static server assignment strategy and each server handling a single user class, the system
corresponds to a so-called coupled-processors model, which even in the case of two queues
is barely tractable, although the stability condition is then relatively simple.

Fayolle and Iasnogorodski (1979) showed that in the case of exponentially distributed
service requirements the analysis of the joint queue length distribution may be formulated
as a Riemann-Hilbert problem. Cohen and Boxma (1983) considered the case of generally
distributed service requirements, and showed that the joint workload distribution may be
obtained as the solution to a boundary value problem.

The fact that even the single-class two-queue case is nearly intractable, testifies to the
complexity of the model in general. Even for three queues, hardly any results are known (Co-
hen 1984). In order to illustrate the complications, let us inspect the case of three servers and
three user classes with Xn = {n}, n = 1,2,3. We assume that the service rates of servers 1
and 2 are not affected by the activity states of the other servers, while the service rates of
server 3 do depend on the activity states of both servers 1 and 2. If ρ1 < C11, ρ2 < C22, then
servers 1 and 2 are guaranteed to be stable, and the necessary and sufficient condition for
stability of server 3 may be expressed as

ρ3 < π00C33,{3} + π01C33,{1,3} + π10C33,{2,3} + π11C33,{1,2,3},

with πij representing the probability that servers i and j are in states i and j , where 0 and
1 stand for inactive and active, respectively. Thus, in order to provide stability guarantees, a
server assignment strategy must be able to maximize the latter expression, which is a quite
a challenging task. Although π10 + π11 = ρ1/C11 and π01 + π11 = ρ2/C22, the individual
probabilities πij and thus the value of the entire expression depend on the detailed features
of the server assignment scheme. (If the service rates of servers 1 and 2 did depend on the
activity states of the other servers, then the probabilities in fact may even be sensitive to the
service requirement distributions (Bonald et al. 2004a).) This suggests that static assignment
schemes will in general not suffice to achieve the full stability region and system capacity,
and that there do not even exist any simple greedy dynamic schemes that do so.
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In view of the above observations, we focus in the remainder of the section on the two-
server case where we perform an exact stability analysis and compute the capacity CSA of
the system under server assignment strategies, and on the derivation of conservative bounds
for the capacity of systems with more than two servers.

2.2.1 Two servers

For compactness, denote Cnx,on = Cnx,{1,2} and Cnx,off = Cnx,{n}, n = 1,2.

The impact of the service discipline on the stability region In the case of a system with
two servers only and a static server assignment strategy, the stability depends in general on
the work-conserving discipline used at the two servers. Define two permutations σ1 and σ2

of X such that for n = 1,2,

Cnσn(1),off

Cnσn(1),on
≤ · · · ≤ Cnσn(X),off

Cnσn(X),on
.

Consider a static server assignment strategy that assigns a fraction αx,n of the class-x users to
server n with

∑2
n=1 αx,n = 1 for all x ∈ X . Define the load of server n when the other server

is active by ρn,on(α) = ∑
x∈X

αx,nρx

Cnx,on
. Also, define the following partial loads: ρx

n,on(α) =
∑x

k=1
ασn(k),nρσn(k)

Cnσn(k),on
and ρx

n,off(α) = ∑X

k=x

ασn(k),nρσn(k)

Cnσn(k),off
. The following proposition identifies the

work-conserving disciplines at each server maximizing the stability region.

Proposition 2 Consider the service discipline at server n such that:

(i) when server m 	= n is active, users are served with priority decreasing with σn(x),
(ii) when server m 	= n is inactive, users are served with priority increasing with σn(x).

The above service discipline maximizes the stability region. The load vector (ρ1, ρ2) belongs
to the latter region if for n = 1 or for n = 2:

ρn,on(α) < 1,

and there exists x∗ such that: for m 	= n,

ρx∗+1
m,off (α) ≤ 1 − ρn,on(α) < ρx∗

m,off(α),

ρx∗−1
m,on (α) + ασm(x∗),mρσm(x∗)

Cmσm(x∗),on
− (1 − ρn,on(α) − ρx∗+1

m,off (α))
Cmσm(x∗),off

Cmσm(x∗),on
< ρn,on(α).

