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Abstract We consider a class of structured cell population models described by a first or-
der partial differential equation perturbed by a general birth operator which describes in a
unified way a wide class of birth phenomena ranging from cell division to the McKendrick
model. Using the theory of positive stochastic semigroups we establish new criteria for an
asynchronous exponential growth of solutions to such equations.
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1 Introduction

Many physical and biological processes can be described in the following way. We have
collection of objects called individuals which are characterized by some parameter m which
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ranges from m = a to m = 1. The parameter m grows in time according to the equation

dm

dt
= g(m). (1)

Moreover, an individual can divide into, or give a birth to, new individuals. We denote by
bk(m), k = 1,2, . . . , the rates at which an individual with a parameter m produces k in-
dividuals. If such an individual produces k individuals, then by Pk(m,A) we denote the
probability that its descendant has the parameter located in the set A. Indeed, Pk is a tran-
sition probability function, i.e. for each m ∈ [a,1] the function A �→ Pk(m,A) defined on
the σ -algebra � of Borel subsets of [a,1] is a probabilistic measure and for each A ∈ � the
function m �→ Pk(m,A) is �-measurable. Then the individual with the parameter m has

P(m,A) =
∞∑

k=1

kbk(m)Pk(m,A) (2)

descendants with parameters in the set A in a unit of time and

b(m) =
∞∑

k=0

kbk(m) (3)

is the mean number of its descendants in a unit of time. It is obvious that P(m,A) ≤ b(m)

for each m and each A ∈ �. Further, by μ(m) we denote the rate of loss of individuals with
parameter m and we include in this rate the loss by death or by division. We mention that
the technical assumptions, summarized in Sect. 2, ensure that the rates b and P are finite
apart from possibly at m = 1 and thus the operators introduced below are well defined.

This general approach allows us to investigate different processes usually treated sepa-
rately. For example, if we consider the process of cell division into two daughter cells, then
P(m,A) = 2b2(m)P2(m,A) but the transition function P2(m,A) depends on the choice of
the parameter m even in the case of equal division. If m is the volume of a cell, then

P2

(
m,

{
m

2

})
= 1, (4)

but if m is the age of a cell, then

P2 (m, {0}) = 1. (5)

In the case of unequal division the transition function can be given by a stochastic kernel,
i.e.,

P2(m,A) =
∫

A

k(y,m)dy, (6)

where k is a nonnegative measurable function such that
∫ 1

a
k(y,m)dy = 1 for all m.

One of the areas in which such models have been used is that of cell replication and
maturation and these applications have been around for over 50 years, [6, 21, 22, 27, 31, 32].
A survey of many applications is given in the book edited by Metz and Diekmann [20]. Our
model includes models of a population of organisms reproducing by binary fission with
equal [8, 10, 12, 16, 17] and unequal division [2, 11, 13, 15]. Both types of binary fission
models were considered in [29]. Moreover, our general scheme includes the classical age
structured Sharpe-Lotka-McKendrick model [18, 30].

Our aim is to study the function N(t,m) which describes the distribution of the popu-
lation with respect to m; in other words, the number of individuals with the parameter m
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between m1 and m2 at a time t is given by the formula
∫ m2

m1
N(t,m)dm. The equation sat-

isfied by the function N depends on the choice of the transition function P . For instance, if
P is of the form (5), then N(t,m) satisfies a first order partial differential equation with an
integral boundary condition while in the cases (4) and (6) we obtain also a first order partial
differential equation but with an integral perturbation.

In order to unify the description of our process it is better to begin with the dual (back-
ward) equation

∂u

∂t
= g(m)

∂u

∂m
− μ(m)u(t,m) +

∫ 1

a

u(t, y)P(m,dy). (7)

Let ba(m) = P(m, {a}), i.e. ba(m) describes the rate at which the individuals with the pa-
rameter m produce individuals with the minimal parameter a, like in the age-structured
population model. We denote by P r the remaining part of the transition function P , i.e.
P r (m,A) = P(m,A \ {a}) and we assume that for each m the measure P r (m, ·) is abso-
lutely continuous with respect to the Lebesgue measure for a.e. m. Further, let br(m) =
P r (m, [a,1]). Then, by the Radon-Nikodym theorem, there exists an operator P defined on
the space

L1
b[a,1] =

{
f ∈ L1[a,1] :

∫ 1

a

|f (m)|br(m)dm < ∞
}

and with values in the space L1[a,1] such that for each nonnegative function f ∈ L1
b[a,1]

and each set A ∈ � we have
∫

A

Pf (y)dy =
∫ 1

a

P r (m,A)f (m)dm. (8)

If the distribution function N(t,m) is sufficiently regular, then it satisfies the following
equation

∂N

∂t
+ ∂(g(m)N)

∂m
= −μ(m)N(t,m) + PN(t,m), (9)

with the boundary condition

g(a)N(t, a) =
∫ 1

a

ba(m)N(t,m)dm (10)

and with the initial condition

N(0,m) = N0(m) for m ∈ [a,1]. (11)

The main aim of this paper is to reduce the problem to a Markov one by using the Perron
eigenvectors of (7) and (9) and then to apply the techniques of stochastic semigroups [19,
25, 26, 28, 29] to study asynchronous exponential growth (AEG) property of the system
(9)–(11). The idea of using Perron eigenvectors is not new and has been successfully used
for instance in [23, 24], where it was combined with the relative entropy technique to prove
the exponential decay of solutions. The stochastic semigroups techniques, used in this pa-
per, allow us to consider quite general singular growth and death rates as opposed to [24]
but, on the other hand, places some restrictions on the birth process. Thus our results are
complementary to those of [23, 24]. We note that instead one also can use known results on
compact semigroups but this would require analyzing the whole spectrum of the generator
which is rather difficult. In our method no compactness properties of the solution semigroup
are required.
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The most difficult part of the reduction of the problem to a Markov problem, which is the
cornerstone of our method, is to check that the Perron eigenvector of the adjoint equation is
bounded and separated from zero. It is then interesting to note that even a nonlinear model
of cell population (cf. [17]) can be reduced to a Markov semigroup.

