Skip to main content
Log in

Bio-nano interactions: cellulase on iron oxide nanoparticle surfaces

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Iron oxide nanoparticles (IONs) may well represent the most promising magnetic nanostructures for a plethora of applications in health, life and environmental science. IONs are already used in medicine, catalysis and downstream processing of biotechnological products. Since most particles, utilized industrially, need expensive coatings, the application of bare nanoparticles seems economically worthwhile. In this study, three different ION species were synthesized by co-precipitation methods without stabilizing agents and were thoroughly characterized with a multi-analytical approach. We emphasize the importance of the particle characterization as transitions of the ION polymorphs into each other are possible as well as merging of distinct properties. The particle sizes, which here range from 10 to 30 nm, and the magnetic properties of IONs are crucial for the further application. The adsorption behavior of the enzyme cellulase (CEL) as a model protein is investigated on the different IONs in order to gain deeper insights into bio-nano interactions to different surface sites, charges, curvatures and morphologies, as given by the three applied adsorber materials. The protein-particle interactions are driven by electrostatic and hydrophobic forces in the case of CEL. The CEL adsorption follows a Langmuir behavior and does not exceed maximum loads of around 0.6 g g−1. IR spectroscopy gives insights into the orientation of bound CEL and indicates a stronger affinity for the β-sheet tertiary structure content while a higher load can be reached with a higher α-helix content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahn, T., Kim, J.H., Yang, H.-M., Lee, J.W., Kim, J.-D.: Formation pathways of magnetite nanoparticles by coprecipitation method. J. Phys. Chem. C. 116(10), 6069–6076 (2012)

    Article  CAS  Google Scholar 

  • Albornoz, C., Jacobo, S.E.: Preparation of a biocompatible magnetic film from an aqueous ferrofluid. J. Magn. Magn. Mater. 305(1), 12–15 (2006)

    Article  CAS  Google Scholar 

  • Baaziz, W., Pichon, B.P., Fleutot, S., Liu, Y., Lefevre, C., Greneche, J.-M., Toumi, M., Mhiri, T., Begin-Colin, S.: Magnetic iron oxide nanoparticles: reproducible tuning of the size and nanosized-dependent composition, defects, and spin canting. J. Phys. Chem. C. 118(7), 3795–3810 (2014)

    Article  CAS  Google Scholar 

  • Berry, F.J., Skinner, S., Thomas, M.F.: Mössbauer spectroscopic examination of a single crystal of Fe3O4. J. Phys. 10(1), 215–220 (1998)

    CAS  Google Scholar 

  • Bersani, D., Lottici, P.P., Montenero, A.: Micro-raman investigation of iron oxide films and powders produced by sol–gel synthesis. J. Raman Spectrosc. 30, 355–360 (1999)

    Article  CAS  Google Scholar 

  • Bødker, F., Mørup, S.: Size dependence of the properties of hematite nanoparticles. Europhys. Lett. 52(2), 217 (2000)

    Article  Google Scholar 

  • Bødker, F., Hansen, M.F., Koch, C.B., Lefmann, K., Mørup, S.: Magnetic properties of hematite nanoparticles. Phys. Rev. B. 61(10), 6826–6838 (2000)

    Article  Google Scholar 

  • Bornscheuer, U., Buchholz, K., Seibel, J.: Enzymatic degradation of (ligno)cellulose. Angew. Chem. Int. Ed. 53(41), 10876–10893 (2014)

    Article  CAS  Google Scholar 

  • Carlson, J.J., Kawatra, S.K.: Factors affecting zeta potential of iron oxides. Miner. Process. Extr. Metall. Rev. 34(5), 269–303 (2013)

    Article  CAS  Google Scholar 

  • Chamritski, I., Burns, G.: Infrared- and Raman-active phonons of magnetite, maghemite, and hematite: a computer simulation and spectroscopic study. J. Phys. Chem. B. 109(11), 4965–4968 (2005)

    Article  CAS  Google Scholar 

  • Chernyshova, I.V., Ponnurangam, S., Somasundaran, P.: On the origin of an unusual dependence of (bio)chemical reactivity of ferric hydroxides on nanoparticle size. Phys. Chem. Chem. Phys. 12(42), 14045–14056 (2010)

    Article  CAS  Google Scholar 

  • Colombo, M., Carregal-Romero, S., Casula, M.F., Gutiérrez, L., Morales, M.P., Böhm, I.B., Heverhagen, J.T., Prosperi, D., Parak, W.J.: Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 41(11), 4306–4334 (2012)

    Article  CAS  Google Scholar 

  • Cornell, R.M., Schwertmann, U.: The Iron Oxides. Wiley, Weinheim (2003)