The proof of the above result is similar to that of the next proposition studying the stabil-
ity in case of the Processor-Sharing discipline. The fact that the service discipline considered
is optimal is just based on the principle that one should be as opportunistic as possible and
exploit the inactive periods of the other server by serving users that benefit the most from
this inactivity, Specifically, classes 1, . . . , x∗ − 1 suffer relatively little from activity (bene-
fit relatively little from inactivity) of the other server, and are hence served when the other
server is active, while classes x∗ + 1, . . . ,X are affected more (benefit less), and are served
when the other server is inactive.
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Processor-Sharing discipline We now investigate the system stability under the Processor-
Sharing (PS) discipline. Consider a static strategy that assigns a fraction αx,n of the class-
x users to server n with

∑N

n=1 αx,n = 1 for all x ∈ X . Assuming ρn,{1,2}(α) ≤ 1, define
Cn′x(α) = ρn,on(α)Cn′x,on + (1 − ρn,on(α))Cn′x,off, n′ 	= n. Note that Cn′x(α) may be inter-
preted as the average transmission rate of class-x users at server n′ given that server n is ac-
tive a fraction of the time ρn,on(α) ≤ 1. Define R(α) as the set of all vectors (ρ1, . . . , ρX) ∈
R

X+ such that

ρ1,on(α) ≤ 1 and
∑

x∈X

αx,2ρx

C2x(α)
≤ 1, or ρ2,on(α) ≤ 1 and

∑

x∈X

αx,1ρx

C1x(α)
≤ 1.

The next proposition provides a necessary and sufficient stability condition.

Proposition 3 A static server assignment strategy achieves stability if (ρx)x∈X ∈ Ř(α). If
(ρx)x∈X /∈ R(α), the system is unstable.

Proof First assume that ρ1,{1,2}(α) < 1 and
∑

x∈X
αx,2ρx

C2x (α)
< 1. Due to the monotonicity prop-

erty (1), we have Qn,x(t) ≤ Q̃n,x(t), where Q̃n,x(t) is the number of class-x users in the
queue of server n at time t in the following fictitious system. In the latter system, the ar-
rivals are identical to those in the original system, and the service rates of class-x users at
server 1 is C1x,on. The initial states in both systems are identical Q̃n,x(0) = Qn,x(0) for all n

and x. Now with the assumption on (ρx)x∈X , the Markov process (Q̃n,x(t), n, x)t≥0 is posi-
tive recurrent: (Q̃1,x(t), x)t≥0 corresponds to the numbers of users in a multi-class queue of
load ρ1,{1,2}(α) strictly less than 1 and then (Q̃2,x(t), x)t≥0 may be interpreted as the numbers
of users in a multi-class PS queue with a capacity varying according to a stationary ergodic
process independent of the state the queue. Its stability is ensured by

∑
x∈X

αx,2ρx

C2x (α)
< 1, see

for example (Bonald et al. 2004b).
Assume now that (ρx)x∈X /∈ R(α). If ρn,{1,2}(α) > 1 for n = 1,2, then if at time 0, there

are some users assigned to servers 1 and 2, the system evolves as two independent multi-
class queues with load greater than 1 until one of the two queues empties. But there is a
positive probability that neither of these queues empties, and that they both increase indef-
initely, which implies instability. It remains to investigate the case where ρ1,on(α) ≤ 1 and∑

x∈X
αx,2ρx

C2x (α)
> 1. Denote T0 = inf{t : Q2(t) = 0}. We prove that T0 is infinite with positive

probability, which implies instability. For all t < T0, the numbers of users Q2,x(t) evolve
as the number of users in a multi-class PS queue with time-varying capacity defined by
an independent process Q1(t) (note that we have independence only because we consider
t < T0). This queue has a load strictly greater than 1, which implies that T0 is infinite with
positive probability. �

It follows that the network capacity under the static assignment strategy α may be char-
acterized as C(α) = max{ρ : ρ(p1, . . . , pX) ∈ R(α)}.

An interesting special case is where all the user classes assigned to server n enjoy the
same relative increase Kn in transmission rate when server n′ 	= n is inactive, i.e., Cnx,off

Cnx,on
=

Kn for all user classes x with αx,n > 0. In that case, Cn′x(α) = Cn′x,on(ρn,{1,2}(α) + (1 −
ρn,{1,2}(α))Kn′ for all user classes x with αx,n > 0. Thus, R(α) may be defined as the set of
all vectors such that

ρ1,{1,2}(α) < 1 and ρ2,{1,2}(α) < ρ1,{1,2}(α) + (1 − ρ1,{1,2}(α))K2,
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or

ρ2,{1,2}(α) < 1 and ρ1,{1,2}(α) < ρ2,{1,2}(α) + (1 − ρ2,{1,2}(α))K1.

In that case, the system behaves as a coupled-processors model, and the above proposition
follows from Cohen and Boxma (1983). Define S as the set of all vectors (r1, r2) ∈ R

2+ such
that

r1 ≤ 1 and r2 ≤ r1 + (1 − r1)K2, or r2 ≤ 1 and r1 ≤ r2 + (1 − r2)K1.

Proposition 4 In the special case just described, no server assignment scheme achieves sta-
bility unless there exists a static assignment strategy α such that (ρ1,{1,2}(α),

ρ2,{1,2}(α)) ∈ S.

Proof Suppose that there exists no static assignment strategy such that (ρ1,{1,2}(α),

ρ2,{1,2}(α) ∈ S. We will show that no server assignment scheme achieves stability.
We distinguish between two cases: (K1 − 1)(K2 − 1) ≤ 1 and (K1 − 1)(K2 − 1) ≥ 1.