2 Formulation of the Results

We collect all assumptions concerning our model. We assume that g : [a,1] → (0,∞) is
a continuously differentiable function (hence, in particular, g is bounded away from zero),
μ : [a,1) → [0,∞) and bk : [a,1) → [0,∞) are continuous functions. Further we assume
that for every m ∈ (a,1)

∫ 1

m

P(m, [a,m))dm > 0. (12)

This assumption has the following biological interpretation: for every m ∈ (a,1) there is a
mother with maturity greater than m which has daughters with maturity less than m. It means
that if (12) was not satisfied, then for some m all daughters of any mother with m ≥ m also
would have maturity greater than m and thus we could restrict the set of parameters to the
interval [m,1].

We also assume that a mother of maturity m cannot have daughters with maturity ex-
ceeding m − h, that is,

P(m, [a,m − h]) = 1 for all m ∈ [a,1]. (13)

Condition (13) can be rewritten in an equivalent form

P(m, (m − h,1]) = 0 for all m ∈ [a,1]. (14)

From (14) and the definition of b it follows in particular that b(m) = 0 for m ∈ [a, a + h].
We assume that inf{b(m) : m ∈ [1 − h,1)} > 0, which means that any cell with maturity
≥ 1 − h can divide. Another immediate consequence of (13) is that (Pf )(m) depends only
on values of f in [m + h,1] and, in particular, Pf = 0 on [1 − h,1]. Since the maximal
value of the parameter m is 1, we have to assume that

∫ 1
a

μ(m)dm = ∞, that is, all cells die
or divide before or at reaching maturity 1. Moreover, there is a constant C̄ > 0 such that

C̄−1μ(m) ≤ b(m) ≤ C̄μ(m) for m ≥ 1 − h. (15)

Remark 1 The assumption (15) is natural because μ(m) includes the rate of loss by division.
For example if we consider only the division into two cells then μ(m) = μ0(m)+b2(m) and
b(m) = 2b2(m), where μ0(m) is the mortality rate and b2(m) is the division rate. In this case
we can assume that μ0(m) is a bounded function and b2(m) is a strictly positive function for
m ≥ 1 − h, which implies (15).

Let P be defined by (8) and denote by Aba the differential operator −(gN)′ − μN re-
stricted to the domain

D(Aba ) = {N ∈ L1[a,1] ∩ AC(a,1) : μN, (gN)′ ∈ L1[a,1],N satisfies (10)},
where AC(a,1) denotes the space functions which are absolutely continuous on each com-
pact subinterval of [a,1).
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Theorem 1 The operator (Aba +P,D(Aba )) generates a strongly continuous positive semi-
group, denoted {T (t)}t≥0, on L1[a,1].

The proof of Theorem 1 is given in Sect. 3. The main result of the paper is the following
theorem on asynchronous exponential growth of the population.

Theorem 2 Assume that one of the following conditions holds:

(I) there exists a measurable function q : [a,1] × [a,1] → [0,∞) such that
∫ 1

a

∫ 1

a

q(y,m)dmdy > 0 and P(m,A) ≥
∫

A

q(y,m)dy (16)

for any m ∈ [a,1] and A ∈ �,
(II) there exist m0 ∈ (a,1), ε > 0 such that ba(m) > 0 for m ∈ (m0 − ε,m0 + ε),

(III) there exist m0 ∈ (a,1), ε > 0 and a C1-function r : (m0 −ε,m0 +ε) → [a,1] such that
g(r(m0)) 
= r ′(m0)g(m0) and

P(m, {r(m)}) ≥ ε for m ∈ (m0 − ε,m0 + ε). (17)

Then there exist a continuous function f∗: [a,1] → [0,∞), f∗(m) > 0 for m ∈ (a,1) and
a continuous function w: [a,1] → (0,∞) such that e−λtN(t, ·) converges in L1[a,1] to
f∗

∫ 1
a

N(0,m)w(m)dm.

Condition (I) amounts to m �→ P r (m, ·) being not zero almost everywhere. The proof of
Theorem 2 is given in Sects. 5 and 6. It should be noted that in some special cases none
of conditions I, II, III holds. For example, if m is the weight of a cell, g(m) = m and we
have equal division, that is, P(m,A) = 2 if m/2 ∈ A and P(m,A) = 0 if m/2 /∈ A. Then the
weight of daughter cells at any given time does not depend on the moment of division. In
this case the distribution of masses of daughters strongly depends on the initial distribution.
Of course in this case the semigroup {T (t)}t≥0 has no asynchronous exponential growth. An
interesting example of a linear population model which has no asynchronous exponential
growth property is a model with telomere loss [3].

3 Proof of Theorem 1

Consider the ‘formal’ equation for the resolvent of Aba ,

λN(m) + (g(m)N(m))′ + μ(m)N(m) = f (m),

whose solution is given by

Nλ(m) = e−λG(m)−Q(m)

g(m)

∫ m

a

eλG(s)+Q(s)f (s) ds + C
e−λG(m)−Q(m)

g(m)
, (18)

where G(m) = ∫ m

a
(1/g(s)) ds and Q(m) = ∫ m

a
(μ(s)/g(s)) ds. To shorten notation we de-

note

e−λ(m) := e−λG(m)−Q(m), eλ(m) := eλG(m)+Q(m)

and note two useful formulae. For s ∈ [a,1)
∫ 1

s

e−λG(m)

g(m)
dm = − 1

λ

∫ 1

s

d

dm
e−λG(m) dm ≤ e−λG(s)

λ
(19)
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and, adding and subtracting λ in the numerator below and noting that e−λ(1) = 0, similarly
we obtain

∫ 1

s

μ(m)e−λ(m)

g(m)
dm = e−λ(s) − λ

∫ 1

s

e−λ(m)

g(m)
dm. (20)

Returning to (18) and arguing as in [5] with help of (19) and (20) we see that the first term
in (18)

Nλ,0(m) = e−λ(m)

g(m)

