Skip to main content
Log in

Activated carbon fibers for efficient VOC removal from diluted streams: the role of surface morphology

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The effect of the micropore structure of activated carbon fibers (ACFs) on the adsorption of toluene at low concentration (10–80 ppmv) was studied over two types of ACFs. Both adsorbents presented similar surface chemistry but different porous structure: one ACF was ultramicroporous (d pore  < 1 nm) and the other supermicroporous (d pore ~1 to 2 nm). Toluene adsorption isotherms were determined for both ACFs and were found to be consistent with Dubinin–Radushkevich (D–R) model. The toluene adsorption enthalpies calculated from temperature-programmed desorption profiles at temperatures below 330 K were close to the values obtained from D–R equations. Larger adsorption strength was found in the ultramicroporous adsorbent as compared to the supermicroporous one suggesting that the pore shape strongly influences the adsorption mechanism. The adsorbent with a lower specific surface area but narrower micropores could be more efficient at high temperatures than an adsorbent with large pore volume and wider micropores. The findings reported have a big importance for correct choice of material when designing efficient structured adsorbing bed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baur, G.B., Beswick, O., Spring, J., Yuranov, I., Kiwi-Minsker, L.: Activated carbon fibers for efficient VOC removal from diluted streams: the role of surface functionalities. Adsorption (2015a). doi:10.1007/s10450-015-9667-7

    Google Scholar 

  • Baur, G.B., Yuranov, I., Kiwi-Minsker, L.: Activated carbon fibers modified by metal oxide as effective structured adsorbents for acetaldehyde. Catal. Today (2015b). doi:10.1016/j.cattod.2014.11.021

    Google Scholar 

  • Cal, M.P., Rood, M.J., Larson, S.M.: Gas phase adsorption of volatile organic compounds and water vapor on activated carbon cloth. Energy Fuels 11(2), 311–315 (1997)

    Article  CAS  Google Scholar 

  • Cazorla-Amoros, D., Alcaniz-Monge, J., de la Casa-Lillo, M.A., Linares-Solano, A.: CO2 as an adsorptive to characterize carbon molecular sieves and activated carbons. Langmuir 14(16), 4589–4596 (1998)

    Article  CAS  Google Scholar 

  • Cazorla-Amoros, D., Alcaniz-Monge, J., Linares-Solano, A.: Characterization of activated carbon fibers by CO2 adsorption. Langmuir 12(11), 2820–2824 (1996)

    Article  CAS  Google Scholar 

  • Cvetanović, R.J., Amenomiya, Y.: Application of a temperature-programmed desorption technique to catalyst studies. In: Eley, D.D., Pines, H., Paul, B.W. (eds.) Advances in Catalysis, vol. 17, pp. 103–149. Academic Press, New York (1967)

    Google Scholar 

  • Das, D., Gaur, V., Verma, N.: Removal of volatile organic compound by activated carbon fiber. Carbon 42(14), 2949–2962 (2004)

    Article  CAS  Google Scholar 

  • Dimotakis, E.D., Cal, M.P., Economy, J., Rood, M.J., Larson, S.M.: Chemically treated activated carbon cloths for removal of volatile organic carbons from gas streams—evidence for enhanced physical adsorption. Environ. Sci. Technol. 29(7), 1876–1880 (1995)

    Article  CAS  Google Scholar 

  • Dubinin, M.M.: The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60(2), 235–241 (1960)

    Article  CAS  Google Scholar 

  • Dubinin, M.M.: Adsorption in micropores. J. Colloid Interface Sci. 23(4), 487–499 (1967)

    Article  CAS  Google Scholar 

  • Dubinin, M.M.: Fundamentals of the theory of adsorption in micropores of carbon adsorbents—characteristics of their adsorption properties and microporous structures. Carbon 27(3), 457–467 (1989)

    Article  CAS  Google Scholar 

  • Dubinin, M.M., Stoeckli, H.F.: Homogeneous and heterogeneous micropore structures in carbonaceous adsorbents. J. Colloid Interface Sci. 75(1), 34–42 (1980)

    Article  CAS  Google Scholar 

  • Duong, D.D.: Adsorption Analysis: Equilibria and Kinetics. Series on chemical engineering, vol. 2. Imperial College Press, London (1998)

    Google Scholar 

  • El-Sayed, Y., Bandosz, T.J.: A study of acetaldehyde adsorption on activated carbons. J. Colloid Interface Sci. 242(1), 44–51 (2001)

    Article  CAS  Google Scholar 

  • Figueiredo, J.L., Pereira, M.F.R., Freitas, M.M.A., Orfao, J.J.M.: Modification of the surface chemistry of activated carbons. Carbon 37(9), 1379–1389 (1999)