In case (K1 − 1)(K2 − 1) ≤ 1, we have S = conv({(0,0), (1,1), (K1,0), (0,K2), and the
assertion easily follows. Thus it remains to prove the statement in case (K1 −1)(K2 −1) > 1.
In this case, we have S = {(r1, r2) ∈ R

2+ : r2 ≤ r1 + (1 − r1)K2 or r1 ≤ r2 + (1 − r2)K1}.
We first introduce some notation. Let Qn,x(t) be the number of class-x flows at BS n at

time t , and let Q̄n,x(t) be the corresponding fluid limit (Dai 1995) obtained by scaling both
time and the initial number of users. Denote by Vn(t) = ∑

x∈X σn,xQ̄n,x(t) the workload at
server n at time t , with σn,x = σx/Cnx,on the mean service requirement of a class-x user at
server n. Let An(s, t) be the amount of traffic assigned to server n during the time interval
[s, t] in the fluid limit, and let Bn(s, t) be the amount of traffic served by server n during the
time interval [s, t]. Then we have Vn(t) ≥ Vn(s) + An(s, t) − Bn(s, t).

We will show that W(t) = min{ V1(t)

K1
+ (1 − 1

K1
)V2(t), (1 − 1

K2
)V1(t) + V2(t)

K2
} has pos-

itive drift whenever W(t) > 0. The fact that there exists no static assignment strategy
such that (ρ1,{1,2}(α), ρ2,{1,2}(α)) ∈ S implies that there exists an ε > 0 such that γ2 ≥
γ1 + (1 − γ1)K2 + ε and γ1 ≥ γ2 + (1 − γ2)K1 + ε for all assignment schemes with
γn = ρn,{1,2}(α). This may be rewritten as γ1 + (K1 − 1)γ2 ≥ K1 + ε and (K2 − 1)γ1 +
γ2 ≥ K2 + ε. This also means that A1(s, t) + (K1 − 1)A2(s, t) ≥ (K1 + ε)(t − s) and
(K2 − 1)A1(s, t) + A2(s, t) ≥ (K2 + ε)(t − s) for any time interval [s, t] for all assign-
ment schemes. Also, B1(s, t) ≤ K1(t − s) and B2(s, t) ≤ K2(t − s) for any time interval
[s, t].

Now suppose that W(t) = V1(t)

K1
+ (1− 1

K1
)V2(t) = (1− 1

K2
)V1(t)+ V2(t)

K2
−w, with w ≥ 0.

Then V1(t) > 0, since (K1 −1)(K2 −1) > 1 implies 1− 1
K1

> 1
K2

. Denoting V1(t) = v1 > 0,
we know that V1(t + u) > 0 for all u ∈ [0, v/K1), as V1(t) cannot decrease at a rate higher
than K1, or formally

V1(t + u) ≥ V1(t) + A1(t, u) − B1(t, u) ≥ V1(t) − K1u.

Thus, we have B1(t, t + u) + (K1 − 1)B2(t, t + u) ≤ K1u for all u ∈ [0, v/K1). Combining
the above inequalities, it may be shown that V1(t+u)

K1
+ (1 − 1

K1
)V2(t + u) ≥ W(t) + ε

K1
u for

all u ∈ [0, v1/K1).
By symmetry, if W(t) = (1 − 1

K2
)V1(t) + V2(t)

K2
= V1(t)

K1
+ (1 − 1

K1
)V2(t) − w, with w ≥ 0,

then (1 − 1
K2

)V1(t + u) + V2(t+u)

K2
≥ W(t) + ε

K2
u for all u ∈ [0, v2/K2), with v2 = V2(t) > 0.

It can then be shown that there exists an v > 0 such that W(t + v) ≥ W(t) +
vε min{ 1

K1
, 1

K2
}, with v in fact being at least a fixed fraction of W(t). It then follows that no

server assignment scheme achieves stability. �
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The above proposition implies that the capacity under server assignment strategies is
given by:

CSA = max

{

ρ : ρ × (p1, . . . , pX) ∈
⋃

α

R(α)

}

. (4)

2.2.2 Sufficient stability conditions

When there are more than two servers, the exact stability condition can not be established.
Instead, we provide conservative sufficient stability conditions, leading to lower bounds
for CSA. We apply the following method: (i) first for a fixed assignment of users among
servers (i.e., for fixed proportions αx,n of class-x users served by server n), we derive a
lower bound for the capacity, (ii) then we identify the optimal static assignment strategy
leading to the maximum lower bound for the capacity.

Let us fix the server assignment: let αx,n denote the proportion of class-x users assigned
to server n. Define the load of server n when all servers are active by:

ρn,N (α) =
∑

x∈X

ραx,npx

Cnx,N
.

