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Abstract Using Grozman’s formalism of invariant differential operators we demonstrate
the derivation of N = 2 Camassa-Holm equation from the action of Vect(S1|2) on the space
of pseudo-differential symbols. We also use generalized logarithmic 2-cocycles to derive
N = 2 super KdV equations. We show this method is equally effective to derive Camassa-
Holm family of equations and these system of equations can also be interpreted as geodesic
flows on the Bott-Virasoro group with respect to right invariant H 1-metric. In the second half
of the paper we focus on the derivations of the fermionic extension of a new peakon type
systems. This new one-parameter family of N = 1 super peakon type equations, known as
N = 1 super b-field equations, are derived from the action of Vect(S1|1) on tensor densities
of arbitrary weights. Finally, using the formal Moyal deformed action of Vect(S1|1) on the
space of Pseudo-differential symbols to derive the noncommutative analogues of N = 1
super b-field equations.

Keywords Pseudo-differential symbols · Super KdV · Camassa-Holm equation · Geodesic
flow · Super b-field equations · Moyal deformation · Noncommutative integrable systems
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1 Prelude to Noncommutative Integrable Systems

Noncommutative geometry [5] extends the notions of classical differential geometry from
differential manifold to discrete spaces, like finite sets and fractals, and noncommutative
spaces which are given by noncommutative associative algebras. It was an idea of Descartes
that we can study a space by means of functions on the space, in other words, the algebra
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of functions determines the space. Quantum physics suggests that some physical systems
should be modeled by spaces on which functions are not commutative. In fact, C∗-algebras
are natural models for the function algebras. In recent years it is appreciated that such non-
commutative spaces retain a rich topology and geometry expressed in terms of K-theory and
K-homology, as well as in finer aspects of the theory. The subject has also been approached
from a more algebraic side with the advent of quantum groups and quantum homogeneous
spaces [35].

Noncommutative geometry has recently been involved in a noncommutative gauge the-
ory related to strings. Noncommutative spaces are characterized by the noncommutative
coordinates

[xi, xj ] = iθ ij , (1)

where θ ij are real constants. During the last few years there has been a steady growth in
the interest in noncommutative geometry, which appears in string theory in several ways.
Much attention has been paid also to field theories on noncommutative spaces and especially
Moyal deformed [38] space-time. This theory appears as certain limits of strings, D-branes
and M-theory.

A remarkable feature of many (1 + 1)-dimensional PDEs that arise in geometry and me-
chanics is their explicit solvability based on some symmetries or a nonlinear transformation
of variables. In the Hamiltonian settings, we use the notion of Liouville integrability to de-
scribe integrable systems. Liouville integrability means that there exists a regular foliation
of the phase space by invariant manifolds such that the Hamiltonian vectors fields associ-
ated to the invariants of the foliation span the tangent distribution. A resurgence of interest
in integrable systems came with the discovery of the Korteweg-de Vries (KdV) equation
in late sixties. The KdV equation falls into the category of infinite dimensional integrable
Hamiltonian systems. It is known that both the KdV [41] and the Camassa-Holm (CH) [37]
equations are geodesic flows on the Bott-Viarsoro group [27]. In this paper we consider the
noncommutative version of several infinite dimensional systems. There are several beautiful
mathematical methods [11] exit to construct classical integrable systems, unfortunately no
such generalized method exist for noncommutative integrable systems.

1.1 NC Integrable Systems and Its Connection to Neighbouring Fields

In most recent development of gauge theory, a central role is played by nonperturbative
regimes, such as instantons, vortices and monopoles. These solitonic classical field config-
uration generically arise in a BPS sector of the theory. Noncommutative gauge theories are
naively realized from ordinary commutative theories just by replacing all products of the
fields with � product. String theory proposed a new non-commutative gauge theories that
describe the dynamics of branes. Studying classical solutions of noncommutative field the-
ories also establish the solitonic nature of D-branes in string theory [23, 31, 45]. It turns
out that the Moyal deformed field theories have a much richer spectrum of soliton solution
than their commutative parts. For example [31, 32], the Ward sigma model, which is inte-
grable in 2 + 1 dimensions and features exact multi-soliton configurations, can be Moyal
deformed without loosing its integrability and it yields a novel class of abelian solitons,
which exist even in the U(1) case. The deformed supersymmetric Ward solitons (cf. [32])
are superextensions of the bosonic noncommutative Ward solitons as well as deformation of
commutative Ward solitons. The case of a general non-Abelian gauge group is dealt with a
construction of a Seiberg-Witten map [44], i.e. a map which connects the gauge theory on
the noncommutative space with gauge theory on a commutative space and for this purpose
the �-product formalism is used.
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Integrable systems usually display localized classical solutions known as solitons. Once
again, noncommutative deformation enormously enhances the spectrum of solitons. Several
classical integrable models have been generalized to noncommutative spaces [10, 21]. Also,
under the Moyal deformation, the self-dual Yang-Mills equation is considered to preserve
the integrability in the same sense as in commutative cases and contain new solutions special
to noncommutative spaces [39]. Noncommutative KdV and nonlinear Schrödinger equations
are derived from the reduction of self dual Yang-Mills equation [22, 33] and other methods
[13–16]. There exist a method, namely the bicomplex method [10], to yield noncommutative
integrable equations which have many conserved quantities. Certainly all these equations are
derived formally from the Lax representation by replacing ordinary product by � product.

Noncommutative extension of integrable systems such as the KdV equation, the super
KdV equation are also one of the hot topics in noncommutative geometry and physics. In
fact, some time ago Kupershmidt [29] considered a generalization of the Moyal approach to
the problem of quantization of classical integrable dynamical systems. The nature of these
noncommutative integrable equations are strange. They do not have good integrable property
and on top of that Noncommutative extension of (1 + 1)-dimensional equations introduces
infinite number of time derivatives. But they do possess the existence of infinite number of
conserved quantities which are widely accepted as definition of complete integrability of
underlying equations.