    Book  Google Scholar 

  • Drenkova-Tuhtan, A., Mandel, K., Paulus, A., Meyer, C., Hutter, F., Gellermann, C., Sextl, G., Franzreb, M., Steinmetz, H.: Phosphate recovery from wastewater using engineered superparamagnetic particles modified with layered double hydroxide ion exchangers. Water Res. 47(15), 5670–5677 (2013)

    Article  CAS  Google Scholar 

  • Fang, M., Ström, V., Olsson, R.T., Belova, L., Rao, K.V.: Particle size and magnetic properties dependence on growth temperature for rapid mixed co-precipitated magnetite nanoparticles. Nanotechnology. 23(14), 145601 (2012)

    Article  Google Scholar 

  • Fraga García, P., Freiherr von Roman, M., Reinlein, S., Wolf, M., Berensmeier, S.: Impact of nanoparticle aggregation on protein recovery through a pentadentate chelate ligand on magnetic carriers. ACS Appl. Mater. Interfaces. 6(16), 13607–13616 (2014)

    Article  Google Scholar 

  • Fraga García, P., Brammen, M., Wolf, M., Reinlein, S., Freiherr von Roman, M., Berensmeier, S.: High-gradient magnetic separation for technical scale protein recovery using low cost magnetic nanoparticles. Sep. Purif. Technol. 150, 29–36 (2015)

    Article  Google Scholar 

  • Franzreb, M., Siemann-Herzberg, M., Hobley, T.J., Thomas, Ow en R, T.: Protein purification using magnetic adsorbent particles. Appl. Microbiol. Biotechnol. 70(5), 505–516 (2006)

    Article  CAS  Google Scholar 

  • Gdula, K., Dąbrowski, A., Skwarek, E.: Synthesis, surface characterization and electrokinetic properties of colloidal silica nanoparticles with magnetic core. Adsorption 22(4–6), 681–688 (2016)

    Article  CAS  Google Scholar 

  • Goss, C.J.: Saturation magnetisation, coercivity and lattice parameter changes in the system Fe3O4-γFe2O3, and their relationship to structure. Phys. Chem. Miner. 16(2) (1988)

  • Gotić, M., Koščec, G., Musić, S.: Study of the reduction and reoxidation of substoichiometric magnetite. J. Mol. Struct. 924–926, 347–354 (2009)

    Google Scholar 

  • Graham, D.L., Ferreira, H.A., Freitas, P.P.: Magnetoresistive-based biosensors and biochips. Trends Biotechnol. 22(9), 455–462 (2004)

    Article  CAS  Google Scholar 

  • Illés, E., Tombácz, E.: The role of variable surface charge and surface complexation in the adsorption of humic acid on magnetite. Colloids Surf. A 230(1–3), 99–109 (2003)

    Article  Google Scholar 

  • Jesionowski, T., Zdarta, J., Krajewska, B.: Enzyme immobilization by adsorption: a review. Adsorption 20(5–6), 801–821 (2014)

    Article  CAS  Google Scholar 

  • Jordan, J., Kumar, C.S., Theegala, C.: Preparation and characterization of cellulase-bound magnetite nanoparticles. J. Mol. Catal. B 68(2), 139–146 (2011)

    Article  CAS  Google Scholar 

  • Jubb, A.M., Allen, H.C.: Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl. Mater. Interfaces. 2(10), 2804–2812 (2010)

    Article  CAS  Google Scholar 

  • Khajehpour, M., Dashnau, J.L., Vanderkooi, J.M.: Infrared spectroscopy used to evaluate glycosylation of proteins. Anal. Biochem. 348(1), 40–48 (2006)

    Article  CAS  Google Scholar 

  • Khalafalla, S., Reimers, G.W.: Magnetofluids and their manufacture. USA US3764540 A, 09.10.1973

  • Kim, E.H., Lee, H.S., Kwak, B.K., Kim, B.-K.: Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J. Magn. Magn. Mater. 289, 328–330 (2005)

    Article  CAS  Google Scholar 

  • Kim, W., Suh, C.-Y., Cho, S.-W., Roh, K.-M., Kwon, H., Song, K., Shon, I.-J.: A new method for the identification and quantification of magnetite-maghemite mixture using conventional X-ray diffraction technique. Talanta 94, 348–352 (2012)

    Article  CAS  Google Scholar 

  • Kimata, M., Nakagawa, D., Hasegawa, M.: Preparation of monodisperse magnetic particles by hydrolysis of iron alkoxide. Powder Technol. 132(2–3), 112–118 (2003)

    Article  CAS  Google Scholar 

  • Kolhatkar, A.G., Jamison, A.C., Litvinov, D., Willson, R.C., Lee, T.R.: Tuning the magnetic properties of nanoparticles. Int. J. Mol. Sci. 14(8), 15977–16009 (2013)