A sufficient condition for stability is that for all n, ρn,N (α) < 1. This condition leads to a
lower bound for the capacity, referred to as first-degree bound in Bonald et al. (2004a):

C(α) ≥
(

max
n∈N

∑

x∈X

αx,npx

Cnx,N

)−1

. (5)

The proof is similar to that of Proposition 3, observing that Qn,x(t) ≤ Q̃n,x(t), where Q̃n,x(t)

is the queue length obtained when the class-x users are served at the minimum rate Cnx,N .
The above result naturally leads to the following bound for CSA.

CSA ≥ max
α

(

max
n∈N

∑

x∈X

αx,npx

Cnx,N

)−1

. (6)

We now derive tighter capacity bounds referred to as second-degree bounds in Bonald et
al. (2004a). Again let us fix the server assignment α. Define Cnx(α) by:

Cnx(α) =
∑

A⊆N \{n}
Cnx,A∪{n}

⎛

⎝
∏

m∈A

(ρm,N (α) ∧ 1) ×
∏

m/∈(A\{n})
(1 − (ρm,N (α) ∧ 1))

⎞

⎠ .

The above definition may be interpreted as follows. The term Cnx,A∪{n} represents the service
rate received by class x from server n when the set of active servers is A ∪ {n}. Recall that
(ρm,N (α) is the load of server n when all servers are busy, and thus ρm,N (α)∧1 provides an
upper bound for the fraction of time that server n is busy. Hence, noting that 1− (ρm,N (α)∧
1) = 0 when ρm,N (α) ≥ 1, we deduce that the term in brackets provides a lower bound for
the fraction of time that the active set of servers is A. It follows that the sum provides a
lower bound for the time-average service rate received by class x.

Proposition 5 If for all n ∈ N ,
∑

x∈X
ραx,npx

Cnx (α)
< 1, then the system is stable.
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Proof The proof is obtained using sample path comparisons. Let us consider server 1 and
analyze its stability. We can construct a fictitious system with the same initial state as the
original system where the numbers Q̃n(t) of users assigned to servers 2, . . . ,N vary inde-
pendently, and such that for all t , Qn(t) ≤ Q̃n(t), for all n ≥ 2. This system is obtained
assuming that class-x users are served at minimum rate Cnx,N by server n ≥ 2. Then, in the
fictitious system, class-x users are served at a smaller rate than in the original system. The
ergodic mean of this rate is C1x(α), so if

∑
x∈X

ραx,1px

C1x (α)
< 1, then server 1 is stable in the

fictitious system and thus in the original system as well. �

As a consequence, the system capacity C(α) for the static server assignment strategy α

satisfies:

C(α) ≥
(

max
n∈N

∑

x∈X

αx,npx

Cnx(α)

)−1

, (7)

and a lower bound for the capacity under server assignment is given by:

CSA ≥ max
α

(

max
n∈N

∑

x∈X

αx,npx

Cnx(α)

)−1

. (8)

3 Capacity with coordinated scheduling

In this section we determine the system capacity for the set of resource allocation strategies
applying coordinated scheduling only and combining coordinated scheduling and server
assignment. Denote by CCS and CSACS the capacities in these two cases. It turns out that for
these two types of resource allocation strategies, the condition for the system to be stable is
known, see e.g. Tassiulas and Ephremides (1992), Bonald et al. (2005).

Denote by T J (resp. T H ) the set of vectors with real and positive components summing
to 1 over J (resp. H). Define the following rate regions:

RCS =
{

r : ∃α ∈ T J s.t.rx ≤
∑

j∈J

αjRx,j∀x ∈ X
}

, (9)

RSACS =
{

r : ∃α ∈ T Hs.t.rx ≤
∑

j∈H

αjRx,j∀x ∈ X
}

. (10)

The previous sets are the sets of achievable rate vectors applying coordinated scheduling
only and both coordinated scheduling and server assignment. The following proposition,
proved in Tassiulas and Ephremides (1992) for example, characterizes the stability of net-
works whose resource allocation strategies are in the sets CS and SACS.

Proposition 6 (i) If ρ × (p1, . . . , pX) ∈ ŘCS (resp. ρ × (p1, . . . , pX) ∈ ŘSACS), then there
exists a resource allocation strategy in CS (resp. SACS) stabilizing the system. (ii) In con-
trast, if ρ × (p1, . . . , pX) /∈ RCS (resp. ρ × (p1, . . . , pX) /∈ RSACS), then there is no resource
allocation in CS (resp. SACS) stabilizing the system.