1.2 Motivation, Result and Plan

The noncommutative generalization of a given integrable systems is not unique. The sym-
metric structure plays an important characteristic feature. Therefore, preserving the sym-
metry structure of a theory should be the first criterion to consider when implementing
its deformation. There are several methods to construct such noncommutative extension
of integrable systems. By deforming the Lax equation (for example, [21]) one can derive
such equations. This is a bit ad hoc formalism and does not incorporate geometry. Further-
more, many noncommutative integrable systems are obtained from the reductions of the NC
SDYM equation. Again, none of them are related to Lie theoretic method. Indeed, in this
paper we travel in quest for Lie theoretic formulation of noncommutative integrable systems
through a true wilderness.

Recently a deformation of the algebra of diffeomorphism is constructed by Wess and
coworkers [2] for canonically deformed spaces with constant deformation parameter θ . Us-
ing this method we constructed the noncommutative version of periodic KdV and the Burg-
ers equation [18], and this gives us the second method for the construction of Moyal de-
formed integrable systems. Although this method is far more geometrical than Lax equation
method but certainly we faced problems for not having a proper (noncommutative) Hamil-
tonian formalism, since infinite time derivatives hidden inside the �-product. One must re-
member that the deformation theory is a homotopy theory and does not incorporate dynam-
ics easily.

The motivation of this present article to offer another interesting method of construction
of noncommutative integrable systems. This method has been sketched in our earlier papers
[16, 17, 20]. We embed the vector field and its dual to pseudodifferential symbols on S1

[42, 43]. These are functions on cotangent bundle. We use logarithmic 2-cocycle [26, 28] to
derive the dispersion term. Therefore we lift the systems on the space of pseudodifferential
symbols where the natural action of vector field on its dual is given by Poisson action. Thus
coadjoint action [16] of Virasoro algebra on its dual can be manifested in a simple manner.
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In this paper we apply Grozman [15, 34] programme of invariant bilinear differential opera-
tors on tensor fields to compute this action. It is shown that this scheme can be applied to the
N = 2 supersymmetry theory [47] provided one must take care of anticommutative proper-
ties of fermions. In this work we reexamine the proof of N = 2 supersymmetric KdV equa-
tion using Grozman prescription. We also derive the N = 2 supersymmetric Camassa-Holm
equation from our method. In both cases we derive explicit representation of the second
Hamiltonian structures.

By deforming the Poisson action to Moyal action we obtain the quantum integrable sys-
tems. In fact Kupershmidt [29] also proposed such method to quantize integrable systems.
We argue that this method is deeply rooted inside the Moyal-Weyl-Wigner formalism. The
Moyal algebra (C∞(M), {. , .}Moyal) is an algebra of quantum observables and it can be con-
tinuously reduced the Poisson algebra (C∞(M), {. , .}PB) of classical observables. Using
this new approach we derive various integrable and superintegrable systems. Using this ap-
proach we derive various integrable and superintegrable systems. In this method we are able
to quantize a completely new and exotic super b-field equation. This new class of partial
differential equations recently obtained by Degasperis Holm and Hone [7, 8] using the as-
ymptotic integrability method. The second member of this one-parameter family of PDEs
is called Degasperis-Procesi equation [6]. Degasperis et al. proved the exact integrability of
the new equation by constructing its Lax pair and explain its relation to a negative flow in
the Kaup-Kupershmidt hierarchy via a reciprocal transformation.

The goal of this paper is to add supersymmetry to the noncommutative systems. De-
vchand and Schiff [9] showed that the fermionic extension of the Camassa-Holm equation
arises as a geodesic flows of an invariant H 1-metric on the group of superconformal transfor-
mations. In this paper we focus on to fermionic extension of the b-field equations. We derive
this equation from the action of Vect(S1|1) on tensor densities of weight b form embed-
ded in ψD(S1). We also derive the noncommutative version of these system of equations.
Therefore we also able to quantize a completely new and exotic super b-field equation. The
advantage of this method is that we can avoid the quantization of coadjoint orbit to derive
quantum (or noncommutative ) integrable systems.

This paper is organized as follows: In Sect. 2 we give a brief description of pseudodif-
ferential symbols on S1 and the construction of KdV equations. We introduce generalized
Souriau cocycle in Sect. 3. In this section we demonstrate the construction of the N = 2
super KdV equation. Section 4 is devoted to the construction of the N = 2 supersymmetric
Camassa-Holm equations. We also show its geodesic connection to superconformal group.
Section 5 is devoted to the construction of the b-field and super b-field equations. Finally,
the noncommutative (or Moyal deformed) analogue of the super peakon type equations are
given in Sect. 6.

2 Background: Pseudodifferential Symbols on S1 and KdV Equation

The ring of pseudodifferential symbols on S1, �D(S1), is defined to be the ring of formal
Laurent series

∑
k≥k0

fk(x) ξk over C∞(S1) with finite number of positive powers. There
are two differentiations defined in this ring �D(S1):

∂ξ :
∑

k

fkξ
k �−→

∑

k

kfkξ
k−1, ∂ :

∑

k

fkξ
k �−→

∑

k

f ′
kξ

k. (2)
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These differentiations may be used to define the symbolic multiplication on the ring by
setting

(F ◦ G) =
∞∑

k=0

1

k! : ∂kF

∂ξk
(x, ξ)

∂kG

∂xk
(x, ξ) : .

Here : : is called the Normal Ordering; it is defined by

: f (x)ξkg(x)ξ l := f (x)g(x)ξk+l .

