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Abstract Two classes of one machine sequencing situations are considered in which each
job corresponds to exactly one player but a player may have more than one job to be
processed, so called RP(repeated player) sequencing situations. In max-RP sequencing sit-
uations it is assumed that each player’s cost function is linear with respect to the maximum
completion time of his jobs, whereas in min-RP sequencing situations the cost functions are
linear with respect to the minimum completion times. For both classes, following explicit
procedures to go from the initial processing order to an optimal order for the coalition of all
players, equal gain splitting rules are defined. It is shown that these rules lead to core ele-
ments of the associated RP sequencing games. Moreover, it is seen that min-RP sequencing
games are convex.

Keywords Cooperative game theory · Sequencing · Equal gain splitting · Core · Convexity

1 Introduction

Scheduling problems were first studied from an interactive cooperative point of view by
Curiel et al. (1989) in the framework of one-machine sequencing with an initial processing
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order on the jobs. Identifying jobs with players and introducing cost functions for the players
dependent on the completion time of their jobs, an associated cooperative game is defined in
which the value of a coalition reflects the maximum cost savings this coalition can achieve
by reordering their jobs from their initial position to a feasible, optimal one. Different types
of sequencing games have been studied in the literature depending on the structure of the
underlying cost functions, the number of machines, further restrictions such as ready times
and due dates, etc. For a survey we refer to Curiel et al. (2002). The common feature in this
stream of literature is the assumption that each job is of interest to exactly one player and
that each player has exactly one job to be processed. An exception is the recent contribution
by Calleja et al. (2006). Here, the latter assumption is dropped, so a job may correspond
to several players and a player may have interest in more than one job. It is shown that
the corresponding sequencing games are balanced if the underlying cost functions satisfy a
specific type of additivity with respect to the initial order.

In the current paper, we focus on the specific subclass of RP (repeated players) sequenc-
ing situations in which (just as in the classical approach) each job corresponds to exactly
one player, but a player may have more than one job to be processed. Moreover, we re-
strict attention to two types of RP sequencing situations and their related games. In max-RP
sequencing situations it is assumed that each player’s cost function is linear with respect to
the maximum completion time of his jobs, whereas in min-RP sequencing situations the cost
function of a player is linear with respect to the minimum completion time of his jobs. It was
already pointed out in Calleja et al. (2006) that both types of cost functions satisfy the ad-
ditivity condition, so the corresponding games are balanced. Next, we offer two motivating
examples for these types of cost functions.

In a garage, a car may need more than one reparation (change of tires, of oil, etc). Here,
it seems reasonable to assume that each repair job not only has a certain fixed cost but the
owner also incurs variable costs that are proportional to the total time that the car has to
spend in the garage, i.e., to the completion time of the last reparation carried out in the car.
Note that the reparations in the car are complementary since the car cannot leave the garage
until it is completely repaired. Moreover, the different jobs of a player need not be carried
out consecutively due to specific other priority considerations (e.g. first come first served)
the garage may have on the specific individual tasks.

The classrooms of a faculty are equipped with an overhead projector and a beamer. If
one of the devices breaks down, lecturers have to report to the maintenance service for the
device(s) to be repaired, incurring a fixed cost for each reparation. A lecturer needs at least
one of the devices to start the lesson. Hence, when both devices are out of order, there is an
extra variable cost which is proportional to the time that she has to wait until she can start
her lecture, i.e., until one of the devices is fixed. Note that the reparations in this setting are
substitutes since the lecturer can start her lecture as soon as one of the reparations is carried
out.

The contributions of the current paper are the following. For both max-RP and min-RP
sequencing situations, explicit procedures are devised to go from the initial order on all
jobs to an optimal one. Following the steps of this procedure an EGS (equal gain splitting)
mechanism is adopted to construct an allocation rule for the maximal cost savings of the
grand coalition. It is shown that this EGS-allocation is in the core of the associated game,
and that it in fact is PMAS-extendable (cf. Sprumont 1990). In particular, this implies that
for calculating a core allocation one does not need the data on all coalitional values. In
addition, it is shown that min-RP sequencing games are convex.

The structure of the paper is as follows. Section 2 recalls some basic game theoretic
notions and provides the formal definition of RP sequencing situations and related games.
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Section 3 considers max-RP sequencing whereas Sect. 4 analyzes min-RP sequencing. An
appendix contains the lemmas used in the proofs of the main results.

2 Preliminaries

A cooperative TU-game in characteristic function form is an ordered pair (N,v), where N is
a finite set (the set of players) and v : 2N → R satisfies v(∅) = 0. The core of a cooperative
TU-game (N,v) is defined by

Core(v) =
{
x ∈ R

N
∣∣∣∑

i∈N

xi = v(N),
∑
i∈S

xi ≥ v(S) for all S ∈ 2N

}
,

i.e., the core is the set of efficient allocations of v(N) such that there is no coalition with an
incentive to split off. A game is said to be balanced (see Bondareva 1963 and Shapley 1967)
if the core is nonempty.

