
Adv Comput Math (2010) 32:239–253
DOI 10.1007/s10444-008-9106-3

Geometric properties of the ridge function manifold

Vitaly Maiorov

Received: 7 October 2005 / Accepted: 19 May 2008 /
Published online: 21 November 2008
© The Author(s) 2008. This article is published with open access at Springerlink.com

Abstract We study geometrical properties of the ridge function manifold Rn

consisting of all possible linear combinations of n functions of the form g(a·x),
where a · x is the inner product in R

d. We obtain an estimate for the ε-entropy
numbers in terms of smaller ε-covering numbers of the compact class Gn,s

formed by the intersection of the class Rn with the unit ball BPd
s in the space

of polynomials on R
d of degree s. In particular we show that for n ≤ sd−1

the ε-entropy number Hε(Gn,s, Lq) of the class Gn,s in the space Lq is of
order ns log 1/ε (modulo a logarithmic factor). Note that the ε-entropy number
Hε(BPd

s , Lq) of the unit ball is of order sd log 1/ε. Moreover, we obtain an
estimate for the pseudo-dimension of the ridge function class Gn,s.

Keywords ε-entropy · Pseudo-dimension · Growth number ·
Ridge function manifold

Mathematics Subject Classifications (2000) 41A46 · 41A30 · 26-04 · 54C70

1 Introduction and main results

Let C(Rd) be the space of all continuous functions on the space R
d. Consider

in C(Rd) the class of functions

R = span{gi(ai · x) : gi ∈ C(R), ai ∈ R
d},
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consisting of all possible linear combinations of continuous ridge functions of
the form g(a · x), a ∈ R

d, where a · x is the inner product of vectors a and x. Let
n be any natural number. Denote by

Rn =
{

n∑
i=1

gi(ai · x) : gi ∈ C(R), ai ∈ R
d

}
,

the subclass in R formed by all possible linear combinations of n ridge
functions.

The study of such a manifold R of ridge functions plays a central role in both
pure and applied mathematics as is manifested in the series of works [3, 6–
8, 10, 12] (Temlyakov, unpublished manuscript) that concern the density of R
in the space of continuous functions and the approximation of function classes
by R (see also the survey of [9]).

Let Lq = Lq(�), 1 ≤ q < ∞, be the space of q-integrable functions on
the unit cube � = [−1, 1]d with the norm ‖ f‖Lq = (∫

�
| f (x)|q dx

)1/q. In the
case q = ∞ the space L∞(�) consists of all function with the bounded norm
‖ f‖L∞ = ess sup {| f (x)| : x ∈ �}. Denote by BLq = { f : ‖ f‖Lq ≤ 1} the unit
ball in the space Lq. Given a natural number s we denote by Pd

s the space of
all real polynomials of degree at most s on R

d . Let BqPd
s = BLq ∩ Pd

s be the
unit ball in the space Pd

s .
In the current work we study certain geometrical properties of the manifold

Rn, namely, we estimate the ε-entropy numbers in terms of smaller ε-covering
numbers of the compact class Gn,s = Rn ∩ BqPd

s formed by the intersection of
the class Rn with the unit ball in the space of polynomials of degree s on R

d.
In particular we show that for n ≤ sd−1, the ε-entropy number Hε(Gn,s, Lq)

of the class Gn,s in the space Lq is of order ns log2 1/ε (modulo a logarithmic
factor). Note that the ε-entropy number Hε(BqPd

s , Lq) of the unit ball BqPd
s

is of order sd log2 1/ε. This result answers the question posed by Allan Pinkus:
what is cardinality of the intersection of the ridge function manifold with the
unit ball in the space of polynomials of a given degree?

Let X be a Banach space and let B = {x ∈ X : ‖x‖ ≤ 1} the unit ball in X.
Denote by B(x, r) = rB + x the ball in X of radius r centered at the point x.
All logarithms henceforth are taken with respect to 2. Let F be some compact
set in the space X. For any positive number ε the ε-entropy of a set F in the
space X represents the quantity Hε(F, X) = log Nε(F, X), where Nε(F, X) is
the minimal number of elements in F those forms an ε-net, i.e.

Nε(F, X) = min

{
N : ∃ x1, ..., xN ∈ F such that F ⊂

N⋃
k=1

B(xk, ε)

}
.