∫ m

a

eλ(s)f (s) ds

is the resolvent R(λ,A0) of the operator A0 corresponding to the homogeneous Dirichlet
boundary condition at m = a and it satisfies

∫ 1

a

Nλ,0(m)dm ≤ 1

λ
‖f ‖, λ > 0, (21)

∫ 1

a

μ(m)Nλ,0(m)dm ≤ ‖f ‖. (22)

We introduce the notation 〈f,g〉 := ∫ 1
a

f (m)g(m)dm. To deal with the boundary term, we
let m → a in (18) and, using the boundary condition, we obtain

Nλ(m) = Nλ,0(m) + e−λ(m)〈ba,Nλ〉
g(m)

which can be solved for 〈ba,Nλ〉, yielding

〈ba,Nλ〉 = 〈ba,Nλ,0〉
1 − 〈ba, g−1e−λ〉 ,

provided �(λ) := 〈ba, g−1e−λ〉 < 1. Let us consider this condition. Using (15), we see that
�(λ) ≤ C̄

∫ 1
a

μ(s)
e−λ(s)

g(s)
ds. Since μe−λ/g ≤ μe−Q/g, with the latter function integrable by

(20), the Lebesgue dominated convergence theorem yields �(λ) → 0 as λ → ∞. Thus, for
some λ̄ and b∞ < 1, 〈ba, g−1e−λ〉 ≤ b∞ for all λ > λ̄ and for such λ, using (19) with s = a

and (22), we have the estimate

‖Nλ‖ ≤ ‖Nλ,0‖ + 1

λ

∣∣∣∣
〈ba,Nλ,0〉

1 − 〈ba, g−1e−λ〉
∣∣∣∣ ≤ ‖Nλ,0‖ + C̄

λ

‖f ‖
1 − b∞

≤ 1 + C̄ − b∞
(1 − b∞)λ

‖f ‖.

By the previous calculations μe−λ/g is integrable and thus R(λ,Aba ) for λ > λ̄ is defined
by

R(λ,Aba )f = R(λ,T0)f + e−λ

g

〈ba,R(λ,T0)f 〉
1 − 〈ba, g−1e−λ〉 . (23)

Next we prove that for any λ > 0

lim
m→1− eλ(m)

∫ 1

m

e−λ(m
′)

g(m′)
dm′ = 0. (24)

Indeed, consider the family of functionals {ξm}m∈(1−ε,1] for some ε > 0 defined by

ξmf = eλ(m)

∫ 1

m

e−λ(m
′)

g(m′)
f (m′) dm′

for f ∈ L1[a,1]. We have

|ξmf | ≤ eλ(m)

∫ 1

m

e−λ(m
′)

g(m′)
|f (m′)|dm′ ≤ cg

∫ 1

a

|f (m′)|dm′
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on account of monotonicity of eλ with cg = 1/ infm∈[a,1] g(m) < +∞ by assumption. More-
over, for f with support in [a,1 − δ] with any δ > 0 we have limm→1− ξmf = 0 and, by
a corollary to the Banach-Steinhaus theorem, the above limit extends by density for any
f ∈ L1[a,1] and, in particular, for f ≡ 1 which yields (24).

Now, we observe that λ̄, defined before (23), is universal for all ba satisfying ba ≤ C̄μ.
Let us consider ba

μ = C̄μ. Then, for f ≥ 0 and fixed λ > λ̄, we have

‖R(λ,Aba
μ
)f ‖ = ‖R(λ,A0)f ‖ + 〈ba

μ,R(λ,A0)f 〉
1 − 〈ba

μ, g−1e−λ〉
∫ 1

a

e−λ(m)

g(m)
dm =

∫ 1

a

f (s)�(s) ds

where, by (20),

�(s) = eλ(s)

∫ 1

s

(1 + C ′μ(m))e−λ(m)

g(m)
dm = C ′ + (1 − C ′λ)eλ(s)

∫ 1

s

e−λ(m)

g(m)
dm (25)

with

C ′ = C̄

1 − 〈ba, g−1eλ〉
∫ 1

a

e−λ(m)

g(m)
dm.

Now, � is a continuous function on [a,1] by (24) and it is strictly positive on [a,1) as both
the integrand and eλ are positive on this interval. Moreover, if s → 1− then, again by (24), the
rightmost term of (25) converges to zero and �(s) → C ′ > 0. Thus �(s) ≥ C0 > 0 on [a,1],
where C0 is a constant and therefore ‖R(λ,Aba

μ
)f ‖ ≥ C0‖f ‖ for any λ > λ̄. It is a classical

result, see e.g. [14], that Aba
μ

is densely defined. Thus, by the Arendt-Batty-Robinson theo-
rem, [1, Theorem 2.5] or [4, Theorem 3.39], the operator (Aba

μ
,D(Aba

μ
)) generates a positive

semigroup. Since we are in an Lp space, the type of the semigroup equals the spectral bound
of Aba

μ
.

Now let us consider an arbitrary ba satisfying ba ≤ C̄μ. Then, by (23), for all λ ≥ λ̄,
0 ≤ R(λ,Aba ) ≤ R(λ,Aba

μ
) and hence 0 ≤ Rn(λ,Aba ) ≤ Rn(λ,Aba

μ
). Since Aba

μ
generates a

semigroup, its resolvent satisfies the Hille-Yosida estimates and hence also ‖Rn(λ,Aba )‖ ≤
M(λ − λ̄)−n, for some M > 0 and all n ∈ N. Thus, (Aba ,D(Aba )) generates a positive
semigroup.