This multiplication rules yields an associative and a Lie algebra operation on the ring. The
commutator and the residue map are defined, respectively, by setting [F,G] = F ◦ G − G ◦ F

and res : ψD(S1) → C∞(S1). The “trace operation” is defined by

Tr(F ) =
∫

S1
res Fdx =

∫

S1
f−1dx. (3)

The main property of the residue (or trace) is for F,G ∈ ψD(S1),

Tr([F,G]) =
∫

res[F,G]dx = 0.

The embedding of the vector field π(f (x)∂) = f (x)ξ enables one to pass from the Vi-
rasoro algebra to the algebra of groups of area preserving diffeomorphisms. The dual of the
vector field is identified with u(x)ξ−2 ∈ F2.

This algebra of embedded vector fields can be extended via logarithmic cocycle.

Theorem 1 (Kravchenko and Khesin) Let F and G be pseudo differential symbols on the
circle. The nontrivial central extension ψD(S1) is given by the cocycle

c(F,G) = ∫
res([ln ξ,F ],G). (4)

The restriction of Kravchenko-Khesin cocycle [28] to the subalgebra of vector fields is
the Gelfand–Fuchs cocycle of the Virasoro algebra. This follows from a simple calculation

c(f (x)ξ, g(x)ξ) =
∫

res([ln ξ, f (x)ξ ] ◦ g(x)ξ)

=
∫

res

(

f ′(x) − f ′′(x)

2
ξ−1 + f ′′′(x)

3
ξ−2 + · · ·

)

g(x)ξ

= 1

6

∫

f ′′′(x)g(x)dx.

The term containing the ξ−2 ∈ F2 in the expansion

S

(

f (x)
d

dx

)

= f ′′′(x)ξ−2

is called the Souriau cocycle of the Virasoro algebra. One should note that the space of
tensor density of degree 2 is the regular dual of Vect(S1).
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2.1 Construction of Full KdV Equation

Our goal is to give a geometric formulation of noncommutative integrable systems. Let us
reformulate the Euler-Poincaré flow [25] in a following form:

Definition 1 Let dH be the gradient of the Hamiltonian function H(u). The Euler-Poincaré
equation induced by the action of Vect(S1) on its dual is:

ut = ad∗
(dH)ξuξ−2 ≡ {(dH)ξ,uξ−2}. (5)

Theorem 2 The Euler-Poincaré flow which is induced by the action of Vect(S1) on the
extended space of ψD(S1) is defined as

ut =
{

δH

δu
ξ,uξ−2

}

+
(

δH

δu

)′′′
ξ−2. (6)

Let H = 1
2

∫
S1 u2dx. This yields the KdV equation

ut + uxxx + 3uux = 0. (7)

Proof The action of Vect(S1) on the extended �D(S1) comes from two sources; (a) the
original action of Vect(S1) on �D(S1) and (b) Souraiu term. The term f ′′′(x)ξ−2 in the
following equation is the Souraiu term.

The coadjoint action of Vect(S1) on its dual u(x)ξ−2 is given by

ad∗
f (x)ξ u(x)ξ−2 = {f (x)ξ,u(x)ξ−2}

= −
(

∂

∂ξ
(f (x)ξ)

)
∂

∂x

(

uξ−2 − ∂

∂x
(f (x)ξ)

)
∂

∂ξ
(uξ−2)

= −(f u′ + 2f ′u)ξ−2.

Therefore the action of Vect(S1) on the extended �D(S1) is given by

ãd∗
f (x)ξ (u(x)ξ−2, f ′′′(x)ξ−2) = {f (x)ξ,u(x)ξ−2} + f ′′′ξ−2

= (f u′ + 2f ′u + f ′′′)ξ−2. (8)

One can easily use (8) to compute the second Hamiltonian operator OKdV of the KdV
equation which corresponds to the action of Vect(S1) on the extended ψD(S1) given by:

OKdV = ∂u + u∂ + ∂3. (9)

�

3 The N = 2 Neveu-Schwarz Super Algebra and Construction of the N = 2 Super
KdV Equation

Let us introduce the Neveu-Schwarz superalgebra. Consider the space of −1/2-tensor
densities F1/2 on S1. There exists a natural Lie superalgebra structure on the space of
Vect(S1) ⊕ F1/2. The anticommutator

[, ]+ : F1/2 ⊗ F1/2 −→ Vect(S1) ∈ F1
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is just the product of tensor densities:

[ψ(x)(dx)−1/2, φ(x)(dx)−1/2]+ := ψ(x)φ(x)
d

dx
.

The space of −1/2 densities on S1 can be periodic or anti-periodic

φ(x)(dx)−1/2, φ(x + 2π) = ±φ(x),

known as Ramond space and Neveu-Schwarz space respectively and these spaces of −1/2-
tensor densities are Vect(S1)-module. The Neveu-Schwarz space is customarily assigned
by F −

1/2.

Definition 2 Let F −
−3/2 be the space of antiperiodic 3/2 densities. The space

g = Vect(S1) ⊕ F −
1/2 ⊕ F −

1/2 ⊕ C∞(S1)

defines a N = 2 Lie superalgebra structure, it is known as N = 2 Neveu-Schwarz algebra g.
The (regular) dual space of the Neveu-Schwarz algebra is given as

g
∗ = F−2 ⊕ F −

−3/2 ⊕ F −
−3/2 ⊕ F −

−1

Since we consider only the Neveu-Schwarz algebra so we drop the ‘−’ sign from F .
Let us now embed the Neveu-Schwarz algebra into space of pseudodifferential symbols.

We obtain following mappings for algebra

(

f (x)
d

dx
+ φi(x)(dx)−1/2 + g(x)

)

�−→ (f (x)ξ + φi(x)ξ 1/2 + g(x)),

and the corresponding dual is given by

(u(x)dx2 + ηi(x)(dx)3/2) + w(x)(dx) �−→ (u(x)ξ−2 + ηi(x)ξ−3/2 + w(x)ξ−1),

where sum over repeated index is implied. One must note that N = 2 superconformal algebra
has two fermionic fields, denoted by φ1 and φ2, and two bosonic fields u(x) and w(x).