An important subclass of balanced games is the class of convex games (Shapley 1971).
A game (N,v) is said to be convex if

v(T ∪ {i}) − v(T ) ≥ v(S ∪ {i}) − v(S)

for every i ∈ N and for every S ⊂ T ⊂ N \ {i}. It is known that convex games are totally
balanced and that the core is the convex hull of all marginal vectors.

A sequencing situation is a 4-tuple (N,σ0,p, c), where N = {1, . . . , n} is the set of
players (or jobs), σ0 : N → {1, . . . , n} is a bijection that represents the initial order on the
jobs (job i is in position σ0(i)), p ∈ R

N is the vector of processing times of the jobs, and
c = (ci)i∈N is the vector of cost functions of the players depending on the completion time
of their jobs, so ci : [0,+∞) → R. Costs are assumed to be linear, i.e., ci(t) = αit with
αi > 0. Alternatively, a sequencing situation (N,σ0,p, c) is denoted by (N,σ0,p,α) with
α ∈ R

N++. Let Π(N) denote the set of all possible orders of the jobs. For σ ∈ Π(N), σ(k) in-
dicates the position in which job k is processed. Sometimes we denote σ = (σ (1) . . . σ (n)).
Given an order σ ∈ Π(N) the jobs are processed in a semi-active way, i.e., there is no job
that could be processed earlier without altering the processing order. Therefore, the comple-
tion time of player i is given by Cσ

i = ∑
j∈N :σ(j)≤σ(i) pj . For simplicity we denote ci(C

σ
i )

by ci(σ ).
Given a sequencing situation the associated sequencing game, (N,vC), is defined by

vC(S) = max
σ∈F(S)

(cS(σ0) − cS(σ ))

for every S ⊂ N , where, for all σ ∈ Π(N), cS(σ ) = ∑
i∈S ci(σ ) and F(S) is the set of

feasible orders for coalition S. An order σ ∈ Π(N) is said to be feasible for S if Pj (σ ) =
Pj (σ0) for all j ∈ N \ S, where Pj (σ ) = {k ∈ N | σ(k) < σ(j)} is the set of predecessors
of j with respect to σ . Note that feasible orders only allow reordering within connected
components of S with respect to σ0. The set of connected components of S with respect
to σ0 is denoted S/σ0. Assuming σ0 = (1 2 . . . n) the associated coalitional values can be
expressed as

vC(S) =
∑

T ∈S/σ0

∑
i,j∈T : i<j

gij
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for every S ⊂ N , where gij = max{0, αjpi − αipj } is the cost savings that players i and
j can achieve by means of a neighbor switch when i is in front of j (cf. Curiel et al.
1989).

Since an optimal order for the grand coalition can be derived from the initial order by
non-negative neighbor switches, a natural allocation rule in sequencing situations is pro-
vided by the equal gain splitting rule or EGS rule introduced in Curiel et al. (1989), where
the cost savings attained by neighbor switches are divided equally among the players in-
volved. Formally,

EGSi (N,σ0,p,α) = 1

2

i−1∑
j=1

gji + 1

2

n∑
j=i+1

gij

for every i ∈ N .
Sequencing games are convex and the EGS rule provides a core allocation.
An RP (repeated players) sequencing situation is a 6-tuple (N,M,J,σ0,p, c), where

N = {1, . . . , n} is the set of players, M is the finite set of jobs, J : N � M is a cor-
respondence where J (i) denotes the nonempty set of jobs in which player i is involved
with the extra condition that

⋃
i∈N J (i) = M and J (i) ∩ J (j) = ∅ for all i, j ∈ N , i �= j ,

σ0 : M → {1, . . . , |M|} is a bijection representing the initial order on the jobs, p ∈ R
M is

the vector of processing times of the jobs, and c = (ci)i∈N is the vector of cost functions as-
sociated to the players. Let Π(M) denote the set of all bijections σ : M → {1, . . . , |M|}.
Given an order σ ∈ Π(M) it is assumed that the jobs are processed in a semi-active
way.

Given an RP sequencing situation (N,M,J,σ0,p, c) the associated RP sequencing game
(N,v) is defined by

v(S) = max
σ∈A(S)

(cS(σ0) − cS(σ ))

for every S ⊂ N , where for all σ ∈ Π(M), cS(σ ) = ∑
i∈S ci(σ ) and A(S) is the set of

admissible orders for coalition S. An order σ ∈ Π(M) is said to be admissible for S if
Pd(σ ) = Pd(σ0) for all d /∈ ⋃

i∈S J (i), where Pd(σ ) = {e ∈ M | σ(e) < σ(d)} is the set
of predecessors of job d with respect to σ . Note that if an order is admissible for S, the
completion time of each job belonging to a player in N \S does not change. Moreover, only
within connected components of

⋃
i∈S J (i) w.r.t. σ0, jobs can be reordered.

It has been shown in Calleja et al. (2006) that RP sequencing games are balanced if
the cost functions of the players are “additive with respect to the initial order”. Formally,
a cost function ci is additive with respect to σ0 if for all L1,L2 ⊂ M with L1 ∩ L2 = ∅, all
ρ ∈ F(L1) and τ ∈ F(L2), it follows that

ci(σ0) − ci(π) = (ci(σ0) − ci(ρ)) + (ci(σ0) − ci(τ )),

where π ∈ F(L1 ∪ L2) is such that

π(d) =
⎧⎨
⎩

ρ(d) if d ∈ L1,

τ (d) if d ∈ L2,

σ0(d) if d ∈ M \ (L1 ∪ L2).

