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Molecular differentiation and specialization of vascular beds
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Abstract Transport in the large and complex bodies of

vertebrate organisms is mediated by extensive and highly

branched tubular networks that are formed by endothelial

cells. Blood vessels are responsible for systemic circula-

tion, while the lymphatic vasculature drains extravasated

plasma, proteins, particles, and cells from the interstitium.

Endothelial cells of blood vessels and lymphatic vessels

can be distinguished by the expression of certain molecular

markers, which accompany or even contribute to functional

and morphological differences. Even within the blood

vessel network, some molecules and pathways selectively

mark the endothelium of arteries, veins and capillaries and

are thought to contribute to the differentiation of these

vessels. Moreover, microvessels can acquire organ-specific

specialization in response to local tissue-derived signals.

This review summarizes molecular markers and pathways

that are specifically expressed in the endothelium of certain

vascular beds and vessel types. Special attention will be

given to known functional roles in the morphogenesis of

these vessels.
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Introduction

Until the late 90s, it was thought that the characteristic

features of arteries and veins were controlled by hemody-

namic forces, such as blood pressure and differences in

oxygenation. This idea was first challenged about a decade

ago with the description of the differential expression of

ephrin-B2 and of its receptor, EphB4, in embryonic arterial

and venous cells, respectively, even before the onset of

blood-flow and heart beat [1–3]. Since then, additional

arterial–venous (AV) markers have been identified (Fig. 1).

For instance, arterial cells are known to specifically express

the gap junction proteins Connexin-37 (Cx37) and Conn-

exin-40 (Cx40) [4–6], components of the Notch pathway,

such as Dll4 [7–9], as well as the VEGF co-receptor

Neuropilin-1 (NRP1) [10–12]. On the other hand, venous

cells specifically (or at least predominantly) express certain

members of the VEGF pathway, such as the co-receptor

Neuropilin-2 (NRP2) [10, 13, 14] and receptor VEGFR3

[15–17], COUP-TFII that negatively regulates the Notch

pathway [18], and the Apj receptor [19]. Nevertheless, it is

not fully understood to what extent some of these AV

markers are essential for the determination of the endo-

thelial cell (EC) fate. Indicating multiple functional roles in

the vasculature, several of these molecules are also

expressed in growing capillary beds and control endothelial

sprouting angiogenesis in addition to AV differentiation

(Fig. 1). It also remains to be resolved, to which extent

genetics and hemodynamic forces may act in an integrated,

interdependent fashion. For example, it has been shown

that shear forces derived from blood flow induce the

expression of transcription factors, such as Krüppel-like

factor 2 (Klf2) and of its putative downstream targets [20–

22], thereby establishing a link between hemodynamic and

genetic regulation.
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Cellular processes contribution to AV differentiation

While it has been proposed that ECs committed to the

arterial or venous fate are already molecularly distinct in the

primitive vascular plexus of the yolk sac [1], arteries and

veins are formed from capillary ECs without apparent pre-

determined AV commitment in many other tissues (Fig. 2).

Here, arterial–venous differentiation involves the remodel-

ing of primitive capillary beds into a hierarchial network of

arteries, capillaries, and veins with distinct morphologies

and gene expression profiles. This also indicates that cap-

illary ECs possess a significant amount of plasticity and can

differentiate into venous or arterial endothelial cells

depending on their location within a remodeling vascular

bed. The detailed cellular and molecular processes that are

part of the AV remodeling program are incompletely

understood. However, since arteries have few side branches,

their differentiation from a dense capillary network has to

involve extensive pruning processes. Indeed, retraction

figures, i.e., local thinning and detachment of endothelial

connections, are abundant during early as well as later stages

of arterial morphogenesis [23] (Fig. 2). Signs of pruning can

be also seen around veins and even in capillary beds but are

less frequent when compared with the peri-arterial space. As

a consequence, one characteristic of arteries is that they are

surrounded by an almost completely avascular (i.e., capil-

lary-free) zone, which increases with arterial caliber and

probably indicates sufficient oxygenation of the peri-arterial

tissue [23] (Fig. 2). Another typical feature of arteries is

their slender and straight morphology (Fig. 2), which is

thought to be an adaptation to high flow speeds and local

shear stress [24, 25]. Conversely, developing veins appear

more irregular and have a larger diameter, features which

are also seen as a consequence of local hemodynamic

properties. At the same time, EC proliferation in capillaries

and veins is high when compared with the arterial endo-

thelium, which may, together with cell shape changes

(primarily EC elongation/stretching and parallel alignment),

contribute to the characteristic morphologies of developing

arteries and veins.