Proposition 1 (Grozman) The classification of invariant bilinear differential operators on
tensor fields is due to P. Grozman. Let us recall the zeroth-order and the first order cases:

1. There exists a suitable constant so that a zeroth-order operator Fν ⊗ Fμ −→ Fν+μ has
the form

φ(x)(dx)ν ⊗ u(x)(dx)μ �−→ kφ(x)u(x)(dx)ν+μ. (10)

2. Every first order operator Fν ⊗ Fμ −→ Fν+μ+1 is given by

{φ(x)(dx)ν, u(x)(dx)μ} = (
νφ(x)u′(x) − λφ′(x)u(x)

)
(dx)ν+μ+1. (11)

For every (ν,μ) 
= (0,0), the operator (11) is the only Diff (S1) operator, otherwise there
are two linearly independent operators φd(u) and d(φ)u, where d is the de Rham differ-
ential operator.
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Let us study the action of the Neveu-Schwarz algebra on u(x)ξ−2 + η(x)ξ−3/2. The
computation of this action is based on the Grozman formalism [15] of bilinear invariant
differential operators on tensor densities.

Lemma 1 The Hamiltonian operator O corresponding to the action of the N = 2 Neveu-
Schwarz algebra on u(x)ξ−2 + ηi(x)ξ−3/2 + w(x)ξ−1 ∈ �D(S1) yields

O =

⎛

⎜
⎜
⎜
⎜
⎝

u∂ + ∂u 1
2∂η1 + η1∂

1
2∂η2 + η2∂ w∂x

∂η1 + 1
2 η1∂ − 1

2 u 1
2∂w + 1

2 w∂
k4
2 η2

∂η2 + 1
2 η2∂ − 1

2w∂ − 1
2 ∂w − 1

2u
k3
2 η1

∂w
k1
2 η2

k2
2 η1 0

⎞

⎟
⎟
⎟
⎟
⎠

. (12)

Proof Let Fλ be the space of −λ-densities on S1. Any zeroth-order differential operator is
the operator of multiplication by a (μ − λ) density:

φ(x)(dx)μ−λ : u(x)(dx)λ �−→ φ(x)u(x)(dx)μ.

In standard Darboux coordinates this can be written as:

φ(x)ξ−μ+λ : u(x)ξ−λ �−→ φ(x)u(x)ξ−μ.

Moreover, there exists a pair of duals (η1(dx)3/2, η2(dx)3/2) corresponding to a pair
−1/2 densities functions (φ1(x)(dx)−1/2, φ2(x)(dx)−1/2). It is clear that φ1(x) acts on its
dual η1 in an obvious way and η2 by the principle of zeroth-order differential operator.

Hence, the action of f (x)ξ + φi(x)ξ 1/2 + g(x) ∈ sVect(S1) on its dual is:

ad∗
f (x)ξ+φi (x)ξ1/2+g(x)

(u(x)ξ−2 + ηi(x)ξ−3/2 + w(x)ξ−1)

= {f (x)ξ,u(x)ξ−2 + ηi(x)ξ−3/2 + w(x)ξ−1} + {φ1(x)ξ 1/2, η1(x)ξ−3/2 + w(x)ξ−1}
+ {φ2(x)ξ 1/2, η2(x)ξ−3/2} − {φ2(x)ξ 1/2,w(x)ξ−1} + {g(x),w(x)ξ−1}
+ k

2
φi(x)u(x)ξ−3/2

+ k1

2
φ1(x)η2ξ

−1 + k2

2
φ2(x)η1(x)ξ−1 + k3

2
g(x)η1ξ

−3/2 + k4

2
g(x)η2ξ

−3/2

where the last expression follows from the definition of zeroth operator and we have cho-
sen k = − 1

2 . Therefore, we obtain the Hamiltonian operator from this expression, thereby
completing the proof:

=
(

f u′ + 2f ′u + 1

2
φiη

′
i + 3

2
φ′

iηi + f w′ + f ′w
)

ξ−2

+
(

f (x)η′ + 3

2
f ′ηi(x) − 1

2
φi(x)u(x) + (−1)i−1 1

2
(φiw

′ + φiw
′)

+ k3

2
g(x)η1 + k4

2
g(x)η2

)

ξ−3/2

+
(

g(x)w′(x) + k1

2
φ1η2 + k2

2
φ2(x)η1(x)

)

ξ−1. �
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Comment One must careful to apply Grozman prescription for extended supersymmetry
case. In this situation we encounter multiple fermions. Thus the action should respect the
ordering of fermions. This does not appear in N = 1 case, since we just play with a single
fermion.

Remark All these constants k and kis are free parameters. These play an important role in
integrability. For N = 1 case we have just one parameter k and its value directly connected
to nature of the system. It can be shown that the supersymmetric may be bihamiltonian for
particular values ks. Following Oevel and Popowicz [40] we assume k = −1 = k4 = −k3 =
−k2 = k1. Many of these kis are chosen in such a way so that one can perform cancellation
of certain terms.

Our goal is to construct the noncommutative analogue of the higher supersymmetric gen-
eralization of the super-KdV equation [36]. Thus, once again we use the modified definition
of the Euler-Poincaré equation to obtain the dispersionless super-KdV equation.