Nε(F, X) is called the ε-covering number of the set F. In the class Rn consider
the intersection

Rn,s = Rn ∩ Pd
s

of the manifold Rn with the polynomial space Pd
s .
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Theorem 1.1 Let n, s ∈ N, 1 ≤ q ≤ ∞ and 0 < ε < 1. Then the ε-entropy num-
ber of the class Rn,s ∩ BLq in the space Lq satisfies the inequalities

1. if n ≤ sd−1, then

c1ns ≤ Hε(Rn,s ∩ BLq, Lq)

log 1
ε

≤ c2nsln,s, (1)

where ln,s = log 2esd−1

n ,
2. if n > sd−1, then

c′
1sd ≤ Hε(Rn,s ∩ BLq, Lq)

log 1
ε

≤ c′
2sd, (2)

where c1, c2, c2, c′
2 are constants depending only on d.

Consider another property of the manifold Rn,s. For a given vector h =
(h1, ..., hm) ∈ R

m we define the sgn-valued vector sgn h = (sgn h1, ..., sgn hm),
where sgn a = 1 for a ≥ 0, and sgn a = −1 for a < 0. For a set H ⊂ R

m, denote
by sgn H the set of vectors {sgn h : h ∈ H}. We denote by H + a the set
{h + a : h ∈ H}. For a finite set Q we denote by |Q| the cardinality of the
set Q.

Definition 1 Let R = {r} be a set of functions defined on R
d. The Vapnik-

Chervonenkis dimension dimVC R of the set R is defined as the maximal
natural number m such that there exists a collection {ξ1, ..., ξm} in R

d for which
the cardinality of the vector set S = {(sgn r(ξ1), ...sgn r(ξm)) : r ∈ R} equals 2m.
The quantity

dimp R = max
f

dimVC (R + f ),

where f runs over all functions defined on R
d, is called the pseudo-dimension

of the set R.

Theorem 1.2 Let n, s ∈ N. Then there are a constants c1, c2, c′
1, c′

2 depending
only on d, such that the pseudo-dimension of the set Rn,s satisfies the inequalities

1. if n ≤ sd−1, then c1ns ≤ dimpRn,s ≤ c2nsln,s,
2. if n > sd−1, then c′

1sd ≤ dimpRn,s ≤ c′
2sd.

Henceforth we denote by c, ci, c′
i, i = 0, 1, ... positive constants depending

only on the parameter d. For two positive sequences an and b n, n = 0, 1, ... we
write an � b n if there exist positive constants c1 and c2 such that c1 ≤ an/b n ≤
c2 for all n = 0, 1, ....
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2 Estimating entropy by the growth number

Let B be any convex body in the m-dimensional vector space R
m which satisfies

the symmetrical condition: if x = (x1, ..., xm) belongs to B, then every point
of the form (±x1, ..., ±xm) also belongs to B. We consider the linear normed
space lm

B consisting of vectors from R
m with the unit ball B and estimate the

ε-entropy of a compact set D by the growth number of D which is defined as
follows:

Definition 2 Given a set D ⊂ R
m define the number

Gr(D) = max{|sgn (D − a)| : a ∈ R
m},

which is called the growth number of the set D.

Theorem 2.1 Let M be any set in the space R
m and n = log Gr(M). Then for any

0 < ε < 1/2 the ε-covering number of the intersection of the set M with the unit
ball B satisfies the following inequality:

Nε(M ∩ B, lm
B) ≤

(
1
ε

)c0n

,

where c0 is some absolute constant.

We start with proving a few auxiliary statements. Let F be a compact body in
the space lm

B . We define the ε-capacity of the set F as the quantity Hc
ε(F, lm

B) =
log Nc

ε(F, lm
B), where Nc

ε(F, lm
B) is the maximal number of points such that their

pairwise-distances are at least ε, that is,

Nc
ε(F, lm

B) = max
{

N : ∃ x1, ..., xN ∈ F such that ‖xi − x j‖ ≥ ε, ∀ i 
= j
}
.

Nc
ε(F, X) is called the ε-capacity number of the set F.

Proposition 2.2 (see [4]) The ε-covering number and ε-capacity number of F
satisfy the following relationship:

Nc
2ε(F, lm

B) ≤ Nε(F, lm
B) ≤ Nc

ε(F, lm
B). (3)

We briefly denote Nε(D, lm
B) by Nε(D).