Differential recruitment and association of mural cells is

a further feature of the AV differentiation cascade [26–28].

Vascular smooth muscle cell (VSMC) coverage is more

pronounced on arteries and circumferential alignment of

these cells (perpendicular to the direction of blood flow) is

likely to maximize structural support given to the endo-

thelium [29–31]. Certain smooth muscle differentiation

markers, like the protein smoothelin which also directly

contributes to contractility, are expressed in VSMCs of

perinatal arteries but not in veins [32, 33]. Venous smooth

muscle cells are also less abundant and their alignment is

limited. Likewise, certain matrix proteins and elastic fibers

are predominantly or exclusively found in the arterial

vessel wall [34–36]. The factors controlling these distinct
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Fig. 1 Vessel-type specific

markers. Expression of selected

molecular markers in the

endothelium of an artery (red),

vein (blue) and lymphatic

vessels (green). While some

markers are expressed in a

strictly AV-specific fashion,

others extend into the capillary

network and have been linked to

angiogenic growth and

sprouting. VSMCs on blood

vessels (red/blue) and valve-
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covering capillaries (yellow) are
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recruitment and differentiation features remain to be iden-

tified, but known regulators of mural cell recruitment,

such as platelet-derived growth factor B (PDGF-B) and

its receptor PDGFRb [26, 37], TGF-b and its receptors

[38–42], angiopoietin-Tie2 [43–45], and ephrin-B2 [46, 47],

are likely candidates. Likewise, vessel type-specific expres-

sion of Klf2, which is induced in response to blood flow-

derived shear forces, regulates VSMC migration as well as

vessel wall assembly, and thereby integrates hemodynamic

and genetic aspects of arterial differentiation [20–22, 48].

The many roles of VEGF signaling

The VEGF pathway is critical for blood vessel formation,

given its participation in a variety of vascular processes

including EC proliferation, migration, survival, and

arterial–venous cell fate specification [49, 50]. In mammals

there are several VEGF ligands (VEGF-A, B, C, D and E)

and receptors (VEGFR-1 to 3) that display distinct binding

affinities enabling VEGF signaling to yield distinct sig-

naling outputs and biological responses. VEGF signaling is

required for proper arterial–venous specification and,

accordingly, compromised VEGF (vegfaa) expression

leads to an arterial-to-venous cell fate switch in zebrafish

embryo [51]. While this first study focused on the role of

VEGF signaling in the induction of the arterial cell fate,

recent work has shown that the pathway is also required for

the inhibition of the arterial fate in cells committed to

venous differentiation [52]. How is VEGF signaling able to

act on both arterial and venous endothelial cells and trigger

distinct responses in each cell type?

The VEGF receptors show overlapping but distinct

expression patterns. VEGFR2 is expressed in most or all

endothelial cells, whereas VEGFR3 expression seems to be

excluded from arterial cells [16, 17]. Moreover, the VEGF

ligands display different binding affinities to each of the

receptors. VEGF-A is only able to bind receptors VEGFR-

1 and 2, while VEGF-C and D have higher affinities for

VEGFR-3. Additionally, it is known that VEGF-A-medi-

ated signaling is more efficient in activating phospholipase

C-gamma (PKC-c) and its downstream signaling partner,

the mitogen-activated protein kinases (MAPKs) Erk1 and

2. In contrast, VEGF-D induces a strong activation of the

protein kinase Akt through phosphatidylinositol 3-kinase

(PI3K) [53]. The ligand VEGF-C is a potent activator of

both MAPK and Akt [54].

Recent studies in zebrafish have shown that these two

downstream targets of VEGF signaling, PKC-c/ERK and

PI3K/Akt, have distinct roles in arterial [55, 56] and

venous differentiation [52]. PLC-c1/Erk signaling induces

proliferation and specification of arterial endothelial cells

[55, 57], while PI3-K/Akt signaling inhibits PKC-c/MAPK

activation in cell culture and in zebrafish and thereby

blocks the acquisition of the arterial cell fate [52]. Thus,

the VEGF pathway participates in arterial–venous specifi-

cation by differentially regulating the activation of

downstream targets in arterial and venous cells.