Definition 3 The Euler-Poincaré equation induced by the action of supersymmetric vector
field sVect(S1) on its dual F−2 + F−3/2 + F−3/2 + F−1 is defined as

(uξ−2 + η1ξ
−3/2 + η2ξ

−3/2 + wξ−1)t

= ad∗
( δH

δu
ξ+ δH

δη1
ξ1/2+ δH

δη2
ξ1/2+ δH

δw
)
(uξ−2 + η1ξ

−3/2 + η2ξ
−3/2 + wξ−1) (13)

3.1 Generalization of Souriau Cocycle to N = 2 Superconformal Algebras

Let �i and �i be the odd parts of the super ψD(S1). The nontrivial central extension of the
Fermionic part of the super ψD(S1) is:

cfermionic(�i,�i) =
∫

res([ln ξ,�i(x)]�i)dx. (14)

Let us compute the pair of cocycles connected to the fermions.

cfermionic(φi(x)ξ 1/2,ψi(x)ξ 1/2) =
∫

res([ln ξ,φi(x)ξ 1/2]ψiξ
1/2) dx

=
∫

res

((

φ′
iξ

−1/2 − 1

2
φ′′

i ξ
−3/2 + · · ·

)

ψiξ
1/2

)

=
∫

res

(

· · · − 1

2
φ′′

i ψiξ
−1 + · · ·

)

= 1

2

∫

φ′′
i ψidx.

There exists another bosonic cocycle in N = 2 superconformal algebra, given by

cboson(v(x),w(x)) =
∫

res([ln ξ, v(x)] ◦ w(x))

=
∫

v′(x)w(x)dx.

Thus using the definition of logarithmic cocycle we derive the two cocycle of N = 2
Neveu-Schwarz algebra.
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Proposition 2 The expression of N = 2 superalgebra 2 cocycle in component form is given
as

�

((

f1
d

dx
,φ1(dx)−1/2, φ2(dx)−1/2, f2(x)

)

,

(

g1
d

dx
,ψ1(dx)−1/2,ψ2(dx)−1/2g2(x)

))

=
∫

S1
(f ′′

1 g′
1 + φ1ψ

′′
1 + φ2ψ

′′
2 − f2g

′
2)dx.

Thus N = 2 Lie superalgebra can be extended by the two cycle �. This allows us to
compute the super-Hamiltonian operator for N = 2 super KdV equation.

Proposition 3 The super-Hamiltonian operator Oskdv2 corresponding to the action of
the centrally extended N = 2 Neveu-Schwarz algebra on its extended dual (u(x)ξ−2 +
ηi(x)ξ−3/2 + w(x)ξ−1, c) yields

Oskdv2 =

⎛

⎜
⎜
⎝

−∂3 + 2u∂ + 2∂u ∂η1 + 2η1∂ ∂η2 + 2η2∂ 2w∂x

2∂η1 + η1∂ ∂2 − u ∂w + w∂ −η2

2∂η2 + η2∂ −w∂ − ∂w ∂2 − u η1

∂w η2 −η1 ∂

⎞

⎟
⎟
⎠ , (15)

where we have normalized the operator O.

Thus we give alternative derivation of super-Hamiltonian operator, given by [40]. We
consider the following Laberge-Mathieu [30] Hamiltonian function

H = 1

2

∫

(u2 − ww′ − ηiη
′
i + auw2 − 2awη1η2)dx (16)

to study flow on the orbits of N = 2 superconformal algebra. Using bosonic superfield

� = θ2θ1u(x) + θ1η1 + θ2η2 + w(x)

Hamiltonian H can be rewritten as

H = 1

2

∫

dxdθ1dθ2

(

�D1D2� + a

3
�3

)

.

Using the Hamiltonian operator Oskdv2 and Hamiltonian H we obtain N = 2 super KdV
equation, given by Labelle and Mathieu [see [30], (2.4), also citeop].

4 Geodesic Flows on Group of Area Preserving Diffeomorphisms on Cyclider

Groups of area-preserving diffeomorphisms and their Lie algebras play an important role in
modern physics literature. It is known that in a suitable basis, the Lie algebra of the group
SDiff (2) tends to that of SU(N) as N → ∞.

Using Adler’s trace formula [1] we fix the ad-invariant quantity

TrL =
∫

C

Ldxdξ. (17)
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Thus, we can define a weakly nondegenerate invariant inner product [3] on sdiff (2) by

〈L,M〉 = Tr(LM) =
∫

C

LM dxdξ L,M ∈ sdiff (2). (18)

The Lie-Poisson bracket on sdiff (2) is given by

{{f,g}}(α) =
〈

α,

{
δf

δα
,
δg

δα

}〉

, (19)

where δf

δα
denotes the Frechét derivative. Here we have used the double curly bracket nota-

tions from Bloch et al. [3].

4.1 Geodesic Flow with Respect to H 1-Norm

We study geodesic flow on the area preserving diffeomorphism group with respect to
H 1-Sobolev norm on the sdiff (A) algebra. It is defined by

〈L,M〉 =
∫

C

LM dxdξ +
∫

C

L′M ′dxdξ L,M ∈ sdiff (2), (20)

where L′ denotes derivatives with respect to both x and ξ . But since all L and M are poly-
nomial ξ . Hence for all practical purposes it boils down to

〈L,M〉 =
∫

C

LM dxdξ + ν

∫

C

LxMxdxdξ ν ∈ R. (21)

In other words ′ always means the derivative with respect to x.
Let us compute again the coadjoint action:

Lemma 2 The coadjoint action with respect to H 1 metric is given by

ad∗
F (G)|H 1 = (1 − ν∂2)−1{(F, (1 − ν∂2)G}. (22)

Proof We start from

〈F, {G,H }〉H 1 =
∫

C

F ′{G,H }′dxdξ +
∫

C

F {G,H }dxdξ

=
∫

C

{F ′,G′}Hdxdξ +
∫

C

{F ′,G}H ′dxdξ

=
∫

C

{F, (1 − ν∂2)G}Hdxdξ.