Lemma 2.3 Let M be any set in the space R
m, a ∈ R

m, and Gr(M) = 2n, r be a
positive number and B(a, r) = rB + a be a ball of radius r with center a. Then
for any positive number ε there exists a point a∗ ∈ B(a, r) such that

Nε (M ∩ B(a, r)) ≤ 2n Nε

(
M ∩ B

(
a∗,

2
3

r
))

.

Proof Introduce the set of vertices of the unit cube

�m = {δ = (δ1, ..., δm) : δi = ±1, i = 1, ..., m}
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in the space R
m. Consider in �m the subset Qa = sgn (M − a). Since Gr(M) =

2n, then for every a we have

|Qa| ≤ 2n. (4)

For every point δ ∈ �m we introduce the subset in the ball B(a, r)

B(a, r, δ) = {x ∈ B(a, r) : sgn (x − a) = δ}.
We have B(a, r) = ⋃

δ∈�m B(a, r, δ), and B(a, r, δ) ∩ B(a, r, δ′) = ∅ for any δ 
=
δ′ ∈ �m. From the definition of the set Qa we obtain

M ∩ B(a, r) =
⋃

δ∈�m

[M ∩ B(a, r, δ)] =
⋃

δ∈Qa

[M ∩ B(a, r, δ)] .

Then

Nε [M ∩ B(a, r)] ≤ Nε

[∪δ∈Qa(M ∩ B(a, r, δ))
]

≤
∑
δ∈Qa

Nε [M ∩ B(a, r, δ)] ≤ |Qa| Nε

[
M ∩ B(a, r, δ∗)

]
, (5)

where δ∗ is some vector in �m. Let 0 < λ < 1 be some number and a1, ..., as a
minimal λr-net of the set B(a, r, δ∗). Then s = Nλr [B(a, r, δ∗)]. Therefore, we
have the inequality

Nε

[
M ∩ B(a, r, δ∗)

] ≤
s∑

i=1

Nε [M ∩ B(ai, λr)] ≤ sNε [M ∩ B(ai∗ , λr)] (6)

for some 1 ≤ i∗ ≤ s. Put λ = 2/3. By Proposition 2.2 we have

s = Nλr
[
B
(
a, r, δ∗)] ≤ Nc

λr

[
B
(
a, r, δ∗)] ≤ V(B(a, r + λr/2, δ∗))

V(B(0, λr))

= 2−mV(B(a, r + λr/2))

V(B(0, λr))
= 2−m

(
r + λr/2

λr

)m

= 1.

Hence the inequality (6) implies

Nε

[
M ∩ B(a, r, δ∗)

] ≤ Nε

[
M ∩ B(ai∗ , 2r/3)

]
. (7)

By the union of the inequalities (5), (4), (6) and (7) we have

Nε [M ∩ B(a, r)] ≤ 2n Nε

[
M ∩ B(a, r, δ∗)

] ≤ 2n Nε

[
M ∩ B(ai∗ , 2r/3)

]
which proves the lemma. ��

Proof of Theorem 2.1 According to Lemma 2.3 there exists a sequence of
points a1, ..., ak belonging to the ball B which satisfies the inequalities

Nε [M ∩ B] ≤ 2n Nε

[
M ∩ B(a1, 2/3)

]
≤ 22n Nε

[
M ∩ B(a2, (2/3)2)

] ≤ ... ≤ 2kn Nε

[
M ∩ B(ak, (2/3)k)

]
.
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We choose k such that (2/3)k ≤ ε ≤ (2/3)k−1. Then

Nε [M ∩ B] ≤ 2kn Nε [M ∩ B(ak, ε)] = 2kn ≤ (1/ε)c0n,

where c0 = 1 + 1/ log(3/2). The theorem is proved. ��

3 The entropy of polynomial manifolds

Let α, β and ν be non-negative integers satisfying ν = α + β. Let z =
(z1, ..., zν) be any point in the space R

ν . We represent the point z as z = (u, v)

where u = (u1, ..., uα) and v = (v1, ..., vβ) are the corresponding projections of
z on the subspaces R

α and R
β .