In the last step we analyze the operator PR(λ,Aba ) and, more precisely, its spectral
radius r(PR(λ,Aba )). The key observation is that, by (14), the support of Pf is contained
in [a,1 − h] for any f ∈ L1[a,1]. Thus, by writing

(PR(λ,Aba ))nf = (PR(λ,Aba ))n−1PR(λ,Aba )f,

we can consider the powers (PR(λ,Aba ))nf with n ≥ 2 as acting on L1[a,1 − h]. Also,
since we deal with positive operators, we can restrict ourselves to nonnegative functions.
Hence, let 0 ≤ v ∈ L1[a,1 − h]. Then we can write

(R(λ,A0)v)(m) =
{

(R(λ,A′
0)v)(m) for m ∈ [a,1 − h),

e−λ(m)

g(m)
Lλ(v) for m ∈ [1 − h,1],

where A′
0 is the operator A0 restricted to [a,1 − h) and

Lλ(v) =
∫ 1−h

a

eλ(s)v(s) ds ≤ eλ(1 − h)‖v‖.
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Hence
∫ 1

a

(PR(λ,A0)v)(m)dm

=
∫ 1

a

br(m)(R(λ,A0)v)(m)dm

=
∫ 1−h

a

br(m)(R(λ,A′
0)v)(m)dm + Lλ(v)

∫ 1

1−h

br(m)e−λ(m)

g(m)
dm

≤ supm∈[a,1−h] br(m)‖v‖
λ

+ ‖v‖
∫ 1

1−h

br(m)e−λ(G(m)−G(1−h))−Q(m)+Q(1−h)

g(m)
dm,

where we used the standard result that the transport problem with homogeneous Dirichlet
boundary conditions and bounded coefficients generates a contractive semigroup. As for
the second term, we note that G(m) > G(1 − h) for m > 1 − h as R is strictly increas-
ing. Also, bre−λ/g ≤ bre−Q/g and the latter is integrable by (15) and (20). Thus, from the
Lebesgue dominated convergence theorem, the integral converges to 0 as λ → ∞ and we
can write ‖PR(λ,A0)v‖ ≤ c1(λ)‖v‖ for any 0 ≤ v ∈ L1[a,1] with support in [a,1 − h],
where c1(λ) → 0 as λ → ∞.

Next, for such functions v, again using (15) and argument as above, we find that
∫ 1

a

P

(
e−λ

g

〈ba,R(λ,A0)v〉
1 − 〈ba, g−1e−λ〉

)
(m)dm = 〈ba,R(λ,A0)v〉

1 − 〈ba, g−1e−λ〉
∫ 1

a

br(m)e−λ(m)

g(m)
dm

≤ c2(λ)

1 − c3(λ)
c3(λ)‖v‖ = c4(λ)‖v‖,

where c3(λ), and hence c4(λ), tend to 0 as λ → ∞. Now, for arbitrary f ∈ L1[a,1], for
r(PR(λ,Aba )) we take λ > λ̄ and such that c1(λ) + c4(λ) < 1/2. Then

‖(PR(λ,Aba ))nf ‖ ≤ ‖(PR(λ,Aba ))n−1‖‖PR(λ,Aba )‖‖f ‖ ≤ 1

2n−1
‖PR(λ,Aba )‖‖f ‖

and

r(PR(λ,Aba )) = lim
n→∞

n
√‖(PR(λ,Aba ))n‖ ≤ 1

2
.

Hence, for sufficiently large λ the resolvent R(λ,Aba + P ) is given by a norm converging
series of positive operators and thus it is a positive operator. Therefore we can apply Desch’s
theorem, see e.g. [7] or [4, Theorem 5.13], to claim that (Aba ,D(Aba )) generates a positive
semigroup. �

Remark 2 Arguing as in (24) for R(λ,A0) and using e−λ(m)/g(m) → 0 as m → 1− we see
from (23) that if u ∈ D(Aba ) then

lim
m→1− u(m) = 0. (26)

4 Reduction of {T (t)}t≥0 to a Stochastic Semigroup

Equation (7) can be rewritten as an evolution equation

u′(t) = Bu(t), (27)
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where

Bf (m) = g(m)f ′(m) − μ(m)f (m) +
∫ 1

a

f (y)P(m,dy). (28)

We recall that a positive semigroup is called stochastic if it is conservative on nonnegative
initial data. The semigroup {T (t)}t≥0 of Theorem 1 in general is not stochastic. However,
using a suitable eigenvectors of the operator B , given by (28), we are able to construct a
semigroup {U(t)}t≥0 which is similar to {T (t)}t≥0 and which is stochastic. This will facili-
tate analysis of stability of {T (t)}t≥0.

We begin with the following proposition.

Proposition 1 The operator B has an eigenvector w which satisfies the following inequali-
ties

α ≤ w(m) ≤ β for all m ∈ [a,1),

where 0 < α < β .

We divide the proof of Proposition 1 into a sequence of lemmata.
First observe that Bwλ = λwλ if and only if wλ is a bounded function such that wλ

is absolutely continuous in each interval [a,1 − ε], ε > 0, and wλ satisfies the following
equation

w′
λ(m) = dλ(m)wλ(m) − 1

g(m)
Fwλ(m), (29)

where

dλ(m) = μ(m) + λ

g(m)
, and Ff (m) =

∫ 1

a

f (y)P(m,dy). (30)

We note that due to (8) and the domain of definition of P , the function Ff is locally inte-
grable on [a,1) for any f ∈ L∞[a,1]. The following lemma gathers some properties of the
operator F .

Lemma 1 Let z ∈ [a + h,1]. If w1,w2 ∈ L∞[a,1] and w1(m) = w2(m) for m ∈ [a, z − h],
then Fw1(m) = Fw2(m) for m ∈ [a, z].

Proof Let w ∈ L∞[a,1]. As P(m, (z − h,1]) = 0 for m ∈ [a, z] we have

Fw(m) =
∫ z−h

a

w(y) P(m,dy), for m ≤ z. (31)

Applying formula (31) to the function w = w1 − w2 we get Fw1(m) = Fw2(m) for m ∈
[a, z]. �

By Lemma 1, the restriction of the function Fwλ to the interval [a, z], z ∈ [a + h,1],
depends only on the restriction of wλ to the interval [a, z − h]. In particular Fwλ(m) = 0
for m ∈ [a, a + h]. This implies that equation (29) takes the form

w′
λ(m) = dλ(m)wλ(m) for m ∈ [a, a + h]. (32)

If we assume that wλ(a) = 1, then equation (32) has a unique continuous solution. Since
the function Fwλ, restricted to [a + h,a + 2h], depends only on the function wλ restricted
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to [a, a + h] and it is integrable on [a, a + 2h], equation (29) has a unique solution in the
interval [a, a + 2h] such that wλ(a) = 1. This solution is an absolutely continuous function
and depends continuously on λ. Using this method we can solve (29) successively for m ∈
[a + 2h,a + 3h], . . . . We summarize the above observation.