Let us compute now the L.H.S. of (22)

L.H.S. =
∫

A
(ad∗

GF)Hdxdξ +
∫

A
(ad∗

GF)′H ′dxdξ

=
∫

A
[(1 − ν∂2)ad∗

GF ]Hdxdξ.

Thus by equating the R.H.S. and L.H.S. we obtain the above formula. �
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Therefore, we conclude:

Proposition 4 The Euler-Poincaré equation with respect to right invariant H 1 metric on
the dual space of sdiff (2)∗ yields

∂m

∂t
= −ad∗

δH
δu

m, (23)

where m = (1 − ∂2)u and H is Hamiltonian.

Thus we justify the replacement of u by m = u−uxx for the computation of peakon type
equations, and it is not at all a computational trick.

4.2 Computation of N = 2 Supersymmetric Camassa-Holm Equation

In this section we derive N = 2 super Camassa-Holm equation by replacing all variables
by their Helmholtz counterparts. In our previous section we justify the replacement for the
computation of peakon type equations.

Lemma 3 The Hamiltonian operator Osuper corresponding to the H 1-action of f (x)ξ +
φi(x)ξ−1/2 + g(x) ∈ Vect(S1|2) on the dual space of the Neveu-Schwarz algebra on
u(x)ξ−2 + ηi(x)ξ−3/2 + w(x)ξ−1 yields

Osuper = (1 − ν∂2
x )−1

⎛

⎜
⎜
⎜
⎜
⎝

2m∂ + 2∂m ∂β1 + 2β1∂ ∂β2 + 2β2∂ 2n∂x

2∂β1 + β1∂ −m ∂n + n∂ −β2

2∂β2 + β2∂ −n∂ − ∂n −m β1

∂w β2 −β1 0

⎞

⎟
⎟
⎟
⎟
⎠

, (24)

where m = u − νuxx, βi = ηi − νηixx and n = w − νwxx .

Proof This follows directly from our previous results

ad∗
f (x)ξ+φi (x)ξ1/2+g(x)

(u(x)ξ−2 + ηi(x)ξ−3/2 + w(x)ξ−1)|H 1

= (1 − ν∂2)−1{f (x)ξ + φi(x)ξ 1/2 + g(x), (1 − ν∂2)(u(x)ξ−2

+ ηi(x)ξ−3/2 + w(x)ξ−1)}
and the computation of the left hand side {. , .} is similar to previous section. �

Once we transfer the Helmholtz operator to left hand side we express EP equation in the
following framework.

Definition 4 The Euler-Poincaré equation induced by the action of N = 2 supersymmetric
Vect(S1) on its dual F−2 + F−3/2 + F−3/2 + F−1 with respect to H 1 norm is defined as

(mξ−2 + βiξ
−3/2 + wξ−1)t = ad∗

( δH
δu

ξ+ δH
δηi

ξ1/2+ δH
δg

)
(mξ−2 + βiξ

−3/2 + w(x)ξ−1), (25)

where m = u − νuxx, βi = ηi − νηixx and n = w − νwxx are the Helmholtz counter parts
of u, ηi and w respectively.
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Proposition 5 The Euler-Poincaré flow with respect to H 1-metric on the dual space of
N = 2 Neveu-Schwarz algebra yields the N = 2 super Camassa-Holm equation

mt = 4mux + 2mxu + 4amwwx + amxw
2 − 3ηiη

′′
i + νη′

iη
′′′
i + 3a(wη2β1 + wβ2η1)x

+ 2aw(β ′
1η2 − η1β

′
2) − 2n(x)w′′′ + 2an(x)(uw)x − 2an(x)(η1η2)x (26)

β1t = 3

(

β1u + 1

2
aβ1w

2

)

x

− β ′
1

(

u + 1

2
aw2

)

+ mη′
1 + amwη2 − 2(n(x)η′

2)x

+ 2(nwη1)x + n′(η′
2 − awη1) + β2(w

′′ − auw + aη1η2) (27)

β2t = 3

(

β2u + 1

2
aβ2w

2

)

x

− β ′
2

(

u + 1

2
aw2

)

+ mη′
1 − amwη1 + 2(n(x)η′

1)x

+ 2a(n(x)wη2)x − n′(η′
1 + awη2) + β1(−w′′ + auw − aη1η2) (28)

nt (x) =
(

nu + 1

2
nw2

)

x

− β2(η
′
1 + awη2) + β1(η

′
2 − awη1). (29)

Proof We use the above definition for our proof. �

Unfortunately there are not so much cancellation of terms due the existence Helmholtz
functions are absence of cocycle terms. These two play very important role to write the
N = 2 super KdV equation in a compact form.

4.3 N = 2 Supersymmetric Camassa-Holm Equation in Covariant Form

Clearly one can see that the N = 2 is bit cumbersome in component form. One easily express
this in superfield form.

We define the supercircle S1|2 in terms of its superalgebra of functions denoted by
C∞

C
(S1|2) consisting of elements of the form

F(X) = f (x) + θ1φ1(x) + θ2φ2(x) + θ1θ2g(x), (30)

where f , g and φi are smooth functions on S1. Here X stands for the triplet (x, θ1, θ2), we
assume x is an arbitrary parameter on S1 and θ1 and θ2 are formal Grassmann coordinates.
These anticommuting variables satisfy

θ1θ2 = −θ2θ1, θ2
1 = θ2

2 = 0.

Identifying the element (w,η2, η1, u) ∈ Vect(S1|2)∗ with the odd (parity) dual super ele-
ment

U = w + θ1η2 + θ2η1 + θ1θ2u.