    Article  CAS  Google Scholar 

  • Foster, K.L., Fuerman, R.G., Economy, J., Larson, S.M., Rood, M.J.: Adsorption characteristics of trace volatile organic-compounds in gas streams onto activated carbon-fibers. Chem. Mater. 4(5), 1068–1073 (1992)

    Article  CAS  Google Scholar 

  • Garrido, J., Linaressolano, A., Martinmartinez, J.M., Molinasabio, M., Rodriguezreinoso, F., Torregrosa, R.: Use of N2 vs Co2 in the characterization of activated carbons. Langmuir 3(1), 76–81 (1987)

    Article  CAS  Google Scholar 

  • Hayashi, T., Kumita, M., Otani, Y.: Removal of acetaldehyde vapor with impregnated activated carbons: effects of steric structure on impregnant and acidity. Environ. Sci. Technol. 39(14), 5436–5441 (2005)

    Article  CAS  Google Scholar 

  • Hutson, N.D., Yang, R.T.: Theoretical basis for the Dubinin–Radushkevitch (D–R) adsorption isotherm equation. Adsorpt. J. Int. Adsorpt. Soc. 3(3), 189–195 (1997)

    Article  CAS  Google Scholar 

  • Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  CAS  Google Scholar 

  • Lillo-Rodenas, M.A., Cazorla-Amoros, D., Linares-Solano, A.: Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon 43(8), 1758–1767 (2005)

    Article  CAS  Google Scholar 

  • Lillo-Rodenas, M.A., Cazorla-Amoros, D., Linares-Solano, A.: Benzene and toluene adsorption at low concentration on activated carbon fibres. Adsorpt. J. Int. Adsorpt. Soc. 17(3), 473–481 (2011)

    Article  CAS  Google Scholar 

  • Lillo-Rodenas, M.A., Fletcher, A.J., Thomas, K.M., Cazorla-Amoros, D., Linares-Solano, A.: Competitive adsorption of a benzene–toluene mixture on activated carbons at low concentration. Carbon 44(8), 1455–1463 (2006)

    Article  CAS  Google Scholar 

  • Mangun, C.L., Benak, K.R., Economy, J., Foster, K.L.: Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia. Carbon 39(12), 1809–1820 (2001)

    Article  CAS  Google Scholar 

  • Mangun, C.L., Daley, M.A., Braatz, R.D., Economy, J.: Effect of pore size on adsorption of hydrocarbons in phenolic-based activated carbon fibers. Carbon 36(1–2), 123–129 (1998)

    Article  CAS  Google Scholar 

  • Piccot, S.D., Watson, J.J., Jones, J.W.: A global inventory of volatile organic-compound emissions from anthropogenic sources. J. Geophys. Res. Atmos. 97(D9), 9897–9912 (1992)

    Article  CAS  Google Scholar 

  • Pitzer, K.S., Scott, D.W.: The thermodynamics and molecular structure of benzene and its methyl derivatives. J. Am. Chem. Soc. 65, 803–829 (1943)

    Article  CAS  Google Scholar 

  • Popescu, M., Joly, J.P., Carre, J., Danatoiu, C.: Dynamical adsorption and temperature-programmed desorption of VOCs (toluene, butyl acetate and butanol) on activated carbons. Carbon 41(4), 739–748 (2003)

    Article  CAS  Google Scholar 

  • Singh, K.P., Mohan, D., Tandon, G.S., Gupta, G.S.D.: Vapor-phase adsorption of hexane and benzene on activated carbon fabric cloth: equilibria and rate studies. Ind. Eng. Chem. Res. 41(10), 2480–2486 (2002)

    Article  CAS  Google Scholar 

  • Tancrede, M., Wilson, R., Zeise, L., Crouch, E.A.C.: The carcinogenic risk of some organic vapors indoors—a theoretical survey. Atmos. Environ. 21(10), 2187–2205 (1987)

    Article  CAS  Google Scholar 

  • Terzyk, A.P., Gauden, P.A., Kowalczyk, P.: What kind of pore size distribution is assumed in the Dubinin–Astakhov adsorption isotherm equation? Carbon 40(15), 2879–2886 (2002)

    Article  CAS  Google Scholar 

  • Wu, J.F., Stromqvist, M.E., Claesson, O., Fangmark, I.E., Hammarstrom, L.G.: A systematic approach for modelling the affinity coefficient in the Dubinin–Radushkevich equation. Carbon 40(14), 2587–2596 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research described in this article was supported by Philip Morris International.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lioubov Kiwi-Minsker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baur, G.B., Yuranov, I., Renken, A. et al. Activated carbon fibers for efficient VOC removal from diluted streams: the role of surface morphology. Adsorption 21, 479–488 (2015). https://doi.org/10.1007/s10450-015-9685-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-015-9685-5

Keywords

Navigation