Lemma 2 For every λ ∈ R equation (29) has the unique solution wλ : [a,1) → R such that
wλ(a) = 1. The solution wλ is an absolutely continuous function in each interval [a,1 −
ε], ε > 0. This solution depends continuously on λ, i.e. for every ε > 0 the map ϕ : R →
C[a,1 − ε] given by ϕ(λ) = wλ is continuous.

Lemma 3 There exists λ1 > 0 such that for every λ ≥ λ1 the function wλ is increasing.

Proof Let λ1 be a constant such that

λ1 > b(m) + C̄

h
g(m) for m ≤ 1 − h

2
. (33)

Since b(m) = 0 for m ≤ a + h, the function wλ satisfies the equation w′
λ = dλwλ in the

interval [a, a + h]. Further, dλ > 0 implies that wλ is increasing in [a, a + h]. Now, we
assume that wλ is increasing in [a,m0], where m0 ≤ 1 − 3

2h. We claim that wλ is increasing
in the interval [a,m0 + h]. Indeed, from (31) we have

Fwλ(m) ≤ b(m)max{wλ(x) : x ∈ [a,m − h]} ≤ b(m)wλ(m0)

for m ∈ [m0,m0 + h]. Thus

w′
λ(m) = dλ(m)wλ(m) − 1

g(m)
Fwλ(m) ≥ 1

g(m)
(λwλ(m) − b(m)wλ(m0)) (34)

for m ∈ [m0,m0 + h]. Since λ > b(m) for m ≤ 1 − h
2 and since the function wλ is lo-

cally absolutely continuous inequality, (34) implies that wλ is increasing in the interval
[m0,m0 +h]. Hence, the function wλ is increasing in the interval [a,1 − h

2 ]. Moreover, (33)

and the inequality Fwλ(m) ≤ b(m)wλ(m) for m ≤ 1 − h
2 imply that w′

λ(m) ≥ C̄
h
wλ(m) and,

consequently,

wλ

(
1 − h

2

) ≥ e
C̄
h

h
2
wλ(1 − h) > C̄wλ(1 − h). (35)

From (35) we obtain

Fwλ(m) ≤ b(m)wλ(1 − h) < C̄−1b(m)wλ

(
1 − h

2

)
≤ μ(m)wλ

(
1 − h

2

)
(36)

for m ∈ [1 − h,1]. Since dλ(m) >
μ(m)

g(m)
, inequality (36) implies that

w′
λ(m) = dλ(m)wλ(m) − 1

g(m)
Fwλ(m) > dλ(m)

[
wλ(m) − wλ

(
1 − h

2

)]
.

Writing this inequality as [wλ(m) − wλ(1 − h/2)]′ > dλ(m)[wλ(m) − wλ(1 − h/2)], we
find wλ(m) > wλ(1 − h/2) for m ≥ h/2 and consequently the function wλ is increasing in
[1 − h

2 ,1). �

Lemma 4 There exists λ2 such that for each λ ≤ λ2 the function wλ has a zero in the interval
(a,1).
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Proof Let m̃ ∈ (a + h,1) be a point such that b(m̃) > 0. Since b is a continuous function,
there exist positive constants ε, δ such that δ < h, m̃ + δ < 1 and

b(m) ≥ ε for m ∈ [m̃ − δ, m̃ + δ]. (37)

Let us denote αλ = max{dλ(m) : m ≤ m̃ + δ} and choose λ2 such that for every λ ≤ λ2 we
have αλ < 0 and

εδe−αλ(h−δ) > g(m) for m ≤ m̃ + δ. (38)

We prove that the function wλ has a zero in the interval [a, m̃+ δ]. Conversely, suppose that
wλ(m) > 0 in the interval [a, m̃ + δ]. Since w′

λ(m) ≤ αλwλ(m) for m ≤ m̃ + δ, the function
wλ is decreasing in the interval [a, m̃ + δ] and

wλ(m) ≥ e−αλ(m̃−m)wλ(m̃) for m ≤ m̃. (39)

From inequality (37) it follows that

Fwλ(m) ≥ ε inf{wλ(x) : x ≤ m − h} = εwλ(m − h) (40)

for m ∈ [m̃ − δ, m̃ + δ]. From (39) and (40) it follows that

Fwλ(m) ≥ εe−αλ(m̃−m+h)wλ(m̃) ≥ εe−αλ(h−δ)wλ(m̃). (41)

Inequalities (38), (41) and w′
λ(m) ≤ − 1

g(m)
Fwλ(m) imply that

w′
λ(m) ≤ −εe−αλ(h−δ) 1

g(m)
wλ(m̃) < −1

δ
wλ(m̃). (42)

Thus

wλ(m̃ + δ) < wλ(m̃) − δ
(1

δ
wλ(m̃)

)
= 0 (43)

and therefore the function wλ has a zero in the interval [a, m̃ + δ]. �

Now we denote by � the subset of R which contains all constants λ ∈ R such that
wλ(mλ) = 0 for some mλ ∈ (a,1). According to Lemma 4 the set � is nonempty and, by
Lemma 3, it is bounded from above. Let λs = sup�.

Lemma 5 There exists α > 0 such that wλs (m) ≥ α for m ∈ [a,1).