In the superfield form the (second) super Hamiltonian operator of N = 2 super Camassa-
Holm equation can be rewritten as

O′
super = (1 − ν∂2

x )−1(2∂xM + 2M∂x − (DiM)Di), (31)

where the superfield M = U − νUxx . This allows us to express the N = 2 supersymmetric
Camassa-Holm equation in a more compact form.
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Proposition 6 The Euler-Poincaré flow on the dual of N = 2 superconformal algebra with
respect to H 1 norm yields the N = 2 super Camassa-Holm equation

Mt + 2(MD1D2U)x − εijDiMDjUx + a(MU 2)x + aM(U 2)x − aDiMDiU = 0. (32)

Moreover this supersymmetric equation is equivalent to (26–29).

Proof We use the Hamiltonian equation

Ut = O′
super

(
δH

δU

)

,

where H = 1
2

∫
dX(UD1D2U + a

3 U 3). Thus we obtain

Mt = (2∂xM + 2M∂x − (DiM)Di)

(

D1D2U + a2

2
U 2

)

to obtain our result. �

5 Euler-Poincaré Flow and (Super) b-Field Equation

In this section we derive of the Degasperis–Procesi equation and b-field equation. The DP
equation is considered to be the second member of the one parameter b-field family of partial
differential equations, which is given by

mt = 3mux + mxu, m = u − uxx. (33)

At first our goal is to derive this equation from the action of Vect(S1) on tensor densities.
It is clear that

{f ξ,gξ−(b−1)} = (fg′ − (b − 1)f ′g)ξ (b−1).

Thus we consider the deformation of the algebra of vector fields

[v,w]b := b

2
[v,w] − b − 2

2
(vw)x

= vwx − (b − 1)vxw. (34)

We note that the deformation is symmetric and a total divergence, reminiscent of the Dorf-
man bracket. This b-bracket allows interpretation as an action of Vect(S1) on F(b−1)(S

1). For
b = 2 this is merely the vector field action corresponding to the Lie bracket. The b-bracket
is clearly not skewsymmetric. However, it has several interesting properties.

There exists a pairing [14]

Fλ ⊗ F1−λ → R

given by

〈a(x)(dx)λ, b(x)(dx)1−λ〉 =
∫

a(x)b(x)dx.

Therefore the above pairing allows us to identify the dual of F(b−1)(S
1) with F−b(S

1).



Virasoro Action on Pseudo-Differential Symbols 229

Definition 5 The generalized EPDiff flow induced by the action Vect(S1) on �D(S1) space
is defined as

mt =
{

δH

δu
ξ,mξ−b

}

, (35)

where m = u − νuxx is the standard Helmholtz operator acting on u.

It is clear that (37) is equivalent to Hamiltonian flow on the tensor densities F−b of
weight b (or b-forms) given by

ut = OH 1

b

δH

δu
.

Theorem 3 Suppose we define Hamiltonian H = 1
2

∫
S1 u2dx. The Euler–Poincaré equation

for the right invariant H 1 metric on tensor densities F−b (the dual space of b algebra) yields
the b-field equation

mt = mxu + bmux, m = u − νuxx. (36)

Proof The action of δH
δu

on mξ−b is given by

ad δH
δu

(x)ξm(x)ξ−b

= −
(

∂

∂ξ

(
δH

δu
ξ

)
∂

∂x

(

mξ−b

))

− ∂

∂x

(
δH

δu
ξ

)
∂

∂ξ

(

mξ−b

)

= −
(

δH

δu
m′ + b

(
δH

δu

)′
m

)

ξ−b−1.

Substituting δH
δu

= u we obtain our result. �

This equation was introduced in Degasperis, Holm and Hone [7, 8] based on De-
gasperis and Procesi [6] who singled out the cases b = 2 Camassa-Holm equation and b = 3
Degasperis-Procesi (DP) equation. Hamiltonian structure from the Euler-Poincaré formal-
ism is given in [19].

5.1 Supersymmetric b-Field Equation

Let us study the fermionic (i.e. N = 1 supersymmetry) extension of the b-field equation.
Consider the space of −(2b − 1)/2–tensor densities F−2b−1/2. There exists a natural action
of Lie superalgebra Vect(S1) ⊕ F1/2 on Fb ⊕ F−2b−1/2.

In our case, the super b bracket is the deformation of the Neveu-Schwarz superconformal
algebra, consisting of pairs (u(x),φ(x)), where u is a bosonic field and φ(x) is a fermionic
field. The bracket is defined by

[(u,φ), (v, ξ)]b =
(

uvx − (b − 1)uxv,uξx −
(

b − 3

2

)

uxξ − (b − 1)vφx + 1

2
vxφ

)

. (37)

Consideration of the supersymmetrisation of this algebra then opens the door to the con-
struction of supersymmetric extensions of the b-field equations.



230 P. Guha

Remark A vector field Xf on S1|1, for any f ∈ C∞
C

(S1|1), is said to be contact if it preserves
the contact distributions. The contact bracket is defined by [Xf ,Xg] = X{f,g}, where the
space C∞

C
(S1|1) is thus equipped with a Lie superalgebra structure given by

{f,g} = fg′ − f ′g + (−1)p(f )p(g)+1 1

2
D(f )D(g), (38)

where D = ∂
∂θ

+ θ ∂
∂x

. The super b bracket that we are considering belongs to a class of
generalized contact bracket [13] which extends to densities of arbitrary weight:

{. , .} : Fλ(S
1|1) ⊗ Fμ(S1|1) → Fλ+μ+1(S

1|1),

explicitly given by

{f,g} = λfg′ − μf ′g + (−1)p(f )p(g)+1 1

2
D(f )D(g). (39)

Lemma 4 The Hamiltonian operator Ob corresponding to the action of the Neveu-Schwarz
algebra on m(x)ξ−b + β(x)ξ−2b−1/2 ∈ �D(S1) yields

O = −
(

∂m + (b − 1)m∂ 1
2∂β + (b − 1)β∂

∂β + 2b−3
2 β∂ 1

2 m

)