Despite the striking evidence for distinct functional roles

of VEGF-triggered signaling, it is still difficult to under-

stand how certain downstream signal transduction cascades

get selectively activated in response to VEGF–VEGFR

interactions. Thus, it is likely that additional players, such

as Neuropilin family (NRP) molecules, can further modu-

late the final output of VEGF signaling. NRP1 and NRP2

are transmembrane glycoproteins that function as non-

signal transducing co-receptors of VEGF. NRP1 forms a

co-receptor complex with VEGFR-2 and thereby enhances

the binding affinity of VEGFR-2 to a specific isoform of

VEGF-A (VEGF164), which plays a pivotal role in vas-

cular development. NRP1-deficient mice are embryonically
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Fig. 2 Processes during AV remodeling. Schematic representation

(based on a real isolectin B4 staining of retinal blood vessels) of

cellular processes in growing vascular beds. Higher magnifications of

insets show pruning processes during arterial development (red
boxes) and features of the venous circulation (blue)
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lethal at midgestation due to defects in vascular remodeling

of the yolk sac and impairment in the development of

aortic arches and large vessels [58]. EC-specific deletion of

NRP1 leads to the loss of specific arterial markers, such as

ephrin-B2 and Connexin40 [59]. Knockout mice lacking

NRP2 are viable and display axon guidance defects, but not

any overt blood vessel phenotype [60, 61]. However, the

formation of the lymphatic vessels is impaired in these

mutants [14]. NRP2 expression in venous and lymphatic

ECs mimics that of VEGFR-3. Indeed, VEGF-C and D

have been shown to bind to NRP2, which enhances VEGF

receptor signaling in cultured cells and lymphangiogenesis

in tumors [62–64].

Notch signaling and arterial–venous specification

Notch signaling is an evolutionarily conserved pathway that

is involved in a wide range of biological processes including

cell fate determination, proliferation, and survival [65, 66].

Signaling through the Notch pathway occurs through direct

cell–cell communication and is mediated by contact-

dependent receptor and ligand interactions. In mammals,

there are four distinct Notch receptors (Notch1-4) and five

ligands that belong to the Delta (Delta-like 1, 3 and 4) or

Jagged/Serrate protein families (Jag1 and Jag2). The anal-

ysis of Notch mutants has shown that the pathway is

required for cell fate decisions, a well-known role in other

systems such as the nervous system. Likewise for VEGF

loss-of-function mutants [51], compromised Notch activity,

both in mouse and zebrafish, has uncovered an important

role in establishing the arterial cell fate [17, 67–70]. In

addition, the Notch pathway also regulates sprouting angi-

ogenesis through the ‘selection’ of tips cells at the

angiogenic front [71–75]. The similarity between the phe-

notypes observed in mutants of the VEGF and Notch

pathway suggests tightly controlled, interdependent regu-

latory relationships. Notch has been shown to act

downstream of VEGF, since ectopic activation of Notch in a

VEGF mutant background is sufficient to rescue vascular

defects in zebrafish embryos [51]. Specifically, the Dll4

ligand, which is expressed exclusively in arterial ECs and

angiogenic capillary beds, and the Notch1 receptor have

been identified as downstream targets of VEGF signaling

[75, 76]. On the other hand, downregulation of VEGFR-2

and VEGFR-3 expression and upregulation of the antago-

nistically acting receptor VEGFR-1 are critical downstream

responses to Notch activation in ECs [16, 71, 72, 74].

Recent in vitro work has shown that VEGF-mediated

regulation of Notch occurs through transcription factors of

the forkhead family, Foxc1 and Foxc2, which bind to the

promoters of Dll4 and Hey2. The latter is a direct down-

stream target of Notch signaling in the vasculature and is

involved in the regulation of gene transcription in response

to Notch activation [77, 78]. Although the expression of

Foxc1 and Foxc2 is not restricted to arterial ECs [77], it has

been shown that the activity of these transcription factors is

augmented by VEGF-activated Erk signaling in cultured

cells. In contrast, PI3K signaling inhibits Foxc-mediated

activation of the Dll4 and Hey2 promoters [78]. However,

these results seem to be at odds with the higher levels of

PLC-c1/Erk signaling reported for the zebrafish aorta [52],

which should block the activity of Foxc transcription fac-

tors, and suggests that additional modes of regulation may

exist.