Proof The solution wλ depends continuously on λ. From this and from the definition of
λs , it follows that wλs (m) ≥ 0 for m ∈ [a,1). We claim that wλs (m) > 0 for m ∈ [a,1).
Suppose, contrary to our claim, that there exists ms ∈ (a,1) such that wλs (ms) = 0 and
wλs (m) > 0 for m ∈ [a,ms). Since wλs ≥ 0, we have Fwλs ≥ 0. Thus the function wλs

satisfies the inequality w′
λs

≤ dλs wλs and the condition wλs (ms) = 0. By standard arguments
from the theory of differential inequalities we obtain wλs (m) ≤ 0 for m ≥ ms . On the other
hand, the function wλs is nonnegative. Thus wλs (m) = 0 for m ≥ ms and from (29) we have
Fwλs (m) = 0 for m ≥ ms . But since wλs (m) > 0 for m ∈ [a,ms), inequality (12) implies
that

∫ 1
ms

Fwλs (m)dm > 0, which contradicts the fact that Fwλs (m) = 0 for m ∈ [ms,1).
Thus wλs (m) > 0 for m ∈ [a,1). Let ε = minm≤1−h wλs (m). Since Pk(m, [a,1 − h]) = 1
and wλs ≥ ε1[a,1−h] we have, using also (31),

Fwλs (m) ≥ εF1[a,1−h](m) = ε

∞∑

k=1

kbk(m)Pk(m, [a,1 − h]) = εb(m), m ∈ [a,1).

(44)
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This implies that for all m ∈ (a,1)

w′
λs

(m) ≤ dλs (m)wλs (m) − εj (m), (45)

where j (m) = b(m)/g(m). From (15) it follows that there exists a constant γ > 1 such
that dλs (m) ≤ γj (m) for m ≥ 1 − h. We check that wλs ≥ α, where α = ε/2γ . Conversely,
suppose that for some m0 ∈ (1 − h,1) we have wλs (m0) < α. Then wλs (m) < α for m ∈
[m0,1). Indeed, if there exists m1 > m0 such that wλs (m1) = α and wλs (m) ≤ α for m ∈
[m0,m1], then from

w′
λs

(m) ≤ dλs (m)wλs (m) − εj (m) < −ε

2
j (m) < 0, m ∈ [m0,m1], (46)

it follows that wλs (m) < α for m ∈ [m0,m1], which contradicts the definition of m1. Thus
wλs (m) < α for m ∈ [m0,1). From (46) it follows that

wλs (m) − wλs (m0) =
∫ m

m0

w′
λs

(x) dx ≤ −ε

2

∫ m

m0

j (x) dx. (47)

However, since
∫ 1

m0
j (x) dx = ∞, (47) yields limm→1 wλs (m) = −∞, which contradicts the

fact that wλs ≥ 0 and completes the proof that wλs ≥ α. �

Lemma 6 There exists β > 0 such that wλs (m) ≤ β for m ∈ [a,1).

Proof Now we show that there exists β > 0 such that wλs ≤ β . Let M > 0 be such that
wλs (m) < M for m ∈ [a,1 − h]. Let

γ = max
m≤1

|λs | + 1

g(m)
and β = C̄eγ M. (48)

We claim that wλs ≤ β . Suppose to the contrary that there exists m̄ ∈ (1 − h,1) such that
wλs (m̄) > β . From the continuous dependence of the functions wλ on λ it follows that there
exists λ ∈ � such that |λ−λs | < 1, wλ(m̄) > β , wλ(m) > 0 for m ∈ [a, m̄], and wλ(m) < M

for m ∈ [a,1 − h]. According to (31) we have

Fwλ(m) ≤ Mb(m) for m ∈ [a,1]. (49)

Since

dλ(m) = λ + μ(m)

g(m)
≥ −γ + μ(m)

g(m)
≥ −γ + C̄−1j (m), (50)

the function wλ satisfies the inequality

w′
λ(m) ≥ (−γ + C̄−1j (m))wλ(m) − Mj(m) ≥ −γwλ(m) (51)

provided that wλ(m) ≥ C̄M . However, wλ(m̄) > β = C̄eγ M > C̄M hence wλ ≥ C̄M in
some neighborhood of m̄. Then, in this neighborhood, (51) yields

wλ(m) ≥ e−γ (m−m̄)wλ(m̄) > e−γ β = C̄M (52)

and, due to the strict inequality, we can extend (51) to a larger domain. Consequently,
wλ(m) > C̄M for m ∈ [m̄,1) and hence wλ(m) > 0 for all m ∈ [a,1), which is impossi-
ble because λ ∈ � and the function wλ has a zero in the interval [a,1). This implies that
wλs ≤ β . �

Now, denote by Mw the operator of multiplication by the solution w of (29) for an ap-
propriate λ ∈ R. Since w is an absolutely continuous function w: [a,1) → (0,∞) satisfying
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α ≤ w(m) ≤ β for all m ∈ [a,1), where 0 < α < β , Mw is an isomorphism of L1[a,1].
Defining

U(t) = e−λtMwT (t)Mw−1 , (53)

we see that {U(t)}t≥0 is a strongly continuous positive semigroup on L1[a,1] with the gen-
erator

Au = Mw(Aba + P )Mw−1u − λu = w′gu

w
− (gu)′ − μu + wP

( u

w

)
− λu

= −(gu)′ − u

w

∫ 1

a

w(y)P(·, dy) + wP
( u

w

)
(54)

on the domain D(A) = Mw−1D(Aba ). In particular, for u ∈ D(A)

g(a)u(a) =
∫ 1

a

ba(m)w(a)

w(m)
u(m)dm. (55)

Since for u ∈ D(A) the last two terms in the definition of A are in L1[a,1] (as u/w ∈
L1

b[a,1]), also (gu)′ ∈ L1[a,1] and we can integrate termwise to get

∫ 1

a

(Au)(m)dm

= g(a)u(a) − lim
m→1− g(m)u(m)

−
∫ 1

a

u(m)

w(m)

(
w(a)ba(m) +

∫ 1

a

w(y)P r (m,dy)

)
dm

+
∫ 1

a

w(m)
(
P

( u

w

))
(m)dm

= −
∫ 1

a

u(m)

w(m)

∫ 1

a

w(y)P r (m,dy)dm +
∫ 1

a

w(m)
(
P

( u

w

))
(m)dm = 0,

where we used in the following order, (26), definition of ba and P r , (55) and the definition
of the operator P . Thus, we have proved

Proposition 2 {U(t)}t≥0 is a stochastic semigroup on L1[a,1].