Here, F(K) denotes the set of feasible orders for K ⊂ M and an order σ ∈ Π(M) of jobs is
called feasible for K ⊂ M if Pd(σ ) = Pd(σ0) for all d ∈ M\K .
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3 Max-RP sequencing

In this section we consider max-RP sequencing situations and associated games.
A max-RP sequencing situation is an RP sequencing situation where ci(σ ) =

αi maxd∈J (i){Cσ
d } for some αi > 0, for every i ∈ N and all σ ∈ Π(M). Usually, a max-

RP sequencing situation like this is described by (N,M,J,σ0,p,α) with α ∈ R
N++. It has

been pointed out in Calleja et al. (2006) that the above type of cost functions satisfies the
additivity condition needed for balancedness of the associated sequencing game.

Given an order σ ∈ Π(M), we denote by lσi ∈ M the job of i ∈ N that is processed in last
position according to σ , i.e., σ(lσi ) ≥ σ(d) for all d ∈ J (i). Note that an order σ ∈ Π(M)

induces an order σ̄ ∈ Π(N) on the players in the following way: σ̄ (i) < σ̄ (j) if and only
if σ(lσi ) < σ(lσj ). Throughout this section we assume w.l.o.g. that σ0 ∈ Π(M) is such that
σ̄0 = (1 2 . . . n) and we write li = l

σ0
i . Hence, i < j if and only if σ0(li) < σ0(lj ).

We say that the jobs of player i are clustered according to an order σ ∈ Π(M) if they are
processed consecutively, i.e., if d1, d2 ∈ J (i) and σ(d1) < σ(e) < σ(d2) imply that e ∈ J (i).
It is easy to see that all jobs of a player are clustered in an optimal order for max-RP sequenc-
ing situations. To derive an optimal order on all jobs, we next turn to classical sequencing:
the optimal order of the clusters is in non-decreasing order of urgencies (cf. Smith 1956).
Here, the urgency of a cluster obviously is the quotient of cost coefficient αi of the corre-
sponding player and the processing time of the cluster which is given by

∑
d∈J (i) pd .

An explicit procedure to derive an optimal order for M from the initial order σ0 by non-
negative switches is described in the following way.

First, we put all the jobs of player n at the back of the queue1. After this, all jobs of
player n − 1 are clustered in front of the jobs of player n, and so on. Note that the cost
savings induced on i by clustering the jobs of j (i < j ) during this step are given by: bN

ij =
αi

∑
e∈J (j): σ0(e)<σ0(li )

pe .
Second, consider the (remaining) classical sequencing situation (on the constructed clus-

ters) given by (N, σ̄0, q,α) with q ∈ R
N such that qi = ∑

d∈J (i) pd . The cost savings in this
step can be obtained by non-negative (cluster) neighbor switches and equal

∑
i,j∈N : i<j gN

ij

with gN
ij = max{0, αjqi − αiqj }.

Summarizing, the total maximal cost savings obtainable by means of cooperation are

v(N) =
n−1∑
i=1

n∑
j=i+1

r(i, j,N),

where

r(i, j,N) := bN
ij + gN

ij

for all i, j ∈ N with i < j .
Adopting the equal gain splitting mechanism in the procedure above we can define the

max-EGS rule in the following way:

max-EGSi (N,M,J,σ0,p,α) = 1

2

n∑
j=i+1

r(i, j,N) + 1

2

i−1∑
j=1

r(j, i,N).

1Remember that we assume σ0(ln) > σ0(li ) for all i ∈ N , i �= n.
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Next, we show that the max-EGS rule leads to core elements of the associated max-RP
sequencing game. With this purpose, we first give an explicit construction and expression for
coalitional values in a max-RP sequencing game similar to the derivation of v(N) provided
above. For this, we need some extra notation. Given S ⊂ N let [J (S)/σ0] = {U1, . . . ,Uu} be
the set of maximal connected components of the set of jobs J (S) such that Ur ∩ {li}i∈S �=
∅ for all r . The collection {U1, . . . ,Uu} is called the induced job collection of S by σ0.
Associated to each Ur we define Sr by Sr := {i ∈ S | li ∈ Ur}. Observe that {S1, . . . , Su} is a
partition of S. We call this partition the induced partition of S by σ0.

Now, consider i ∈ Sr and j ∈ S with i < j . We denote by b
Sr
ij the cost savings induced

on i when moving the jobs of player j that are in Ur to be clustered to the back, i.e.,
b

Sr
ij = αi

∑
e∈J (j)∩Ur

σ0(e)<σ0(li )
pe .

Moreover, with i, j ∈ Sr and i < j we denote by g
Sr
ij the cost savings obtainable by

means of a neighbor switch between the clusters corresponding to i and j within Ur , i.e.,
g

Sr
ij = max{0, αj

∑
d∈J (i)∩Ur

pd − αi

∑
e∈J (j)∩Ur

pe}.
For i, j ∈ S with i < j we define

r(i, j, S) =
{

b
Sr
ij + g

Sr
ij , if i, j ∈ Sr ;

b
Sr
ij , if i ∈ Sr, j �∈ Sr .