    Article  Google Scholar 

  • Kudina, O., Zakharchenko, A., Trotsenko, O., Tokarev, A., Ionov, L., Stoychev, G., Puretskiy, N., Pryor, S.W., Voronov, A., Minko, S.: Highly efficient phase boundary biocatalysis with enzymogel nanoparticles. Angew. Chem., Int. Ed. Engl. 53(2), 483–487 (2014)

    Article  CAS  Google Scholar 

  • Lee, N., Hyeon, T.: Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem. Soc. Rev. 41(7), 2575–2589 (2012)

    Article  CAS  Google Scholar 

  • Li, D., Teoh, W.Y., Selomulya, C., Woodward, R.C., Amal, R., Rosche, B.: Flame-sprayed superparamagnetic bare and silica-coated maghemite nanoparticles: synthesis, characterization, and protein adsorption–desorption. Chem. Mater. 18(26), 6403–6413 (2006)

    Article  CAS  Google Scholar 

  • Lu, A.-H., Salabas, E.L., Schüth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl. 46(8), 1222–1244 (2007)

    Article  CAS  Google Scholar 

  • Massart, R.: Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 17(2), 1247–1248 (1981)

    Article  Google Scholar 

  • Mikhaylov, G., Mikac, U., Magaeva, A.A., Itin, V.I., Naiden, E.P., Psakhye, I., Babes, L., Reinheckel, T., Peters, C., Zeiser, R., Bogyo, M., Turk, V., Psakhye, S.G., Turk, B., Vasiljeva, O.: Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat. Nanotechnol. 6(9), 594–602 (2011)

    Article  CAS  Google Scholar 

  • Morhardt, C., Ketterer, B., Heißler, S., Franzreb, M.: Direct quantification of immobilized enzymes by means of FTIR ATR spectroscopy—a process analytics tool for biotransformations applying non-porous magnetic enzyme carriers. J. Mol. Catal. B 107, 55–63 (2014)

    Article  CAS  Google Scholar 

  • Oh, S., Cook, D.C., Townsend, H.E.: Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfine Interact. 112(1–4), 59–66 (1998)

    Article  CAS  Google Scholar 

  • Pavlidis, I.V., Vorhaben, T., Tsoufis, T., Rudolf, P., Bornscheuer, U.T., Gournis, D., Stamatis, H.: Development of effective nanobiocatalytic systems through the immobilization of hydrolases on functionalized carbon-based nanomaterials. Bioresour. Technol. 115, 164–171 (2012)

    Article  CAS  Google Scholar 

  • Peng, Z.G., Hidajat, K., Uddin, M.S.: Adsorption of bovine serum albumin on nanosized magnetic particles. J. Colloid Interface Sci. 271(2), 277–283 (2004)

    Article  CAS  Google Scholar 

  • Rezwan, K., Meier, L.P., Rezwan, M., Voros, J., Textor, M., Gauckler, L.J.: Bovine serum albumin adsorption onto colloidal Al2O3 particles: a new model based on zeta potential and UV–vis measurements. Langmuir. 20(23), 10055–10061 (2004)

    Article  CAS  Google Scholar 

  • Roach, P., Farrar, D., Perry, C.C.: Interpretation of protein adsorption: surface-induced conformational changes. J. Am. Chem. Soc. 127(22), 8168–8173 (2005)

    Article  CAS  Google Scholar 

  • Rossi, L.M., Costa, Natalia J. S., Silva, F.P., Wojcieszak, R.: Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chem. 16(6), 2906–2933 (2014)

    Article  CAS  Google Scholar 

  • Roth, H.-C., Schwaminger, S.P., Schindler, M., Wagner, F.E., Berensmeier, S.: Influencing factors in the co-precipitation process of superparamagnetic iron oxide nano particles: a model based study. J. Magn. Magn. Mater. 377, 81–89 (2015)

    Article  CAS  Google Scholar 

  • Roth, H.-C., Schwaminger, S., Fraga García, P., Ritscher, J., Berensmeier, S.: Oleate coating of iron oxide nanoparticles in aqueous systems: the role of temperature and surfactant concentration. J. Nanopart. Res. 18(4) (2016a)

  • Roth, H.-C., Schwaminger, S.P., Peng, F., Berensmeier, S.: Immobilization of cellulase on magnetic nanocarriers. ChemistryOpen 5(3), 183–187 (2016b)

    Article  CAS  Google Scholar 

  • Salazar-Alvarez, G., Muhammed, M., Zagorodni, A.A.: Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem. Eng Sci. 61(14), 4625–4633 (2006)

    Article  CAS  Google Scholar 

  • Santoyo Salazar, J., Perez, L., de Abril, O., Truong Phuoc, L., Ihiawakrim, D., Vazquez, M., Greneche, J.-M., Begin-Colin, S., Pourroy, G.: Magnetic iron oxide nanoparticles in 10–40 nm range: composition in terms of magnetite/maghemite ratio and effect on the magnetic properties. Chem. Mater. 23(6), 1379–1386 (2011)