Let s be any natural number. Consider the matrix Qm,α = (qi, j)
m, α
i=1, j=1

which consists of polynomials qi, j = qi, j(v) from the space Pβ
s . Construct the

polynomials of degree s + 1 on the space R
ν as follows:

pi(z) := pi(u, v) :=
α∑

j=1

u jqi, j(v), i = 1, ..., m. (8)

Introduce in the space R
m the polynomial manifold

M := Mm,s,ν,α := {(p1(z), ..., pm(z)) : z ∈ R
ν}. (9)

Theorem 3.1 Let B be any convex body in the vector space R
m such that if

z = (z1, ..., zm) belongs to B, then every point of the form (±z1, ..., ±zm) also
belongs to B. Let ν ≤ m. Then for any positive ε the ε-covering number of the
intersection of the manifold Mm,s,ν,α with the body B satisfies the inequality

Nε(Mm,s,ν,α ∩ B, lm
B) ≤

(
1
ε

)c0nm,s,ν,α

,

where nm,s,ν,α = log
[
(4s)β(ν + 1)β+2

( 2em
ν

)ν]
.

Using Theorem 2.1 we have

Nε(M ∩ B, lm
B) ≤

(
1
ε

)c0 log Gr(M)

, (10)

where Gr(M) is the growth number of the manifold M. Thus in order to
prove Theorem 3.1 we need to estimate the growth number Gr(M). This is
closely related to the estimation of the number of connected components of
polynomial manifolds as is done for instance in [2, 7, 13, 14].

Let p be a real polynomial from the space Pν
s , i.e., a polynomial on ν

variables of degree at most s. The set of points x ∈ R
ν on which a polynomial

p vanishes will be denoted by Z (p). Let D be a set in the space R
ν . We denote

by NCC(D) the number of connected components of the set D. Let p1, ..., pm
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be a collection of m real polynomials from Pν
s and consider the finite set of

sgn-valued vectors

E(p1, ..., pm) = {(sgn p1(z), ..., sgn pm(z)) : z ∈ R
ν}.

In order to estimate the growth number Gr(M) we need an estimate on
the cardinality of E(p1, ..., pm). Introduce in the space R

ν the domains
D=⋃m

i=1 Z (pi) and D′ =R
ν \ D. We denote by sgn p(z)=(sgn p1(z), ...,

sgn pm(z)). The vector function sgn p(z) is constant on any connected compo-
nent of the domain D′. Therefore the cardinality of the set E(p1, ..., pm) does
not exceed the number NCC(D′) of connected components of the domain D′.
Hence we now estimate the number NCC(D′).

Theorem 3.2 Let ν ≤ m and let p1, ..., pm be the polynomials defined in (8).
Then the number of connected components of the domain D′ = R

ν \ ⋃m
i=1 Z (pi)

satisfies the inequality

NCC(D′) ≤ (4s)β(ν + 1)β+2
(

2em
ν

)ν

.

Proof We use the following inequality of Warren (see [14], Th. 1,2): there exist
positive numbers δ1, ..., δm such that the number of connected components of
the set D′ satisfies the inequality

NCC(D′) ≤
∑

J

∑
ε j=±1, j∈J

NCC

⎛
⎝⋂

j∈J

Z (pj + ε jδ j)

⎞
⎠ , (11)

where J runs over all subsets of the set {1, ..., m}, and ε j with j ∈ J taking all
possible values ±1. ��

Let r1(v), ..., rn(v) be any n polynomials in the variable v ∈ R
β and let deg ri

be the degree of the polynomial ri. We set g = deg r1 + ... + deg rn. Consider
in the space R

β the manifold

R = {v : r1(v) ≥ 0, ..., rn(v) ≥ 0}.

Lemma 3.3 (Milnor [5], Th.3) The number NCC(R) of connected components
of the set R satisfies

NCC(R) ≤ 1
2
(2 + g)(1 + g)β−1.

From Milnor [5] it directly follows that the number of connected compo-
nents, NCC(R), is bounded from above by rank H∗(R) which is the rank of
full cohomology group H∗(R). Milnor obtained the estimate: rank H∗(R) ≤
1
2 (2 + g)(1 + g)β−1.
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Fix a subset J from the set {1, ..., ν}. Using Lemma 3.3 we estimate the
numbers

NCC

( ⋂
∈J

Z (pj + ε jδ j)

)
.

j

Without loss of generality we may take J = {1, ..., k}, and ε1 = · · · = εk =
−1, where k is the cardinality of the subset J.

Lemma 3.4 For any 1 ≤ k ≤ ν and positive numbers δ1, ..., δk, the following
inequality holds

NCC

(
k⋂

i=1

Z (pi − δi)

)
≤ (4s)β(k + 1)β+1.