Note that b
Sr
ij and g

Sr
ij are nonnegative and therefore r(i, j, S) is nonnegative.

It is readily established that the coalitional value v(S) in the corresponding max-RP
sequencing game is given by

v(S) =
∑
i∈S

∑
j∈S: i<j

r(i, j, S).

Theorem 3.1 For any max-RP sequencing game, the max-EGS rule provides a core element.

Proof Let (N,M,J,σ0,p,α) be a max-RP sequencing situation and let (N,v) be the asso-
ciated max-RP sequencing game.

Efficiency follows by definition. Next, we show that the rule is stable. Let S ⊂ N , then
∑
i∈S

max-EGSi (N,M,J,σ0,p,α)

=
∑
i∈S

[
1

2

n∑
j=i+1

r(i, j,N) + 1

2

i−1∑
j=1

r(j, i,N)

]

=
∑
i∈S

∑
j∈S: i<j

r(i, j,N) + 1

2

∑
i∈S

∑
j∈N\S: i<j

r(i, j,N) + 1

2

∑
i∈S

∑
j∈N\S: j<i

r(j, i,N)

≥
∑
i∈S

∑
j∈S: i<j

r(i, j,N) ≥
∑
i∈S

∑
j∈S: i<j

r(i, j, S) = v(S),

where the last inequality follows by Lemma 5.1. �

Note that in fact the max-EGS core allocation is PMAS extendable (cf. Sprumont 1990)
by considering the max-EGS allocations for all subgames, and the use of Lemma 5.1.

In general, max-RP sequencing games need not be convex (cf. Example 3.7 in Calleja
et al. 2006).
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4 Min-RP sequencing

In this section we analyze min-RP sequencing situations and related games.
A min-RP sequencing situation is an RP sequencing situation where ci(σ ) =

αi mind∈J (i){Cσ
d } for some αi > 0, for every i ∈ N and all σ ∈ Π(M). Usually, a min-RP

sequencing situation like this is described by (N,M,J,σ0,p,α) with α ∈ R
N++. It has been

pointed out in Calleja et al. (2006) that also this type of cost functions satisfies the additivity
condition needed for balancedness of the associated sequencing game.

Given an order σ ∈ Π(M), we denote by f σ
i ∈ M the job of i ∈ N that is processed in

first position according to σ , i.e., σ(f σ
i ) ≤ σ(d) for all d ∈ J (i). Note that an order σ on

the jobs induces an order σ̃ ∈ Π(N) on the players in the following way: σ̃ (i) < σ̃ (j) if
and only if σ(f σ

i ) < σ(f σ
j ). Throughout this section we assume w.l.o.g. that σ0 is such that

σ̃0 = (1 2 . . . n) and we write fi = f
σ0
i . Hence, i < j if and only if σ0(fi) < σ0(fj ).

It is easy to see that for min-RP sequencing situations in every optimal order on M the
first n jobs belong to different players. Moreover, the first job of a player is one of its jobs
with minimum processing time. Finally, the first n jobs are processed in decreasing order
with respect to their urgencies.

An optimal order can be constructed from σ0 by non-negative switches in the following
way. First, we put all the jobs of player 1 that are not f1 and are in front of fn at the back
of the queue2. Second, we do the same with all the jobs of player 2 that are not f2 and are
in front of fn, and so on. Once we finish this step, the first n jobs of the queue belong to
different players. Observe that the cost savings induced on j by moving jobs of player i

(i < j ) to the back are given by: γ N
ij = αj

∑
d∈J (i)\{fi }: σ0(d)<σ0(fj ) pd .

Next, we switch fi
3 with the job of player i that has shortest processing time, if necessary,

in the order 1,2, . . . , n. The cost savings induced on j by the internal job switch of i (with
i ≤ j ) in this step are: δN

ij = αj (pfi
− mind∈J (i){pd}).

Now, consider the (remaining) classical sequencing situation (on these first n jobs) given
by (N, σ̃0, q,α) with q ∈ R

N such that qi = mind∈J (i) pd . Clearly, the maximal cost savings
in this third step equal

∑
i,j∈N : i<j gN

ij with gN
ij = max{0, αjqi − αiqj }. Summarizing, the

total maximal cost savings obtainable by means of cooperation are

v(N) =
n−1∑
i=1

n∑
j=i+1

s(i, j,N) +
n∑

i=1

s(i,N),

where

s(i,N) = δN
ii

and

s(i, j,N) = γ N
ij + δN

ij + gN
ij

for all i, j ∈ N with i < j .

2Remember that we have assumed that σ0(f1) < σ0(fj ) for all j ∈ N , j �= 1.
3Note that for the order σ ∈ Π(M) derived of the first step we have that fi = f σ

i
for all i ∈ N .
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Adopting the equal gain splitting mechanism in the procedure above, we can define the
min-EGS rule in the following way

min-EGSi (N,M,J,σ0,p,α) = 1

2

i−1∑
j=1

s(j, i,N) + 1

2

n∑
j=i+1

s(i, j,N) + s(i,N).