Note that the previous proposition holds not only for Poisson arrival processes but also for
stationary ergodic arrival processes. As a consequence of these results, the system capacities
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CCS and CSACS may be characterized as:

CCS = max{ρ : ρ(p1, . . . , pX) ∈ RCS}, (11)

CSACS = max{ρ : ρ(p1, . . . , pX) ∈ RSACS}. (12)

There exist dynamic resource allocation schemes that achieve stability whenever possi-
ble and that only require knowledge of the queue lengths Qx and the service rates Rx,j ,
j ∈ J (or H). An example of such schemes is the κ-fair scheduler (Mo and Walrand 2000)
choosing at time t the transmission profile j with probability αj such that the average service
rate vector (

∑
j Rx,jαj , x ∈ X ) is the unique solution of the following convex optimization

problem:

max
X∑

x=1

Qκ
x(t)

(
∑

j Rx,jαj )
1−κ

1 − κ
, s.t.

∑

j

αj ≤ 1.

For any κ > 0, it has been shown in Bonald et al. (2006) that the κ-fair scheduler achieves
stability whenever possible.

3.1 Two servers

We now examine the capacity with coordinated scheduling for a two-server system. We
present two results that allow us to identify the optimal static scheduling strategy for a fixed
load distribution (px)x∈X , and to provide a simple algorithm for computing the capacities
CCS and CSACS. The proofs of these results are similar to that of Proposition 4.1 in Bonald
et al. (2005).

Using (9), (11), the network capacity with coordinated scheduling only is given by CCS =
1/τ ∗, with τ ∗ denoting the solution of the linear program:

minimize τ = τon + τ1,off + τ2,off

subject to Cnx,onτnx,on + Cnx,offτnx,off ≥ px x ∈ Xn, n = 1,2,
∑

x∈X1

τ1x,on =
∑

x∈X2

τ2x,on = τon

∑

x∈X1

τ1x,off = τ1,off,
∑

x∈X2

τ2x,off = τ2,off

τnx,on, τnx,off ≥ 0 x ∈ Xn, n = 1,2,

(13)

with τnx,on and τnx,off representing the amount of time that class x is served at server n while
the other server is active and inactive, respectively. Without loss of generality, assume that
the user classes are indexed such that X1 = {1,2, . . . ,X′} and X2 = {X′ + 1,X′ + 2, . . . ,X},
with

C11,off

C11,on
≥ C12,off

C12,on
≥ · · · ≥ C1X′,off

C1X′,on
, and

C2X′+1,off

C2X′+1,on
≤ C2X′+2,off

C2X′+2,on
≤ · · · ≤ C2X,off

C2X,on
.

The next proposition gives a characterization of the optimal solution of the above linear
program, and thus of the structure of the capacity-maximizing scheduling strategy.

Proposition 7 There exist a solution of (13) and x∗
1 ≤ X′ ≤ x∗

2 , x∗
2 ≥ X′ such that the fol-

lowing six properties hold: (i) τ1x,on = 1 for all x = 1, . . . , x∗
1 − 1, (ii) τ1x∗

1 ,on + τ1x∗
1 ,off = 1,
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(iii) τ1x,off = 1 for all x = x∗
1 + 1, . . . ,X′, (iv) τ2x,off = 1 for all x = X′ + 1, . . . , x∗

2 − 1,
(v) τ2x∗

2 ,on + τ2x∗
2 ,off = 1, (vi) τ2x,on = 1 for all x = x∗

2 + 1, . . . ,X.

We now turn the attention to the case with both server assignment and coordinated
scheduling. Using (10), (12), the capacity CSACS = 1/τ ∗, with τ ∗ denoting the solution of
the linear program:

minimize τ = τon + τ1,off + τ2,off

subject to
2∑

n=1

Cnx,onτnx,on + Cnx,offτnx,off ≥ px, x ∈ X

∑

x∈X

τ1x,on =
∑

x∈X

τ2x,on = τon

∑

x∈X

τnx,off = τn,off, n = 1,2

τnx,on, τnx,off ≥ 0 x ∈ Xn, n = 1,2,

(14)

with τnx,on and τnx,off representing the amount of time that class x is served at server n while
the other server is active and inactive, respectively. Under the following assumption, we can,
as in the case of coordinated scheduling only, identify the structure of the optimal scheduling
strategy. Assume the user classes can be ordered so that:

C11,off

C11,on
≥ · · · ≥ C1X,off

C1X,on
, and

C21,off

C21,on
≤ · · · ≤ C2X,off

C2X,on
.

This assumption is natural in wireless network models as illustrated in the next section. The
next proposition characterizes the optimal solution of the above linear program. Note that
Proposition 8 coincides with Proposition 7 when the critical class x∗ is constrained to be X′.

Proposition 8 There exist a solution of (14) and x∗
1 ≤ x∗ ≤ x∗

2 such that the following six
properties hold: (i) τ1x,on = 1 for all x = 1, . . . , x∗

1 −1, (ii) τ1x∗
1 ,on + τ1x∗

1 ,off = 1, (iii) τ1x,off =
1 for all x = x∗

1 + 1, . . . , x∗, (iv) τ2x,off = 1 for all x = x∗ + 1, . . . , x∗
2 − 1, (v) τ2x∗

2 ,on +
τ2x∗

2 ,off = 1, (vi) τ2x,on = 1 for all x = x∗
2 + 1, . . . ,X.

