Skip to main content
Log in

Adsorption of propylene, propane, ethylene and ethane in an isoreticular series of MOF-74 structures

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Alkene/alkane separation is the most expensive stage in the process of propylene or ethylene producing. Adsorptive separation with porous solid adsorbents is an alternative way to currently used cryogenic distillation process. In this work by GCMC simulation we investigate propane, propylene, ethane and ethylene adsorption in an isoreticular series of IRMOF-74-I (Mg-MOF-74) structures with different pore size. The adsorption isotherms of pure components as well as the selectivity of binary mixtures of propylene/propane and ethylene/ethane at the pressure fixed at 1 bar with variable composition are determined at 318 K. Also, the snapshots of guest adsorption are used to elucidate the adsorption mechanisms. At low pressure, ethane uptake is the same for all studied structures. IRMOF-74-I has the highest ethylene uptake at low pressure and also ethylene/ethane selectivity among studied MOFs. Open metal site is the first preferential site for adsorbing the guest in all structures. IRMOF-74-II, IRMOF-74-III and IRMOF-74-IV have additional site for adsorbing guest molecules. This additional adsorption site makes propylene and propane uptakes higher than that of IRMOF-74-I at low pressure. The second preferential site of IRMOF-74-II, IRMOF-74-III and IRMOF-74-IV, organic linker, interact with propane and propylene as the same and can’t separate them so IRMOF-74-II, IRMOF-74-III and IRMOF-74-IV have lesser selectivity than IRMOF-74-I. At high pressure, IRMOF-74-IV with largest pore size has the highest uptake for all studied hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MOF:

Metal organic framework

DFT:

Density functional theory

IAST:

Ideal adsorbed solution theory

DOT:

2,5-Dioxidoterephthalate

References

  • Bae, Y.S., Lee, C.Y., Kim, K.C., Farha, O.K., Nickias, P., Hupp, J.T., Nguyen, S.T., Snurr, R.Q.: High propene/propane selectivity in isostructural metal-organic frameworks with high densities of open metal sites. Angew. Chem. 51, 1857–1860 (2012)

    Article  CAS  Google Scholar 

  • Bao, Z., Alnemrat, S., Yu, L., Vasiliev, I., Ren, Q., Lu, X., Deng, S.: Adsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal-organic framework. Langmuir. 27, 13554–13562 (2011)

    Article  CAS  Google Scholar 

  • Deng, H., Grunder, S., Cordova, K.E., Valente, C., Furukawa, H., Hmadeh, M., Gandara, F., Whalley, A.C., Liu, Z., Asahina, S., Kazumori, H., O’Keeffe, M., Terasaki, O., Stoddart, J.F., Yaghi, O.M.: Large-pore apertures in a series of metal-organic frameworks. Science. 336, 1018–1023 (2012)

    Article  CAS  Google Scholar 

  • Düren, T., Bae, Y.-S., Snurr, R.Q.: Using molecular simulation to characterise metal-organic frameworks for adsorption applications. Chem. Soc. Rev. 38, 1237–1247 (2009)

    Article  Google Scholar 

  • Fu, J., Tian, Y., Wu, J.: Seeking metal–organic frameworks for methane storage in natural gas vehicles. Adsorption 21, 499–507 (2015)

    Article  CAS  Google Scholar 

  • Geier, S.J., Mason, J.A., Bloch, E.D., Queen, W.L., Hudson, M.R., Brown, C.M., Long, J.R.: Selective adsorption of ethylene over ethane and propylene over propane in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn). Chem. Sci. 4, 2054–2061 (2013)

    Article  CAS  Google Scholar 

  • Getman, R.B., Bae, Y.-S., Wilmer, C.E., Snurr, R.Q.: Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chem. Rev. 112, 703–723 (2012)

    Article  CAS  Google Scholar 

  • Herm, Z.R., Bloch, E.D., Long, R.: Hydrocarbon separations in metal–organic frameworks. Chem. Mater. 26, 323–338 (2014)

    Article  CAS  Google Scholar 

  • Janiak, C., Vieth, J.K.: MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 34, 2366–2388 (2010)

    Article  CAS  Google Scholar 

  • Kuppler, R.J., Timmons, D.J., Fang, Q.-R., Li, J.-R., Makal, T. a., Young, M.D., Yuan, D., Zhao, D., Zhuang, W., Zhou, H.-C.: Potential applications of metal-organic frameworks. Coord. Chem. Rev. 253, 3042–3066 (2009)

    Article  CAS  Google Scholar 

  • Li, J., Sculley, J., Zhou, H.: Metal-organic frameworks for separations. Chem. Rev. 112, 869–932 (2012)

    Article  CAS  Google Scholar 

  • Liu, B., Smit, B.: Comparative molecular simulation study of CO2/N2 and CH4/N2 separation in zeolites and metal–organic frameworks. Langmuir 25, 5918–5926 (2009)

    Article  CAS  Google Scholar 

  • Liu, D., Zhong, C.: Understanding gas separation in metal–organic frameworks using computer modeling. J. Mater. Chem. 20, 10308–10318 (2010)

    Article  CAS  Google Scholar 

  • Liu, D., Wu, Y., Xia, Q., Li, Z., Xi, H.: Experimental and molecular simulation studies of CO2 adsorption on zeolitic imidazolate frameworks: ZIF-8 and amine-modified ZIF-8. Adsorption 19, 25–37 (2012)

    Article  Google Scholar 

  • Mu, B., Walton, K.S.: Adsorption equilibrium of methane and carbon dioxide on porous metal-organic framework Zn-BTB. Adsorption 17, 777–782 (2011)

    Article  CAS  Google Scholar 

  • Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard III, W.A., Skiff, W.M.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)

    Article  CAS  Google Scholar 

  • Simon, C.M., Smit, B., Haranczyk, M.: pyIAST: ideal adsorbed solution theory (IAST) Python package. Comput. Phys. Commun. 200, 364–380 (2016)

    Article  CAS  Google Scholar 

  • Sirjoosingh, A., Alavi, S., Woo, T.K.: Grand-canonical monte carlo and molecular-dynamics simulations of carbon-dioxide and carbon-monoxide adsorption in zeolitic imidazolate framework materials. J. Phys. Chem. C 114, 2171–2178 (2010)

    Article  CAS  Google Scholar 

  • Todorov, I.T., Smith, W., Trachenko, K., Dove, M.T.: DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism. J. Mater. Chem. 16, 1911–1918 (2006)

    Article  CAS  Google Scholar 

  • Verma, P., Xu, X., Truhlar, D.G.: Adsorption on Fe-MOF-74 for C1-C3 hydrocarbon separation. J. Phys. Chem. C 117, 12648–12660 (2013)

    Article  CAS  Google Scholar 

  • Yang, Q., Zhong, C.: Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks. J. Phys. Chem. B. 110, 17776–17783 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully thank University of Mazandaran for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Yeganegi.

Electronic supplementary material

Crystal structure of IRMOF-74-I, IRMOF-74-II, IRMOF-74-III and IRMOF-74-IV, atomic charges for adsorbent, Adsorption isotherms of propylene, propane, ethane and ethylene at high pressures simulated by GCMC in an isoreticular series of MOF-74, Selectivity of binary propylene/propane mixtures in isoreticular series of MOF-74 structures at 318 K, fixed pressure at 5 bar and variable composition.

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2639 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, M., Yeganegi, S. Adsorption of propylene, propane, ethylene and ethane in an isoreticular series of MOF-74 structures. Adsorption 23, 507–514 (2017). https://doi.org/10.1007/s10450-017-9862-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-017-9862-9

Keywords

Navigation