The min-EGS rule leads to core allocations of the associated min-RP sequencing games.
To show this, we first give an explicit construction and expression for coalitional values
in a min-RP sequencing game similarly to max-RP games. For this, we first introduce
some notation. Given S ⊂ N let [J (S)/σ0] = {U1, . . . ,Uu} be the set of maximal con-
nected components of J (S) such that Ur ∩{fi}i∈S �= ∅ for all r . The collection {U1, . . . ,Uu}
is called the induced job collection of S by σ0. Associated to each Ur we define Sr by
Sr := {i ∈ S | fi ∈ Ur}. Observe that {S1, . . . , Su} is a partition of S. We call this partition
the induced partition of S by σ0. Note that {U1, . . . ,Uu} and {S1, . . . , Su} have a similar
interpretation than in max-RP sequencing situations by replacing li by fi . However, we use
the same notation since there is no reason for misinterpretation.

Now, consider i ∈ Sr , j ∈ St with i < j . We denote by γ
St

ij the cost savings that player j

obtains when the jobs of player i within Ut (unequal to fi ) that are in front of fj are moved
to the back of Ut , i.e., γ

St

ij = αj

∑
d∈(J (i)\{fi })∩Ut

σ0(d)<σ0(fj )

pd .

Next, consider i, j ∈ Sr with i ≤ j . With δ
Sr
ij we symbolize the cost savings that player

j obtains when player i switches its first job with the one with minimum processing time
in Ur , i.e., δ

Sr
ij = αj (pfi

− mind∈J (i)∩Ur {pd}).
Finally, take i, j ∈ Sr with i < j . By g

Sr
ij we denote the cost savings obtainable by means

of a neighbor switch between the two jobs of players i and j within Ur with shortest process-
ing times, i.e., g

Sr
ij = max{0, αj mind∈J (i)∩Ur {pd} − αi mine∈J (j)∩Ur {pe}}.

Let S ⊂ N . For i, j ∈ S and i < j define

s(i, j, S) =
{

γ
Sr
ij + δ

Sr
ij + g

Sr
ij , if i, j ∈ Sr ;

γ
St

ij , if i ∈ Sr, j ∈ St , and t �= r;

and for i ∈ Sr ,

s(i, S) = δ
Sr
ii .

Note that γ
Sr
ij , δ

Sr
ij , g

Sr
ij , and δ

Sr
ii are nonnegative and therefore s(i, j, S) and s(i, S) are also

nonnegative.
Then, it readily follows that the coalitional value v(S) in the corresponding min-RP se-

quencing game is given by

v(S) =
∑
i∈S

∑
j∈S:i<j

s(i, j, S) +
∑
i∈S

s(i, S).

Theorem 4.1 For any min-RP sequencing game, the min-EGS rule provides a core element.

Proof Let (N,M,J,σ0,p,α) be a min-RP sequencing situation and let (N,v) be the asso-
ciated min-RP sequencing game.
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Efficiency follows by definition. Next, it is shown that the rule is stable. Let S ⊂ N ,
then ∑

i∈S

min-EGSi (N,M,J,σ0,p,α)

=
∑
i∈S

[
1

2

i−1∑
j=1

s(j, i,N) + 1

2

n∑
j=i+1

s(i, j,N) + s(i,N)

]

=
∑
i∈S

∑
j∈S: j<i

s(j, i,N) + 1

2

∑
i∈S

∑
j∈N\S: j<i

s(j, i,N)

+ 1

2

∑
i∈S

∑
j∈N\S: i<j

s(i, j,N) +
∑
i∈S

s(i,N)

≥
∑
i∈S

∑
j∈S: j<i

s(j, i,N) +
∑
i∈S

s(i,N)

≥
∑
i∈S

∑
j∈S: j<i

s(j, i, S) +
∑
i∈S

s(i, S) = v(S),

where the second inequality follows by Lemmas 5.2 and 5.3. �

Also here, note that in fact the min-EGS core allocation is PMAS extendable by consid-
ering the min-EGS allocations for all subgames and the use of Lemmas 5.2 and 5.3.

Theorem 4.2 Min-RP sequencing games are convex.

Proof Let (N,M,J,σ0,p,α) be a min-RP sequencing situation and let (N,v) be the as-
sociated min-RP sequencing game. Note that the characteristic function of the game can
be written as the sum of two characteristic functions: v(S) = w(S) + u(S) with w(S) =∑

i∈S

∑
j∈S:i<j s(i, j, S) and u(S) = ∑

i∈S s(i, S). We show that both (N,u) and (N,w) are
convex and therefore that (N,v) is convex.