4 Application to wireless data networks

We now apply the results derived in the previous sections to evaluate the downlink capacity
of wireless data networks. We focus on networks where each base station (BS) serves users
downloading data files. The transmissions to the various users are assumed to be orthogonal
in the sense that transmissions from the same BS do not interfere with each other. When BS
activities are not coordinated, we further assume that each BS evenly shares its resources
among users, i.e., it adheres to a PS discipline. Such networks are representative of CDMA
1xEV-DO (Bender et al. 2000) and UMTS-HSDPA systems for instance. In reference to
the terminology used in the previous sections, a BS corresponds to a server and a data
flow to a user. Flows are randomly generated by users in the network and leave once the
corresponding transfer has been completed. For the sake of simplicity, we assume that users
do not move during flow transfers. Flows are then classified according to the position of the
corresponding users.
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4.1 Radio environment

To characterize the radio environment, it is useful to introduce the notion of a feasible rate
of various users. The feasible rate of a user in location x when served by BS n is defined
as the rate this user would receive if all resources of BS n were allocated to this user. The
feasible rate of a user depends on its Signal-to-Interference-plus-Noise ratio (SINR), which
in turn depends on (i) its path loss value to the serving BS n and (ii) its path loss values to
the other active BS’s. We consider a general model to characterize the relationship between
the feasible rate and the SINR: the feasible rate of a user at location x served by BS n when
the active set of BS’s is A is given by:

Cnx,A = f (SINRnx,A), (15)

where f (·) is some non-decreasing differentiable function. In the numerical experiments, we
assume that this function corresponds to the Shannon formula, which provides a reasonable
approximation of most real systems, up to a multiplicative constant:

Cnx,A = W log2(1 + SINRnx,A), (16)

where W denotes the bandwidth. Denote by yn the position of BS n. The SINR of a user in
location x served by BS n while the set of active BS’s in A is:

SINRnx,A = P�(|x − yn|)
N0 + P

∑
m∈A\{n} �(|x − ym|) , (17)

where P denotes the common transmit power of the BS’s, N0 is the background noise level,
and � is the path loss. We take values representative of 3G cellular networks: P = 40 dBm,
N0 = −100 dBm, �(r) = −130−35 log10(r) with r expressed in km (which corresponds to
a path loss exponent equal to 3.5). Finally, we assume that the minimum distance between
any user and any BS is strictly positive.

4.2 Traffic characteristics and network state

We consider a continuous setting for traffic characteristics, with an infinite number of flow
classes. This arises when the feasible rate can take arbitrary values and when user locations
can be anywhere in a continuous subset X of R

2. The traffic model is then the following:
users in an area of size dx around location x generate data flows of mean size σx accord-
ing to a Poisson process of intensity λxdx. The traffic intensity generated in an area of
size dx around location x is defined by ρxdx = λx × σxdx. The total traffic intensity is de-
noted by ρ = ∫

X ρxdx, and the density of traffic generated around x by px = ρx/ρ (so that∫
X pxdx = 1).

In the continuous setting, the network state Z(t) is described by the number of active
flows denoted by Q(t), and by the vector X(t) = (Xl(t), l = 1, . . . ,Q(t)) describing the
locations of the users corresponding to active flows, i.e., Xl(t) is the class of the l-th active
flow at time t .

Remark that considering a continuous setting instead of a discrete setting as in the previ-
ous sections does not make a fundamental difference, and the results derived in the discrete
setting still hold.

The server assignment strategy corresponds to assigning users to BS’s, termed cell selec-
tion in this context. Coordinated scheduling involves coordinating activity states of neigh-
boring BS’s with the aim of reducing inter-cell interference, and is referred to here as inter-
cell scheduling.
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4.3 Capacity with SA only

In this section we extend the results of Sect. 2 to characterize, in the continuous setting
of traffic distribution, the optimal static cell selection scheme (for a given traffic distribu-
tion (px)x∈X ), and then compute the network capacity. The case of non-interacting servers
corresponds to constant inter-cell interference in this context, where the transmission rates
are independent of the activity states of neighboring BS’s. When there is server interaction,
the transmission rates do depend on activity states of surrounding BS’s, and this results in
variable inter-cell interference.

Constant inter-cell interference We first focus on the case of constant inter-cell interfer-
ence. Proposition 1 helps in determining an optimal static assignment strategy. However, it
is not sufficient to completely characterize the network capacity, because in general there
are many static assignments equalizing the cell loads. The following result characterizes the
optimal static assignment strategy. In the continuous setting, an optimal assignment is de-
fined by the boundaries between cells, i.e., for every given location x we have to determine
which BS serves the users at this location. Denote by B∗

n1,n2
the boundary between cells n1

and n2 in an optimal static assignment.