The activity of Foxc1/c2, VEGF and Notch are known

to promote the expression of arterial markers such as

ephrin-B2 and Cx40, whereas the orphan nuclear receptor

COUP-TFII (also known as NR2F2) has been identified as

the first positive regulator of venous endothelial identity

[18]. While COUP-TFII is present in both ECs and mural

cells, endothelial expression is restricted to veins and

excluded from arteries. COUP-TFII knockout embryos are

lethal at day 12 after fertilization and exhibit a phenotype

opposite to that observed upon loss of Notch activity: a

partial loss of the venous cell fate indicated by reduced (but

not completely absent) EphB4 expression, together with

the ectopic expression of arterial markers, such as Dll4 and

ephrin-B2 [18]. Ectopic expression of COUP-TFII in

transgenic mice can suppress the expression of arterial

markers in the dorsal aorta [18]. Although the mechanism

through which COUP-TFII acts is not completely under-

stood, its negative effect on Dll4 and NRP1 expression is

likely to locally alter Notch as well VEGF signaling

responses during the regulation of AV differentiation.

Tissue-specific specialization of blood vessels

The example of veins and arteries shows that ECs can dif-

ferentiate into specialized subpopulations with characteristic

gene expression profiles. Specific morphological and func-

tional features of blood vessels in certain organs suggest the

existence of an even larger degree of heterogeneity among

ECs in terms of gene expression and signaling pathways. For

example, the endothelium of endocrine glands, pancreas,

intestine, kidney glomeruli and liver sinusoids contain small

(60–70 nm in diameter) but densely clustered pore-like

openings termed fenestra, which increase local permeability

and are thought to facilitate the exchange between the

circulation and the surrounding tissue. Some endothelial

fenestrations contain a diaphragm, a central structure with

wheel spoke-like extensions that subdivide the pore into

several smaller openings. The type II membrane glycopro-

tein PV-1 (Plasmalemmal vesicle associated protein-1) is a

molecular component of diaphragms, and it is both necessary
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and sufficient for diaphragm formation in cultured ECs [79,

80]. Anti-PV-1 immunofluorescence marks blood vessels

containing diaphragmed fenestra, but is also present in some

non-fenestrated vascular beds. Conversely, PV-1 is absent

from certain fenestrated blood vessels (such as liver sinu-

soids) presumably because they lack diaphragms [81, 82].

Although very little is known about the formation of

fenestra, it has been shown that their formation can be

induced by VEGF-A [83–85] as well as endocrine gland

vascular endothelial growth factor (EG-VEGF), a special-

ized and tissue-specific angiogenic molecule [86]. Further

linking endothelial fenestrations to VEGF signaling, inhi-

bition of VEGF activity in mice leads to the reduction of

fenestrations and, concomitantly, the partial regression of

capillaries in tissues containing fenestrated vascular beds

[87–90]. This role of VEGF may also explain the appear-

ance of ectopic endothelial fenestrations in the vasculature

of tumors and in other pro-angiogenic disease settings [89,

91–93].

While endothelial fenestrations are associated with high

permeability, the endothelium of the central nervous system

forms a barrier (termed the blood–brain barrier, BBB) that

tightly controls trans-endothelial transport and cell migra-

tion [94]. Continuous strands of tight junctions (TJs)

containing claudin and occluding family membrane-span-

ning proteins seal brain ECs and thereby strictly limit the

paracellular transport route. Enabling necessary transport

across the BBB, ECs express specific transporters for

glucose, amino acids, and other substances. The important

role of the blood–brain barrier is emphasized by its break-

down in human diseases. For example, immune cells gain

access to the normally immunoprivileged brain tissue and

trigger harmful inflammatory processes in the autoimmune

disease multiple sclerosis [94].

Recent work has established that the formation of the

BBB during development is controlled by canonical Wnt

signaling [95, 96]. Wnt7a/b double mutants or embryos

lacking endothelial expression of b-catenin display exten-

sive hemorrhaging and reduced vascularization of the CNS.

The glucose transporter GLUT-1, a BBB marker, is

downregulated in these mutant embryos, whereas ectopic

expression of Wnt7a is sufficient to induce GLUT-1-positive

ECs outside the CNS [96]. A second and independent study

that focused on postnatal formation and maturation of

the BBB confirmed that endothelial b-catenin promotes

Claudin-3 (Cldn3) expression and suppresses expression of

PV-1 (in this study termed Pvlap), which is low/absent in the

normal BBB endothelium but gets ectopically upregulated in

mutant mice [95]. Furthermore, the authors show that Wnt3a

can upregulate Cldn3 levels in cultured ECs in a b-catenin-

dependent fashion. Both studies imply canonical Wnt sig-

naling and multiple Wnt genes in the formation of the BBB.

Future work will have to address if Wnt signaling is also

required for the maintenance of the BBB and whether

activation of the pathway might be an approach to restore

compromised barrier function in disease settings.