First, we prove that (N,u) is convex. We have to show that

u(S ∪ {j}) − u(S) ≤ u(T ∪ {j}) − u(T )

for every j ∈ N and every S ⊂ T ⊂ N \ {j}.
Let S ⊂ T and take j ∈ N \ T . Since,

u(S ∪ {j}) − u(S) =
∑
k∈S

(
s(k, S ∪ {j}) − s(k, S)

) + s(j, S ∪ {j})

and

u(T ∪ {j}) − u(T ) =
∑
k∈T

(
s(k, T ∪ {j}) − s(k, T )

) + s(j, T ∪ {j})

it is sufficient to show that the following three inequalities are satisfied:

s(k, S ∪ {j}) − s(k, S) ≤ s(k, T ∪ {j}) − s(k, T ) for every k ∈ S, (1)

0 ≤ s(k, T ∪ {j}) − s(k, T ) for every k ∈ T \ S, (2)

s(j, S ∪ {j}) ≤ s(j, T ∪ {j}). (3)
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Statement (1) is true by convexity of s(∗, ·) (Lemma 5.4) and statements (2) and (3) are true
by monotonicity of s(∗, ·) (Lemma 5.2).

Secondly, we show that (N,w) is convex. We have to show that

w(S ∪ {j}) − w(S) ≤ w(T ∪ {j}) − w(T )

for every j ∈ N and every S ⊂ T ⊂ N \ {j}.
Let S ⊂ T and take j ∈ N \ T . Since

w(S ∪ {j}) − w(S) =
∑
k∈S

∑
i∈S:k<i

(
s(k, i, S ∪ {j}) − s(k, i, S)

)

+
∑

k∈S:k<j

s(k, j, S ∪ {j}) +
∑

i∈S:j<i

s(j, i, S ∪ {j})

and

w(T ∪ {j}) − w(T ) =
∑
k∈T

∑
i∈T :k<i

(
s(k, i, T ∪ {j}) − s(k, i, T )

)

+
∑

k∈T :k<j

s(k, j, T ∪ {j}) +
∑

i∈T :j<i

s(j, i, T ∪ {j})

it is sufficient to show that

s(k, i, S ∪ {j}) − s(k, i, S) ≤ s(k, i, T ∪ {j}) − s(k, i, T )

for every k, i ∈ S, with k < i, (4)

0 ≤ s(k, i, T ∪ {j}) − s(k, i, T )

for every k ∈ T \ S, i ∈ T or k ∈ S, i ∈ T \ S, with k < i, (5)

s(k, j, S ∪ {j}) ≤ s(k, j, T ∪ {j}) for every k ∈ S, k < j, (6)

s(j, i, S ∪ {j}) ≤ s(j, i, T ∪ {j}) for every i ∈ S, j < i, (7)

0 ≤ s(k, j, T ∪ {j}) for every k ∈ T \ S, k < j, (8)

0 ≤ s(j, i, T ∪ {j}) for every i ∈ T \ S, j < i, (9)

Statement (4) is true by convexity of s(∗,∗, ·) (Lemma 5.5). Statements (5), (6), and (7) are
true by monotonicity of s(∗,∗, ·) (Lemma 5.3). Finally, statements (8) and (9) follow since
s(∗,∗, ·) is nonnegative. �

Appendix

Lemma 5.1 Let S ⊂ T ⊂ N . For every i, j ∈ S with i < j , r(i, j, S) ≤ r(i, j, T ).

Proof Let (N,M,J,σ0,p,α) be a max-RP sequencing situation and take i, j ∈ S with
i < j . Let i ∈ Sr ⊂ Tρ , with Sr and Tρ components within the induced partition of S and T ,
respectively. Moreover, let Ur and Vρ be the correspondent components within the job col-
lection associated to Sr and Tρ , respectively. Note that Ur ⊂ Vρ . We distinguish two cases.
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Case 1: j �∈ Sr . Here,

r(i, j, S) = b
Sr
ij = αi

∑
e∈J (j)∩Ur
σ0(e)<σ0(li )

pe ≤ αi

∑
e∈J (j)∩Vρ

σ0(e)<σ0(li )

pe = b
Tρ

ij ≤ r(i, j, T ),

where the first inequality follows because Ur ⊂ Vρ and the second inequality follows by
definition of r(i, j, T ).

Case 2: j ∈ Sr . Here, two subcases are considered.

Subcase 2.1: g
Sr
ij = 0. Then

r(i, j, S) = b
Sr
ij + g

Sr
ij = αi

∑
e∈J (j)∩Ur
σ0(e)<σ0(li )

pe ≤ αi

∑
e∈J (j)∩Vρ

σ0(e)<σ0(li )

pe = b
Tρ

ij ≤ r(i, j, T ).

Subcase 2.2: g
Sr
ij > 0. Then li , lj ∈ Ur and g

Sr
ij = αj

∑
d∈J (i)∩Ur

pd − αi

∑
e∈J (j)∩Ur

pe .
Then,

r(i, j, T ) = b
Tρ

ij + g
Tρ

ij ≥ αi

∑
e∈J (j)∩Vρ

σ0(e)<σ0(li )

pe + αj

∑
d∈J (i)∩Vρ

pd − αi

∑
e∈J (j)∩Vρ

pe

= αi

∑
e∈J (j)∩Ur
σ0(e)<σ0(li )

pe + αi

∑
e∈J (j)∩(Vρ\Ur )

pe + αj

∑
d∈J (i)∩Vρ

pd

− αi

∑
e∈J (j)∩Ur

pe − αi

∑
e∈J (j)∩(Vρ\Ur )

pe

= b
Sr
ij + αj

∑
d∈J (i)∩Vρ

pd − αi

∑
e∈J (j)∩Ur

pe

≥ b
Sr
ij + αj

∑
d∈J (i)∩Ur

pd − αi

∑
e∈J (j)∩Ur

pe

= b
Sr
ij + g

Sr
ij = r(i, j, S)

where the first inequality follows by definition of g
Tρ

ij and the second equality follows
because li , lj ∈ Ur , σ0(li) < σ0(lj ) and then {e ∈ J (j) ∩ (Vρ \ Ur) | σ0(e) < σ0(li)} =
J (j) ∩ (Vρ \ Ur). �

Lemma 5.2 Let S ⊂ T ⊂ N . For every i ∈ S, s(i, S) ≤ s(i, T ).

Proof Let (N,M,J,σ0,p,α) be a min-RP sequencing situation and let i ∈ S. Let i ∈ Sr ⊂
Tρ , with Sr and Tρ components within the induced partition of S and T , respectively. More-
over, let Ur and Vρ be the components within the job collection associated to Sr and Tρ ,
respectively. Note that Ur ⊂ Vρ . Hence,

s(i, S) = δ
Sr
ii = αi

(
pfi

− min
d∈J (i)∩Ur

{pd}
)

≤ αi

(
pfi

− min
d∈J (i)∩Vρ

{pd}
)

= δ
Tρ

ii = s(i, T ). �

Lemma 5.3 Let S ⊂ T ⊂ N . For every i, j ∈ S with i < j , s(i, j, S) ≤ s(i, j, T ).
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Proof Let (N,M,J,σ0,p,α) be a min-RP sequencing situation and let i, j ∈ S. Let
i ∈ Sr ⊂ Tρ , with Sr and Tρ components within the induced partition of S and T , respec-
tively. Moreover, let Ur and Vρ be the components within the job collection associated to Sr

and Tρ , respectively. Note that Ur ⊂ Vρ .

Case 1: j �∈ Sr . Let j ∈ Sr∗ ⊂ Tρ∗ (with Ur∗ ⊂ Vρ∗ the associated components within the

job collection). In this case s(i, j, S) = γ
Sr∗
ij .

s(i, j, S) = γ
Sr∗
ij = αj

∑
d∈J (i)∩(Ur∗ \{fi })

σ0(d)<σ0(fj )

pd ≤ αj

∑
d∈J (i)∩(Vρ∗ \{fi })

σ0(d)<σ0(fj )

pd = γ
Tρ∗
ij ≤ s(i, j, T ).

Case 2: j ∈ Sr ⊂ Tρ . Here, s(i, j, S) = γ
Sr
ij + δ

Sr
ij + g

Sr
ij and s(i, j, T ) = γ

Tρ

ij + δ
Tρ

ij + g
Tρ

ij .
We distinguish two subcases.

Subcase 2.1: g
Sr
ij = 0. Hence,

s(i, j, S) = γ
Sr
ij + δ

Sr
ij + g

Sr
ij = γ

Sr
ij + δ

Sr
ij

= αj

∑
d∈J (i)∩(Ur \{fi })

σ0(d)<σ0(fj )

pd + αj

(
pfi

− min
d∈J (i)∩Ur

{pd}
)

≤ αj

∑
d∈J (i)∩(Vρ\{fi })

σ0(d)<σ0(fj )

pd + αj

(
pfi

− min
d∈J (i)∩Vρ

{pd}
)

= γ
Tρ

ij + δ
Tρ

ij ≤ γ
Tρ

ij + δ
Tρ

ij + g
Tρ

ij = s(i, j, T ).

Subcase 2.2: g
Sr
ij > 0. In this case, g

Sr
ij = αj mine∈J (i)∩Ur {pe} − αi mind∈J (j)∩Ur {pd} by

definition. Therefore,

s(i, j, S) = γ
Sr
ij + δ

Sr
ij + g

Sr
ij

= αj

∑
d∈J (i)∩(Ur \{fi })

σ0(d)<σ0(fj )

pd + αj

(
pfi

− min
d∈J (i)∩Ur

{pd}
)

+ αj min
d∈J (i)∩Ur

{pd} − αi min
e∈J (j)∩Ur

{pe}

= αj

∑
d∈J (i)∩(Ur \{fi })

σ0(d)<σ0(fj )

pd

+ αjpfi
− αi min

e∈J (j)∩Ur

{pe}

≤ αj

∑
d∈J (i)∩(Vρ\{fi })

σ0(d)<σ0(fj )

pd + αjpfi
− αi min

e∈J (j)∩Vρ

{pe}

≤ γ
Tρ

ij + δ
Tρ

ij + g
Tρ

ij = s(i, j, T ),
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where the first and second equalities follow by definition and the second inequality follows
by definition of g

Tρ

ij . �

Lemma 5.4 Let S ⊂ T ⊂ N . For every j ∈ N \ T and every i ∈ S,

s(i, S ∪ {j}) − s(i, S) ≤ s(i, T ∪ {j}) − s(i, T ).