Proposition 9 Consider a static assignment strategy achieving the maximum network ca-
pacity CSA. For any pair of BS’s n1, n2, there exists a non-negative k such that:

B∗
n1,n2

⊆
{

x ∈ X : Cn1x

Cn2x

= k

}

. (18)

Proof The proof of this result involves swapping arguments. Consider a static assignment
strategy stabilizing the network whenever possible. Then it equalizes the cell loads according
to Proposition 1. Now consider two points x, y in B∗

n1,n2
and assume for example that

Cn1x

Cn2x
>

Cn1y

Cn2y
. Then define a new static assignment obtained from the initial considered scheme after

the following modifications: around location x in cell n2 in the initial scheme, the users in
an area of size such that the traffic intensity in that area is ε > 0 (ε is chosen arbitrarily
small) are served by BS n1 instead of BS n2. At location y, we make a modification to keep
the load of cell n2 constant: to this aim, around location y in cell n1 in the initial scheme,
the users in an area of size such that the traffic intensity in that area is ε′ = εCn2y/Cn2x (ε is
arbitrarily small) are served by BS n2 instead of BS n1. The loads of all cells except that of
cell n1 remain unchanged. The load of cell n1 is decreased by −ε(

Cn2x

Cn1x
− Cn2y

Cn1y
)/Cn2x > 0.

The new static assignment is strictly better than the initial scheme, in the sense that the cell
loads are smaller than those with the initial assignment. This contradicts Proposition 1. �

Variable inter-cell interference We now examine the case of variable inter-cell interfer-
ence. As observed in Bonald et al. (2004a), the model is quite complex due to the intricate
correlations between the activity states of the various BS’s. In Sect. 2.2 first- and second-
degree bounds for the capacity were identified. In the following, we provide further results.

Equation (8) provides a lower bound for the capacity with server selection. However,
determining the traffic distribution α∗ leading to the greater second-degree bound

ĈSA = max
α

(

max
n∈N

∑

x∈X

αx,npx

Cnx(α)

)−1

.
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is not an easy task. For example, in general, it turns out impossible to characterize the op-
timal loads of the non-saturated cells: there is no analog of Proposition 1. However, in the
continuous setting, first note that the optimal traffic distribution for the second-degree bound
is such that all flows at a given location are served by the same BS. Then it remains to iden-
tify the boundaries between cells. These boundaries must satisfy the properties given in the
following proposition. Denote by B∗

n1,n2
the boundary between cells n1 and n2 (possibly

empty). Denote by S the set of BS in this configuration that are always active. Without loss
of generality we can assume that S reduces to a single cell, say cell 1.1

Proposition 10 Consider a static assignment corresponding to the second-degree bound
maximizing ĈSA.

(i) If n 	= 1,

B∗
1,n ⊆

{

x ∈ X : Cnx,N

C1x

= −
∫

cell1

dyĈSA

C
2
1y

× ∂C1y

∂ρn

}

. (19)

(ii) If n1, n2 	= 1,

B∗
n1,n2

⊆
{

x ∈ X :
∫

cell1

dyĈSA

C
2
1y

×
(

1

Cn1x,N

∂C1y

∂ρn1

− 1

Cn2x,N

∂C1y

∂ρn2

)

= 0

}

. (20)

Proof We only provide a proof of (i), since that of (ii) is similar. Assume for example that,
for n 	= 1 and x ∈ B∗

1,n,

ν = Cnx,N

C1x

−
∫

cell1

dyĈSA

C
2
1y

× ∂C1y

∂ρn

> 0.

Starting from the initial network, we increase the load of cell n by ε (arbitrarily small) by
serving users located around location x in cell 1 by BS n (instead of BS 1). A first-order Tay-
lor expansion of the load of cell 1, initially equal to 1, gives that this load is decreased by εν.
In the new network all cells have a load strictly less than 1, and hence the initial network
does not correspond to the second-degree bound maximizing ĈSA, a contradiction. �

We now present the numerical experiments that we performed to corroborate the analyt-
ical findings.

4.4 Two-cell network

We first consider the two-cell network examined in earlier sections. We consider a continu-
ous setting for the traffic distribution. In the examples provided below, heterogeneous traffic
refers to a traffic intensity that is at a maximum at a distance of 0 from BS 1 and decreases
linearly with no traffic at a distance of 0 from BS 2. Homogeneous traffic refers to a uniform
traffic distribution between the two BS’s. We will further consider two cases: two cells in
isolation, i.e, no interferers, and two cells in an infinite linear network. For the latter case,

1Indeed, S contains several BS’s when the network has some symmetry properties. In that case, we can break
the symmetry and build a sequence of ‘asymmetric’ networks (i.e., such that S = {1}) converging to the initial
network.
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the capacity is sensitive in general, and we present results assuming constant interference
from all other BS’s.