Proof Consider the system of k linear equations⎧⎪⎨
⎪⎩

q11(v)u1 + . . . + q1α(v)uα = δ1
...

qk1(v)u1 + . . . + qkα(v)uα = δk

(12)

in the variables u1, ..., uα , with coefficients qij(v) and constants δi. For any fixed
v, denote by Dl(v) the sum of squares of all minors of order l of the matrix(
qij(z)

)k, α

i=1 j=1, and by Dl+1(v) the sum of squares of all minors of order l + 1 of
the extended matrix ⎛

⎜⎝
q11(v) . . . q1α(v) δ1

...
. . .

...
...

qk1(v) . . . qkα(v) δk

⎞
⎟⎠ .

It follows from a theorem of Kronecker-Capelli that the set V of all vectors
v ∈ R

β for which there exists a solution to the system (12) may be expressed as

V =
k−1⋃
l=1

Vl, Vl = {v ∈ R
β : Dl(v) > 0, Dl+1(v) = 0}. (13)

Since the qij(v) are polynomials of degree s then Dl(v) and Dl+1(v) are
polynomials of degree 2sl and 2s(l + 1), respectively. From the continuous
dependence of the solutions of (12) on the coefficients qij(v), when v runs over

some connected component of Vl, it follows that NCC
(⋂k

l=1 Z (pl − δl)
)

=
NCC(V). From (13) we have

NCC

(
k⋂

l=1

Z (pl − δl)

)
= NCC(V) ≤

k−1∑
l=1

NCC(Vl). (14)
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Note that for any l a set Vl may be represented as the set of solutions of the
system of inequalities

Dl(v) > 0, −Dl+1(v) ≥ 0. (15)

We claim that NCC(Vl) ≤ (4s(k + 1))β . Indeed, assume that NCC(Vl) ≥
μ + 1, where μ = (4s(k + 1))β . Then there exist μ + 1 disjoint components
Q1, ..., Qμ+1 of the set Vl. For each 1 ≤ i ≤ μ + 1, choose a point w∗

i in Qi.
Put γ = mini Dl(w

∗
i ), and note that γ > 0. Consider the set in R

β

V ′
l = {v : Dl(v) ≥ γ, −Dl+1(v) ≥ 0}.

From Lemma 3.3 it follows that the number of connected components of
the set V ′

l satisfies the inequality NCC(V ′
l ) ≤ 1

2 (2 + g)(1 + g)β−1, where g =
deg Dl + deg Dl+1. Since g ≤ 2sl + 2s(l + 1) ≤ 4s(k + 1) we have

NCC(V ′
l ) ≤ 1

2
(2 + 4s(k + 1))(1 + 4s(k + 1))β−1 ≤ (4s(k + 1))β = μ.

On the other hand, since V ′
l ∩ Qi 
= ∅ for all i = 1, ..., μ + 1, and Q1, ..., Qμ+1

do not intersect, then

NCC(V ′
l ) ≥ NCC(Vl) ≥ μ + 1

yielding a contradiction. Hence NCC(Vl) ≤ (4s(k + 1))β . From here and (14)
we obtain

NCC

(
k⋂

l=1

Z (pl − δl)

)
≤

k−1∑
l=1

NCC(Vl) ≤
k−1∑
l=1

(4s(k + 1))β ≤ (4s)β(k + 1)β+1.

Lemma 3.4 is proved. ��

We now continue the proof of Theorem 3.2. From the inequality of (11) and
Lemma 3.4 one obtains the following estimate for the number of connected
components of the set D′ = R

ν \ ⋃m
i=1 Z (pi)

NCC(D′) ≤
∑

J

∑
{ε j: j∈J}

(4s)β(k + 1)β+1

≤ (4s)β(α + β + 1)β+1
ν∑

k=1

(
m
k

)
2k

≤ 2ν(4s)β(ν + 1)β+1
ν∑

k=1

mk

k! ≤ (4s)β(ν + 1)β+2
(

2em
ν

)ν

,

where we make use of the condition α + β = ν ≤ m. Theorem 3.2 is proved.