    Article  CAS  Google Scholar 

  • Schultz, N., Metreveli, G., Franzreb, M., Frimmel, F.H., Syldatk, C.: Zeta potential measurement as a diagnostic tool in enzyme immobilisation. Colloids Surf., B. 66(1), 39–44 (2008)

    Article  CAS  Google Scholar 

  • Schwaminger, S.P., Fraga García, P., Merck, G.K., Bodensteiner, F.A., Heissler, S., Günther, S., Berensmeier, S.: Nature of interactions of amino acids with bare magnetite nanoparticles. J. Phys. Chem. C. 119(40), 23032–23041 (2015)

    Article  CAS  Google Scholar 

  • Serefoglou, E., Litina, K., Gournis, D., Kalogeris, E., Tzialla, A.A., Pavlidis, I.V., Stamatis, H., Maccallini, E., Lubomska, M., Rudolf, P.: Smectite clays as solid supports for immobilization of β-glucosidase: synthesis, characterization, and biochemical properties. Chem. Mater. 20(12), 4106–4115 (2008)

    Article  CAS  Google Scholar 

  • Situm, A., Rahman, M.A., Goldberg, S., Al-Abadleh, H.A.: Spectral characterization and surface complexation modeling of low molecular weight organics on hematite nanoparticles: Role of electrolytes in the binding mechanism. Environ. Sci. 3(4), 910–926 (2016)

    CAS  Google Scholar 

  • Sonvico, F., Mornet, S., Vasseur, S., Dubernet, C., Jaillard, D., Degrouard, J., Hoebeke, J., Duguet, E., Colombo, P., Couvreur, P.: Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjugate Chem. 16(5), 1181–1188 (2005)

    Article  CAS  Google Scholar 

  • Sun, Z.-X., Su, F.-W., Forsling, W., Samskog, P.-O.: Surface characteristics of magnetite in aqueous suspension. J. Colloid Interface Sci. 197(1), 151–159 (1998)

    Article  CAS  Google Scholar 

  • Tejirian, A., Xu, F.: Inhibition of cellulase-catalyzed lignocellulosic hydrolysis by iron and oxidative metal ions and complexes. Appl. Environ. Microbiol. 76(23), 7673–7682 (2010)

    Article  CAS  Google Scholar 

  • Terris, B.D., Thomson, T.: Nanofabricated and self-assembled magnetic structures as data storage media. J. Phys. D: Appl. Phys. 38(12), R199–R222 (2005)

    Article  CAS  Google Scholar 

  • Tombácz, E., Illés, E., Majzik, A., Hajdú, A., Rideg, N., Szekeres, M.: Ageing in the inorganic nanoworld: example of magnetite nanoparticles in aqueous medium Croat. Chem. Acta 80(3–4), 503–515 (2007)

    Google Scholar 

  • Vereda, F., Martin-Molina, A., Hidalgo-Alvarez, R., Quesada-Perez, M.: Specific ion effects on the electrokinetic properties of iron oxide nanoparticles: experiments and simulations. Phys. Chem. Chem. Phys. 17(26), 17069–17078 (2015)

    Article  CAS  Google Scholar 

  • Wan, J., Chen, X., Wang, Z., Yang, X., Qian, Y.: A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods. J. Cryst. Growth 276(3–4), 571–576 (2005)

    Article  CAS  Google Scholar 

  • Yu, S., Peralvarez-Marin, A., Minelli, C., Faraudo, J., Roig, A., Laromaine, A.: Albumin-coated SPIONs: an experimental and theoretical evaluation of protein conformation, binding affinity and competition with serum proteins. Nanoscale 8, 14393–14405 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Prof. Dr. Tom Nilges for his support with powder XRD (TU München) and Dr. Peter Weidler for valuable discussions (Karlsruhe Institute of Technology, Institute of Functional Interfaces, Germany). Furthermore, we would like to express our very great appreciation to Dr. Marianne Hanzlik for help with TEM measurements and Stefan Darchinger for the performance of gel electrophoresis. Moreover, we are particularly grateful for the financial support of this work by the Federal Ministry of Education and Research (Grant number 031A173A) and the Bavarian Ministry of Economic Affairs and Media, Energy and Technology (Grant number 1340/68351/3/11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Berensmeier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1753 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwaminger, S.P., Fraga-García, P., Selbach, F. et al. Bio-nano interactions: cellulase on iron oxide nanoparticle surfaces. Adsorption 23, 281–292 (2017). https://doi.org/10.1007/s10450-016-9849-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-016-9849-y

Keywords

Navigation