Regulation of lymphatic endothelial cell identity

Despite the fact that lymphatic ECs in the mouse are derived

from venous ECs during embryonic development [97], the

lymphatic endothelium expresses a set of specific genes that

are not found on blood vessels (Fig. 1) [98, 99]. When

morphogenesis of the lymphatic vasculature is initiated,

differentiation of the first lymphatic ECs (LECs) in the

cardinal vein can be detected by the expression of the

homeobox-containing transcription factor Prox1 (prospero-

related homeobox gene 1) (Fig. 3). Prox1 is the master reg-

ulator of LEC differentiation and induces the expression of a

battery of LEC-specific genes, while other genes, which are

characteristic for the blood vessel endothelium, get sup-

pressed [98–100]. In mice lacking Prox1, LEC differentiation

fails and no lymphatic vasculature is formed [100].

Recently, it has been shown that the role of Prox1 is not

confined to lymphatic development in the embryo,

but actually extends into adulthood. Tamoxifen-inducible

Cre-mediated (i.e., temporally controlled) inactivation of
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the Prox1 gene at various embryonic or postnatal stages

leads to lymphatic vessel defects, prominent edema and

the downregulation of LEC markers like podoplanin,

CCL21/SLC and LYVE-1 [101]. At the same time,

endoglin or CD34, markers characteristic for blood vessel

ECs (BECs), are upregulated and mutant lymphatic capil-

laries (initial lymphatics) acquire an ectopic coverage by

a-smooth muscle actin-positive perivascular cells reminis-

cent of the mural coverage of blood vessels [101]. The

surprising conclusion that continued Prox1 expression is

required to maintain LEC differentiation raises the question

whether lost expression or dysfunction of Prox-1 might be

linked to human pathologies, particularly to settings where

lymphatic vessels are compromised or ECs lack a clear

BEC/LEC identity [102–104].

Another important task will be the identification of fac-

tors required for the induction or maintenance of Prox1

expression. In the early embryo, one such upstream regu-

lator is the transcription factor Sox18 [105] (Fig. 3).

Dominant negative mutations of the Sox18 gene in naturally

occurring mouse mutants of the ragged allelic series cause

chylous ascites and edema. Likewise, dysfunction of the

Sox18 gene is linked to the hypotrichosis-lymphedema-tel-

angiectasia syndrome in humans [106]. While homozygous

Sox18-deficient mice in a mixed 129/CD1 background do

not display vessel defects, perhaps due to genetic compen-

sation by the related Sox family members Sox7 and Sox17,

knockout mice in a purebred C57/Bl6 background have been

recently found to develop lethal fetal edema [105]. Like

Prox1, Sox18 is also expressed in an EC cluster within the

cardinal vein and even precedes the onset of Prox1 expres-

sion by a whole day. Explaining the lymphatic defects seen

in Sox18 mice, no induction of Prox1-positive ECs occurs in

the cardinal vein of these mutants. Conversely, forced

expression of Sox18 in culture differentiating, embryonic

stem cell-derived ECs induces the upregulation of Prox1 and

other lymphatic signature genes. Indicating that Sox18 is a

direct regulator of Prox1 transcription, two Sox18 binding

sites in a proximal 4.1 kb Prox-1 promoter fragment are

necessary for Prox-1 expression in vitro and in vivo [105].

Despite the important role of Sox18 for the specification

of the first LECs, the absence of vascular defects in Sox18-

deficient mutants in the mixed 129/CD1 background and

expression of the gene in a fraction of embryonic blood

vessels argue against a mandatory and general role of

Sox18 as an inducer of Prox1 expression and therefore

additional upstream regulators are likely to exist.

Perspectives

The examples above show how recent progress has pro-

vided us with an increasingly complex picture of the

vasculature. Far from forming simple, blood-transporting

tubes that are shaped by flow, ECs undergo a series of

differentiation steps in response to intrinsic genetic pro-

grams as well as local tissue-derived signals. Future work

will identify further markers that allow us to distinguish

different vascular beds and vessel types. As the examples

of Prox1 and the Notch pathway show, some of these

molecules might be even key regulators of EC differenti-

ation processes. Unraveling of the genetic heterogeneity of

signaling pathways in different vascular beds, vessels or

even individual ECs will further improve our understand-

ing of how the morphogenesis of the vasculature and

organ-specific specialization processes are regulated. These

findings may well help to explain changes in human

pathologies and offer vital clues for the development of

therapeutics. The large degree of plasticity of endothelial

cells, which allows growth on demand after long periods of

quiescence as well as differentiation/de-differentiation

processes, suggests a significant potential for therapeutic

interference even in the fully developed, adult organism.
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