Proof of Theorem 3.1 We estimate the growth number

Gr (M) = max{|sgn (M − a)| : a ∈ R
m}
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of the manifold M. Let a = (a1, ..., am) be a fixed point in R
m. Consider in

the space R
ν the domains Da = ⋃m

i=1 Z (pi − ai) and D′
a = R

ν \ Da. Since the
cardinality of the set sgn (M − a) does not exceed the number of connected
components of the set D′

a then

Gr (M) ≤ max
a∈Rν

NCC(D′
a). (16)

We have ν ≤ m. Therefore, from Theorem 3.2 for any a ∈ R
ν we obtain

NCC(D′
a) ≤ (4s)β(ν + 1)β+2

(
2em
ν

)ν

. (17)

Combining the inequalities (16), (17) and (10) we obtain the estimate for the
ε-covering number

Nε(M ∩ B, lm
B) ≤

(
1
ε

)c0n

,

where n = log
[
(4s)β(ν + 1)β+2

( 2em
ν

)ν]
. Theorem 3.1 is proved. ��

4 Proof of the main theorems

Let s be any natural number. Introduce in the interval [−1, 1] the collection
of 4s points ξi = cos (2i−1)π

8s , i = 1, ..., 4s. Set m = (4s)d. Consider in the cube
� = [−1, 1]d the finite lattice of points


m = {ξ = (ξi1 , ..., ξid) : i1, ..., id = 1, ..., 4s}.
Let lm

q be the normed space of functions consisting of polynomials P of the
space Pd

s with the norm

‖P‖lm
q

=
⎛
⎝ 1

m

∑
ξ∈
m

|P(ξ)|q
⎞
⎠

1/q

.

Denote by Bm
q the unit ball in the space lm

q . Consider in R
m the subset

Rm
n,s = {{P(ξ)}ξ∈
m : P ∈ Rn,s}

which is the restriction of functions of Rn,s to the lattice 
m.

Proposition 4.1 Let 1 ≤ q ≤ ∞. Then there is a constant c depending only on d
such that for any positive number

Nε(Rn,s ∩ BLq, Lq) ≤ Ncε(Rm
n,s ∩ Blm

q , lm
q ). (18)

Proof Let P be any polynomial from the space Pd
s . Then the following

inequality is true

‖P‖Lq ≤ c‖P‖lm
q
. (19)
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Indeed, by a change of variables xk = cos tk, k = 1, ..., d, we have

‖P‖q
Lq

=
∫

�

|P(x)|q dx =
∫

[0,π ]d
|P(cos t)|q w(t) dt ≤

∫
[0,π ]d

|P(cos t)|q dt,

where cos t = (cos t1, ..., cos td) and w(t) = ∏d
k=1 sin tk. From the known relation

(see [15]) we have ∫
[0,π ]d

|P(cos t)|q dt ≤ c
m

∑
ξ∈
m

|P(ξ)|q. (20)

Thus, the inequality (19) is proved. Note that (19) directly implies the inequal-
ity of (18). ��

Proposition 4.2 Consider in the set Rn,s the subset

R∗
n,s =

{
n∑

i=1

πi(ai · x) : πi ∈ P1
s , ai ∈ R

d

}
,

where πi are any univariate polynomials of degree at most s. Then Rn,s = R∗
n,s.

By the Weierstrass theorem we have Rn = ⋃
k≥s R∗

n,k, where A is the
closure of the function set A in the space of continuous functions on the ball
Bd. Therefore,

Rn,s =
⋃
k≥s

R∗
n,k ∩ Pd

s .

Since the set
(⋃

k≥s R∗
n,k

)⋂
Pd

s is not empty then

⋃
k

R∗
n,k

⋂
Pd

s =
(⋃

k

R∗
n,k

)⋂
Pd

s .

Therefore,

Rn,s =
(⋃

k

R∗
n,k

)⋂
Pd

s =
⋃

k

(
R∗

n,k

⋂
Pd

s

)
.

We show that for every k ≥ s the equality R∗
n,k ∩ Pd

s = R∗
n,s holds. Indeed,

if k = s then that is obvious. Let k > s and let π(x) = ∑n
i=1 πi(ai · x) be any

polynomial from the set R∗
n,k ∩ Pd

s where πi ∈ P1
k and ai ∈ R

d. For every i we

can represent the polynomial by πi(ai · x) = ∑k
j=0 cij(ai · x) j. Since the degree

of polynomial π is equal to s, then cij = 0 for any i and s + 1 ≤ j ≤ k. Therefore
the polynomial π belongs to R∗

n,s. Hence, R∗
n,k ∩ Pd

s ⊆ R∗
n,s. The inclusion

R∗
n,k ∩ Pd

s ⊇ R∗
n,s is obvious. Thus, Rn,s = R∗

n,s.
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Proposition 4.3 Let lm
B be the m-dimensional normed space R

m with a unit ball
B. Then the ε-covering number Nε(B, lm

B) of the ball B satisfies

(4ε)−m ≤ Nε(B, lm
B) ≤ (ε/3)−m.