5 Invariant Density

We need some auxiliary definitions. Denote by D the set of all densities i.e., the set defined
by

D =
{
f ∈ L1[a,1] : f ≥ 0,

∫ 1

a

f (m)dm = 1

}
.

A density f∗ is called invariant under a stochastic semigroup {U(t)}t≥0 if U(t)f∗ = f∗ for
every t ≥ 0.

Now we will investigate the existence of an invariant density of the semigroup {U(t)}t≥0.
Before, however, we introduce some simplifying notation. Let b̃(m) = ba(m)w(a)/w(m)

and Rf = wP(
f

w
). Then, using (8), we can write 1

w
P ∗w = R∗1
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Since Rf = wP(
f

w
) and 0 < α ≤ w(m) ≤ β for m ∈ [a,1], we have

α

β
Pf ≤ Rf ≤ β

α
Pf (56)

for f ≥ 0, f ∈ L1
b[a,1]. We also have

α

β
br(m) ≤ R∗1(m) ≤ β

α
br(m) and

α

β
ba(m) ≤ b̃(m) ≤ β

α
ba(m) (57)

for m ∈ [a,1].

Proposition 3 The semigroup {U(t)}t≥0 has a unique invariant density v∗ ∈ D(A). Addi-
tionally, v∗ > 0 on (a,1) and v∗(1) = 0.

Proof An invariant density v∗ of the semigroup {U(t)}t≥0 is a solution of the following
stationary system

(g(m)v(m))′ = −b̃(m)v(m) − R∗1(m)v(m) + Rv(m), (58)

g(a)v(a) =
∫ 1

a

b̃(m)v(m)dm. (59)

We check that the system (58)–(59) has a unique solution such that v(1−h) = 1. First, since
Rv(m) = 0 for m ≥ 1 − h, in the interval [1 − h,1] the function v satisfies the differential
equation v′(m) = −γ (m)v(m), where γ (m) = (g′(m) + b̃(m) + R∗1(m))/g(m). Hence

v(m) = exp

{
−

∫ m

1−h

γ (y) dy

}

for m ≥ 1 − h. Arguing as in the proof of Theorem 1, by (57), limm→1− v(m) = 0 and∫ 1
1−h

b(m)v(m)dm < ∞. Since, as the operator P , Rv(m) only depends on values of v on
[m + h,1], the last inequality implies that Rv(m) is a well defined and integrable function
on [1 − 2h,1 −h]. Thus we can solve equation (58) on the interval [1 − 2h,1 −h] matching
the value v(1 − h) and step by step we construct an absolutely continuous solution of this
equation on the interval [a,1). By (57) and the integrability of bv, all terms on the right
hand side of (58) are integrable over the interval [a,1]. Hence, integrating (58) termwise,
we obtain

g(1)v(1) − g(a)v(a) = −
∫ 1

a

b̃(m)v(m)dm −
∫ 1

a

R∗1(m)v(m)dm +
∫ 1

a

Rv(m)dm.

Since v(1) = 0 and
∫ 1

a
R∗1(m)v(m)dm = ∫ 1

a
Rv(m)dm, we get

g(a)v(a) =
∫ 1

a

b̃(m)v(m)dm.

From (58) we see that (gv)′ ∈ L1[a,1]. Denoting u = wv, where w was used to define
{U(t)}t≥0, we have

(gu)′ = (gvw)′ = w(gv)′ + gvw′ = w(gv)′ + gvμ(w′/μ).

By construction and (15), vμ is integrable and w/μ is bounded, by (29) and again by (15).
The fact that u satisfies other requirements for belonging to D(Aba ) is clear. Therefore
v ∈ D(A). Now we check that v(m) > 0 for m ∈ (a,1). Suppose to the contrary that for



Asynchronous Exponential Growth of a General Structured Population 163

some m ∈ (a,1) v(m) = 0 and v(y) > 0 for y ∈ (m,1). Then, integrating both sides of (58)
over the interval [a,m], we obtain

g(m)v(m) − g(a)v(a) = −
∫ m

a

b̃(y)v(y) dy −
∫ m

a

R∗1(y)v(y) dy +
∫ m

a

Rv(y)dy.

From the boundary condition (59), it follows that
∫ 1

m

b̃(y)v(y) dy −
∫ m

a

R∗1(y)v(y) dy +
∫ 1

a

R∗1[a,m](y)v(y) dy = 0.

Let P̄(m,dy) = w(y)

w(m)
P r (m,dy). Then R∗f (m) = ∫ 1

a
f (y) P̄(m,dy) and we have

∫ 1

m

b̃(y)v(y) dy −
∫ m

a

P̄(y, [a,1])v(y) dy +
∫ 1

a

P̄(y, [a,m])v(y) dy = 0,

but, since P̄(y, [m,1]) = 0 for y ≤ m, we obtain
∫ 1

m

b̃(y)v(y) dy +
∫ 1

m

P̄(y, [a,m])v(y) dy = 0.

As v(y) > 0 for y > m, we have b̃(y) = 0 and P̄(y, [a,m]) = 0 for almost every y ≥ m.
It means that P(y, {a}) = ba(y) = 0 and P r (y, [a,m]) = 0 for almost every y ≥ m, which
contradicts (12). Finally, we set v∗ = v/‖v‖ and v∗ is a unique invariant density of the
semigroup {U(t)}t≥0. �

6 Proof of Theorem 2

We precede the proof of Theorem 2 with some remarks. Let {U(t)}t≥0 be the stochastic
semigroup defined in Proposition 2. The semigroup {U(t)}t≥0 is called asymptotically stable
if there is an invariant density v∗ such that

lim
t→∞‖U(t)v − v∗‖ = 0 for v ∈ D. (60)

Observe that if {U(t)}t≥0 is asymptotically stable, then for every function v ∈ L1[a,1] we
have

lim
t→∞U(t)v = v∗

∫ 1

a

v(m)dm in L1[a,1].
Since

e−λtN(t,m) = u(t,m)

w(m)
and

∫ 1

a

u(0,m)dm =
∫ 1

a

N(0,m)w(m)dm,

we have

e−λtN(t, ·) → v∗
w

∫ 1

a

N(0,m)w(m)dm in L1[a,1]. (61)

Thus it remains to check that under the assumptions of Theorem 2, the semigroup {U(t)}t≥0

is asymptotically stable. It means that it is enough to show asymptotic stability of the semi-
group {U(t)}t≥0 if one of the conditions (I), (II) or (III) of Theorem 2 holds.