Figure 1 plots the network capacity for increasing cell radius for homogeneous and het-
erogeneous loads in two cells in isolation, and for different resource allocation strategies.
When the resource allocation is not coordinated (the curve ‘Nothing’), we assume that each
user is served by the closest BS irrespective of the cell loads. The capacities under inter-cell
scheduling and cell selection are given by Proposition 7 and (4), respectively. Note that we
have not included the curve for the resource allocation using both inter-cell scheduling and
cell selection in order to keep the figures uncluttered. The network capacity under this com-
bined policy is quite close to that of the higher of the two single policies in general. For small
cells with both types of traffic distribution, inter-cell scheduling provides significant gains.
For very dense networks, cell selection also results in significant capacity gains compared to
no policy and is sightly worse than inter-cell scheduling. However since cell selection may
be relatively easier to implement, with inter-cell scheduling requiring coordination of BS’s,
cell selection may be seen an immediate way to gain more capacity in very dense networks.
As expected, when cells are larger and there is less interference, cell selection results in
higher network capacity than inter-cell scheduling and this is more evident when the traffic
distribution is heterogeneous. For such noise-limited networks, cell selection tends to bal-
ance the loads among BS’s. For dense interference-limited networks this is not the case, as
shown in Fig. 2. In fact, when the cells are very small, the capacity is maximized when BS 1
carries all the traffic, leading to an idle BS 2 and thus strongly unbalanced loads.

Figure 3 plots the network capacity against cell radius for two cells in an infinite linear
network. The additional interference here means that for dense networks the gains in capac-
ity due inter-cell scheduling are smaller and even more so for cell selection. It remains the
case however, that for sparse networks cell selection is the best approach.

Fig. 1 Network capacity: 2 cells in isolation, (left) homogeneous traffic, (right) heterogeneous traffic

Fig. 2 Optimal cell selection
scheme: cell boundary, 2 cells in
isolation, and heterogeneous
traffic
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Fig. 3 Network capacity: 2 cells
in an infinite linear network,
heterogeneous traffic

Fig. 4 A 3-cell network

Fig. 5 (Left) Capacities under various resource allocation strategies, and (right) the optimal inter-cell
scheduling scheme and static cell selection scheme (leading to the greatest second degree bound)

4.5 Three facing sectors

We now consider a network of three BS’s as represented in Fig. 4. We assume that the
traffic has a spatial distribution such that the traffic intensity generated at position x = (u, v)

is proportional to 2R√
3

− u (more traffic is generated in Cell 1 than in Cell 2 or 3). In this
network, Cells 2 and 3 are equivalent which simplifies the analysis.

The capacity with cell selection only is known to be sensitive to the flow size distribu-
tion. In Fig. 5, the capacities without resource allocation coordination or with cell selection
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only are computed applying the second-degree bound. Here we present the second-degree
bounds (7) and (8). In case of cell selection, to find the cell boundaries corresponding to
the network whose capacity second degree bound is maximum, we apply results of Proposi-
tion 10. Figure 5 shows these boundaries when R = 2 km, and in this case the optimal static
cell selection almost equalizes the cell loads).

Finding the optimal static inter-cell scheduling in a heterogeneous network is challeng-
ing, but it can be characterized identifying the region of the cell where users are served in a
given profile. This has been done in Liu and Virtamo (2006).

As expected the capacity gain applying cell selection or inter-cell scheduling can be very
high when the cell radius is very small: in that case, the optimal cell selection consists in
serving all traffic by BS 1 and the optimal inter-cell scheduling in using transmission profiles
where only one BS is active. When the cell radius is large, inter-cell scheduling is ineffective,
but cell selection, which equalizes the cell loads, still shows significant capacity gains.

5 Conclusion

We have investigated the stability of wireless data networks with interfering base stations
supporting spatially distributed users with finite random service demands. It was shown how
these networks may be modeled as interacting queues whose service rates not only depend
on the user class, but also on the set of active servers. We have used the stability results
to examine the potential capacity gains from various types of resource allocation strategies,
e.g. dynamic server assignment, coordinated scheduling, or a combination of these two.

Several natural avenues for further research present themselves. First of all, it would be
interesting to construct dynamic server assignment schemes that only use queue length in-
formation, and do not rely on any knowledge of the workloads. In many situations, queue
length information can be easily obtained or implicitly conveyed to users which selfishly se-
lect servers based on perceived throughput under fair resource sharing disciplines, whereas
the workload involves knowledge of remaining service requirements which may not be read-
ily available. Second, the stability may depend on the scheduling disciplines employed by
the individual servers, in particular the value of κ in case of κ-fair scheduling. It would be
interesting to explore what values of κ , possibly as function of the set of active servers,
provide maximum stability.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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