It follows from Proposition 2.2 that

Nc
2ε(B, lm

B) ≤ Nε(B, lm
B) ≤ Nc

ε(B, lm
B), (21)

where Nc
ε(B, lm

B) is the ε-capacity number of the ball B. Denote by V(D) the
Lebesgue volume of a set D. Then we have the obvious inequalities:

Nc
ε(B, lm

B) ≤ max{n : V ((1 + ε) B) > nV
(ε

2
B
)
}

and

Nc
ε(B, lm

B) ≥ max{n : V((1 − ε)B) > nV(εB)}.
Therefore, since V(εB) = εmV(B) we obtain

(2ε)−m ≤ Nc
ε(B, lm

B) ≤ (ε/3)−m.

From here and (21) the statement of Proposition 4.3 directly follows.

Proof of Theorem 1.1 First we prove the right-hand inequalities in (1) and (2).
Assume that n ≤ sd−1. From Proposition 4.1 we have

Nε(Rn,s ∩ BLq, Lq) ≤ Ncε(Rm
n,s ∩ Blm

q , lm
q ). (22)

Using Theorem 2.1 we obtain

Ncε(Rm
n,s ∩ Blm

q , lm
q ) ≤

(
1
ε

)c0 log Gr(Rm
n,s)

, (23)

where Gr(Rm
n,s) is the growth number of the manifold Rm

n,s and c0 is some
absolute constant.

Given s, n and d we define m = (4s)d, α = (s + 1)n, β = dn and ν = α + β.
We show that the manifold Rm

n,s may be represent by the form (9), (8). By
Proposition 4.2 we have

Rm
n,s =

⎧⎨
⎩
{

P(ξ) =
n∑

k=1

πk(ak · ξ)

}
ξ∈
m

: πk ∈ P1
s , ak ∈ R

d

⎫⎬
⎭ .

We enumerate all points ξ from the lattice 
m by ξ1, ..., ξm. For fixed i we
consider the value

P(ξi) =
n∑

k=1

πk(ak · ξi) =
n∑

k=1

s∑
l=0

ck,l(ak · ξi)
l.

of the polynomial P in the point ξi and denote P(ξi) by Qi(c, a), that is consider
the polynomial Qi in variables c and a.

Enumerate the variables {ck,l}, where k = 1, ..., n, l = 0, ..., s by {u j}, j =
1, ..., α, α = n(s + 1).
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Let ak,1, ..., ak,d be the coordinates of vector ak. We enumerate the variables
{ak,r}, where k = 1, ..., n, r = 1, ..., d by {v j}, j = 1, ..., β, β = dn.

Let i is a fixed index. If the index j correspond to given indexes k and l then
we denote the functions (ak · ξi)

l by qi, j(v). Then we can rewrite the polynomial
Qi(c, a) by the form

Qi(c, a) := pi(u, v) :=
α∑

j=1

u j qi, j(v).

Thus, we represent (see (9), (8)) the manifold Rm
n,s by the form

M := Mm,s,ν,α := {(p1(u, v), ..., pm(u, v)) : (u, v) ∈ R
ν}.

Since n ≤ sd−1 then it is easy to see that ν ≤ m. Then according to inequalities
(16) and (17) we have the estimate for the growth number

Gr(Rm
n,s) = Gr(M) ≤ (4s)β(ν + 1)β+2

(
2em
ν

)ν

.

By a straightforward computation we obtain

Gr(Rm
n,s) ≤

(
2esd−1

n

)c1sn

, (24)

where c1 = 4d(2d + 1). Set c = c0c1. Using the inequalities (22), (23) and (24)
we then obtain

Nε(Rn,s ∩ BLq, Lq) ≤
(

1
ε

)c0 log Gr(Rm
n,s)

≤
(

1
ε

)cns log( 2esd−1
n )

. (25)

Thus the right-hand inequality in (1) is proved.
We prove the right-hand inequality in (2). Let n > sd−1. Denote by Qd

s the
subspace in Pd

s consisting of all homogeneous polynomials of degree s. We
know (see [7]) that

Pd
s = Rn,s (26)

for any n ≥ dimQd
s . Since (see [11]) dimQd

s = (s+d−1
s

) � sd−1, then

Nε(Rn,s ∩ BLq, Lq) ≤ Nε(Pd
s ∩ BLq, Lq).