Proof Let (N,M,J,σ0,p,α) be a min-RP sequencing situation. Let i ∈ S and j ∈
N \ T . Let i ∈ Sr ⊂ Tρ , with Sr and Tρ components within the induced partition of S and T ,
respectively. Moreover, let Ur and Vρ be the components within the job collection associ-
ated to Sr and Tρ , respectively. Let i ∈ S

(j)
t ⊂ T (j)

τ , with S
(j)
t and T (j)

τ components within
the induced partition of S ∪ {j} and T ∪ {j}, respectively. Besides, let U

(j)
t and V (j)

τ be
the components within the job collection associated to S

(j)
t and T (j)

τ , respectively. Note that
Sr ⊂ S

(j)
t ⊂ T (j)

τ , Sr ⊂ Tρ ⊂ T (j)
τ , Ur ⊂ U

(j)
t ⊂ V (j)

τ and Ur ⊂ Vρ ⊂ V (j)
τ .

Define fol(Ur) to be the job that is processed in position maxe∈Ur {σ0(e)} + 1. Note that
fol(Ur) may not exist. We distinguish two cases.

Case 1: fol(Ur) does not belong to j . Here, we face the following situation:

where m ∈ S and the grid job either belongs to a player in N \ {j} or represents the end
of the queue. In this case, J (i) ∩ Ur = J (i) ∩ U

(j)
t and the inequality comes down to 0 ≤

s(i, T ∪ {j}) − s(i, T ), which is true by Lemma 5.2.

Case 2: fol(Ur) belongs to j . In this case, we face the following situation:

where m ∈ S. As a result, J (i) ∩ Ur = J (i) ∩ Vρ and the inequality boils down to s(i, S ∪
{j}) ≤ s(i, T ∪ {j}), which follows by Lemma 5.2. �

Lemma 5.5 Let S ⊂ T ⊂ N . For every k ∈ N \ T and every i, j ∈ S with i < j ,

s(i, j, S ∪ {k}) − s(i, j, S) ≤ s(i, j, T ∪ {k}) − s(i, j, T ).

Proof Let (N,M,J,σ0,p,α) be a min-RP sequencing situation. Let k ∈ N \ T and i, j ∈ S

with i < j . Let i ∈ Sr ⊂ Tρ , with Sr and Tρ components within the induced partition of S

and T , respectively. Moreover, let Ur and Vρ be the components within the job collection
associated to Sr and Tρ , respectively. Let i ∈ S

(k)
t ⊂ T (k)

τ , with S
(k)
t and T (k)

τ components
within the induced partition of S ∪ {k} and T ∪ {k}, respectively. Besides, let U

(k)
t and V (k)

τ

be the components within the job collection associated to S
(k)
t and T (k)

τ , respectively. Note
that Sr ⊂ S

(k)
t ⊂ T (k)

τ , Sr ⊂ Tρ ⊂ T (k)
τ , Ur ⊂ U

(k)
t ⊂ V (k)

τ and Ur ⊂ Vρ ⊂ V (k)
τ .

In order to show the statement, we study two cases.

Case 1: j ∈ Sr . Define fol(Ur) to be the job that is processed in position maxe∈Ur {σ0(e)}+
1. Note that fol(Ur) may not exist. We distinguish two subcases.
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Subcase 1.1: fol(Ur) does not belong to k. In this case we face the following situation:

where m ∈ S and the grid job either belongs to a player in N \ {k} or represents the end of
the queue. Here, J (i) ∩ Ur = J (i) ∩ U

(k)
t and the inequality comes down to 0 ≤ s(i, j, T ∪

{k}) − s(i, j, T ), which follows by Lemma 5.3.

Subcase 1.2: fol(Ur) belongs to k. In this case we face the following situation:

where m ∈ S. As a result, J (i) ∩ Ur = J (i) ∩ Vρ and the inequality boils down to s(i, j, S ∪
{k}) ≤ s(i, j, T ∪ {k}), which is true by Lemma 5.3.

Case 2: j �∈ Sr , j ∈ Sr∗ ⊂ Tρ∗ (j ∈ S
(k)

t∗ ⊂ T
(k)

τ∗ ).
Define pred(Ur∗) to be the job that is processed in position mine∈Ur∗ {σ0(e)} − 1. We

distinguish two subcases.

Subcase 2.1: pred(Ur∗) does not belong to k. In this case we face the following situation:

where m ∈ S and the grid job belongs to a player in N \{k}. Here, {e ∈ J (i)∩Ur∗ : e < fj } =
{e ∈ J (i)∩U

(k)

t∗ : e < fj } and the inequality comes down to 0 ≤ s(i, j, T ∪ {k})− s(i, j, T ),
which follows by Lemma 5.3.

Subcase 2.2: pred(Ur∗) belongs to k. In this case we face the following situation:

where m ∈ S. As a result, {e ∈ J (i) ∩ Ur∗ : e < fj } = {e ∈ J (i) ∩ Vρ∗ : e < fj } and the
inequality boils down to s(i, j, S ∪ {k}) ≤ s(i, j, T ∪ {k}), which is true by Lemma 5.3. �
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