Proposition 4 Assume that one of the conditions (I), (I) or (III) holds. Then the semigroup
{U(t)}t≥0, defined in Proposition 2, is asymptotically stable.
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We precede the proof of Proposition 4 by an auxiliary definition. Let {U(t)}t≥0 be a
semigroup on the space Lp(X,�,ν), 1 ≤ p ≤ ∞. We say that this semigroup {U(t)}t≥0 is
partially integral if there is t0 > 0 such that the operator U(t0) can be written in the form

U(t0)f (m) =
∫

k(m,y)f (y) ν(dy) + Sf (m), (62)

where S is a positive operator on Lp and the kernel k is a measurable nonnegative function
such that

∫ ∫
k(m,y) ν(dy) ν(dm) > 0. (63)

In order to prove Proposition 4 we need the following criterion for asymptotic stability
of stochastic semigroups.

Proposition 5 ([25]) Let {U(t)}t≥0 be a partially integral stochastic semigroup on the space
L1(X,�,ν). Assume that the semigroup {U(t)}t≥0 has a unique invariant density f∗. If
f∗ > 0 then the semigroup {U(t)}t≥0 is asymptotically stable.

It remains to prove the following lemma.

Lemma 7 Assume that one of the conditions (I), (II) or (III) holds. Then the semigroup
{U(t)}t≥0 defined in Proposition 2 is partially integral.

Proof Let {S(t)}t≥0 be the strongly continuous semigroup on L1[a,1] generated by
(Aba ,D(Aba )). Since the semigroup {T (t)}t≥0 generated by Aba + P can be considered
as the Miyadera-Voigt perturbation of {S(t)}t≥0, see [4, Lemma 5.14],

T (t)f = S(t)f +
∫ t

0
T (t − τ)PS(τ)f dτ, f ∈ L1[a,1], (64)

which implies, in particular,

T (t)f ≥ S(t)f +
∫ t

0
S(t − τ)PS(τ)f dτ, 0 ≤ f ∈ L1[a,1]. (65)

According to [9, Chap. V, Lemma B (i)], if R is a positive operator and Q is a positive and
integral operator, then the operators RQ and QR are integral operators. Therefore, if the
semigroup {S(t)}t≥0 is partially integral or the operator P is partially integral, then from
(65) it follows that the semigroup {T (t)}t≥0 is partially integral.

If condition (I) holds, then

Pf (m) ≥
∫ 1

a

q(m,y)f (y) dy (66)

for f ≥ 0. Thus, the operator P is partially integral which implies that the semigroup
{T (t)}t≥0 is partially integral.

If condition (II) holds, then ba(m) > 0 on some nontrivial interval. We check that
the semigroup {S(t)}t≥0 is partially integral, and consequently, the semigroup {T (t)}t≥0

is partially integral. In this case there exist m0 ∈ (a,1), ε > 0 such that ba(m) > 0 for
m ∈ (m0 − ε,m0 + ε). Without loss of generality we can assume that m0 + ε < 1. Let
us denote by πtm0 the solution m(t) of the equation m′ = g(m) with the initial condition
m(0) = m0. Fix t > 0 such that π−tm0 ≥ m0 − ε. Let u be the solution of the equation
u′(t) = Abau with the initial condition u(0,m) = v(m). Then there exists γ1 > 0 such that
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u(s, y) ≥ γ1v(π−sy) for y ∈ (m0,m0 + ε) and s ≤ t . Let m ≤ πta. Then there exists γ2 > 0
such that u(t,m) > γ2u(t −τ(m), a), where τ(m) is given by the formula πτ(m)a = m. From
the boundary condition (10) we obtain

u(t,m) ≥ γ2u(t − τ(m), a) ≥ γ2

g(a)

∫ 1

a

ba(y)u(t − τ(m), y) dy

≥ γ1γ2

g(a)

∫ m0+ε

m0

ba(y)v(πτ(m)−t y) dy

≥ γ1γ2

g(a)

∫ πτ(m)−t (m0+ε)

πτ(m)−tm0

ba(πt−τ(m)x)g(πt−τ(m)x)

g(x)
v(x) dx

for m ≤ πta. Thus S(t)v(m) ≥ ∫
k(x,m)v(x) dx, where k is a positive function for m ∈

(a,πta) and x ∈ (πτ(m)−tm0,πτ(m)−t (m0 + ε)) and the operator S(t) is partially integral.
Now assume that condition (III) holds. Let f ∈ L1[a,1] be a nonnegative function. We

check that for small t the operator T (t) is partially integral, which is equivalent to the fact
that the conjugated operator T ∗(t) has a nontrivial integral part. We have

T ∗(t)f (m) ≥
∫ t

0
[S∗(τ )P ∗S∗(t − τ)f ](m)dt ≥ ε

∫ t

0
f (πt−τ r(πτm))dτ, (67)

where ε is a positive constant. Let y(τ,m) = πt−τ r(πτm). Since

∂y

∂τ
(0,m0) = −g(r(m0)) + r ′(m0)g(m0) 
= 0

we have also ∂y

∂τ
(τ,m) 
= 0 for small t , τ ∈ [0, t] and m ∈ (m0 − δ,m0 + δ). From (67) it

follows that there are constants η > 0, δ′ > 0, s1 ∈ [a,1], s2 ∈ [a,1], s2 > s1 and t0 > 0 such
that

T ∗(t0)f (m) ≥ η

∫ s2

s1

f (y)dy (68)

for m ∈ (m0 − δ′,m0 + δ′). From (68) it follows that the semigroup {T (t)}t≥0 is partially
integral.

Since {U(t)}t≥0 is given by (53), it is also partially integral. �
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