Let Pd
s (
m) be the restriction of functions of the space Pd

s to the lattice 
m. We
have dimPd

s � sd. Applying the inequality (19) and Proposition 4.3 we have

Nε(Pd
s ∩ BLq, Lq) ≤ Ncε

(
Pd

s (
m) ∩ Blm
q , lm

q

)
≤
(

1
ε

)c′sd

. (27)

Thus, from (25) and (27) the right-hand inequalities in (2) directly follow.
Now we prove the left-hand inequalities in (1) and (2). Let A = {a1, ..., an}

be a fixed collection of points from R
d. Consider the linear subset in the set Rn,

Rn(A) =
{

n∑
i=1

gi(ai · x) : gi ∈ C(R)

}
,
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which is a linear space. Let n ≤ sd−1. Then 1
d!ns ≤ sd

d! ≤ dimPd
s . Construct the

sets Rn,s(A) = Rn(A) ∩ Pd
s and

R∗
n,s(A) =

{
n∑

i=1

πi(ai · x) : πi ∈ P1
s

}
. (28)

We can assume that the collection of points a1, ..., an is chosen such that the
dimension μ = dimR∗

n,s(A) of the linear space R∗
n,s(A) belongs to the interval

[ 1
d!ns, dimPd

s ].
By analogy with Proposition 4.2 we can show that R∗

n,s(A) = Rn,s(A). Also
we have R∗

n,s(A) ⊂ Rn,s. Hence

Nε(Rn,s ∩ BLq, Lq) ≥ Nε(R∗
n,s(A) ∩ BLq, Lq).

Using Propositions 4.2, 4.3 and 2.2 we obtain

Nε(R∗
n,s(A) ∩ BLq, Lq) ≥

(
1
ε

)cμ

.

Since μ ≥ c1ns, where c1 = 1
d! , then the left-hand inequality in (1) is proved.

If n > sd−1 then using the embedding (26) we have Pd
cs ⊂ R∗

n,s(A) with some
absolute constant c. Thus, we obtain μ ≥ dimPd

cs � sd. Therefore,

Nε(R∗
n,s(A) ∩ BLq, Lq) ≥

(
1
ε

)c1sd

,

that is the left-hand inequality in (2) is also proved. Theorem 1.1 has now been
completely proved. ��

Proof of Theorem 1.2 Assume that n ≤ sd−1. Set μ = dimPd
s . Let 
 be any

finite set of points in R
d. Denote by R


n,s the restriction of the set Rn,s on 
.
Then the following inequality holds:

dimp Rn,s = max
{
k : ∃ 
, a with |
| = k and a ∈ R

k s.t. |sgn(R

n,s − a)| = 2k}

≤ log max

: |
|≤μ

Gr(R

n,s).

In analogy to the inequality of (24) we can show that

Gr(R

n,s) ≤

(
2esd−1

n

)c1sn

,

for any 
 with |
| ≤ μ. Thus,

dimp Rn,s ≤ c1ns log2
2esd−1

n
. (29)
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Let n > sd−1. We know (see [1]) that the pseudo-dimension dimp L of a
linear finite-dimensional subspace L coincides with the dimension dim L of
L. Therefore,

dimp Rn,s ≤ dimp Pd
s = dimPd

s � sd. (30)

From (29) and (30). the right-hand inequalities of Theorem 1.2 are proved.
Prove the left-hand inequalities. Let n ≤ sd−1. Let A = {a1, ..., an} be a

collection of points from R
d such that dimRn,s(A) ≥ cns with some constant c.

Since Rn,s(A) is a linear subspace, then

dimp Rn,s ≥ dimp Rn,s(A) = dimRn,s(A) ≥ cns.

If n > sd−1 then for some set A = {a1, ..., an} the polynomial space Pd
s belongs

to Rn,s. Thus,

dimp Rn,s ≥ dimp Rn,s(A) = dimPd
s � sd.

Theorem 1.2 has been completely proved. ��
Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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