(40)

Proof It follows straight away from

ad∗
f (x)ξ+φ(x)ξ1/2(m(x)ξ−b + β(x)ξ−2b−1/2)

= {f (x)ξ,m(x)ξ−b + β(x)ξ−2b−1/2} + {φ(x)ξ 1/2, β(x)ξ−2b−1/2}

− 1

2
φ(x)m(x)ξ−3/2,

where the last expression follows from the definition of zeroth operator given by Grozman
and we have chosen k = − 1

2 . �

Proposition 7 Let δH
δu

= 2u and δH
δη

= 8ηx . The Euler-Poincaré flow on F−b + F−2b−1/2,
yields the supersymmetric b-field equation

mt = 2mxu + 2bmux + 4(2b − 1)βηxx + 4βxηx

(41)
βt = 2βxu + 4mηx + (2b − 1)βux.

Proof It is clear that ( δH
δu

, δH
δη

) ∈ Vect(S1|1). Thus computing the (coadjoint) action

ad∗
δH
δu (x)ξ+ δH

δη ξ1/2(m(x)ξ−b + β(x)ξ−2b−1/2) for δH
δu

= 2u and δH
δη

= 8ηx we obtain our de-

sired result. �

6 Noncommutative Analogue of the Kuper Camassa-Holm and Supersymmetric
b-Field Equations

Finally in this section we propose another construction of noncommutative (or Moyal de-
formed) integrable systems. In particular, we demonstrate the derivation of noncommutative
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super peakon type systems. The main idea of this construction is to replace Poisson action
by Moyal action of vector fields Vect(S1) (or Vect(S1|1) on the space of pseudodifferential
symbols.

6.1 Construction of Noncommutative Bosonic Systems

All the equations described in this article can be � deformed using following rules:

(A) All Poisson brackets should be replaced by Moyal brackets [38] defined by:

{F,G}Moyal := F � G − G � F

κ
. (42)

(B) The derivatives act on the �-deformed space in a usual way.

We will study two types of systems here—one is purely bosonic ( or ordinary) system
and other one is N = 1 supersymmetric system.

The bosonic part can be quantized by using the Moyal product

f �M g = f exp

[
i�

2
(
←−
∂q

−→
∂p − ←−

∂p

−→
∂q )

]

g. (43)

The Moyal star product replaces the ordinary product between functions on the phase space.

Definition-Proposition 1 Let dH be the gradient of the Hamiltonian. In the noncommuta-
tive case Vect(S1) acts on the �-deformed dual embedded in �D(S1) is given by

ut = {dH(x)ξ,u(x)ξ−2}Moyal + 1

6
(dH)′′′ξ−2

=
(

dH � u′ + 2dH ′ � u + 1

6
dH ′′′

)

ξ−2. (44)

Corollary 1 Suppose H = 1
2

∫
S1 u2dx. The Moyal deformed Euler-Poincaré flow on F−2

yields the noncommutative KdV (ncKdV) equation

ut = u � ux + 2ux � u + uxxx. (45)

Proposition 8 Let dH be the gradient of the Hamiltonian with respect to Helmholtz func-
tion m. Let Vect(S1) acts on the �-deformed space of tensor densities F−b embedded in
�D(S1). The noncommutative analogue of the EPDiff flow is given by

mt = {dH(x)ξ,m(x)ξ−b}Moyal

= dH � m′ + b dH ′ � m. (46)

Suppose H = ∫
S1 mudx, we obtain the noncommutative b-field equation

mt + u � mx + bux � m = 0. (47)

Proof Straightforward. �
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6.2 Construction of Noncommutative N = 1 Super b-Field Systems

Noncommutativity in superspace naturally arise in string theory in several contexts. Impos-
ing the worldsheet supersymmetry to the noncommutativity relation of the spacetime creates
� products between the boson-boson, boson-fermion and fermion-fermion fields. It is known
that the � product of two superfields is a superfield.

In this study the Moyal deformed super b-field equation using results of noncommutative
superspaces [12, 24].

Here we invoke a generalization of Moyal-Weyl deformation to functions on super-phase
space. This algebraic structure corresponds to the quantization of systems with both, bosonic
and fermionic degrees of freedom. The fermionic variables involves a �-product that is given
by

φ �C ψ = φexp

[
i�

2
(
←−
∂θi

−→
∂θi

)

]

ψ. (48)

This star product is called the Clifford star product because it leads to a cliffordization of the
Grassmann algebra of the odd coordinates θi . Moreover, the star anticommutator is given by

{θi, θj }C = θi �C θj + θj �C θi = �δij .

Proposition 9 The Euler-Poincaré flow with respect to H 1-metric on the Moyal deformed
dual space of Neveu-Schwarz algebra yields the noncommutative Kupershmidt-Camassa-
Holm equation

mt + 4ux � m + 2u � mx + 4ηx � βx + 12ηxx � β = 0
(49)

βt + 2u � βx + 3ux � β + 4ηx � m = 0

for (super) Hamiltonian δH
δu

= 2u and δH
δη

= 8ηx .

Proof The Euler-Poincaré equation induced by the action of Moyal deformed supersym-
metric Vect(S1) on its dual F−2 + F−3/2 is given by

(mξ−2 + η̃ξ−3/2)t

=
{

δH

δu
ξ,u(x)ξ−2 + ηξ−3/2

}

Moyal

+
{

δH

δη
ξ 1/2, ηξ−3/2

}

Moyal

+ 1

2

δH

δη
m(x) � ξ−3/2. (50)

Therefore, using Hamiltonian δH
δu

= 2u and δH
δη

= 8ηx we obtain our desired result. �

Similarly one can compute the noncommutative version of supersymmetric b-field equa-
tion.

Proposition 10 The Euler-Poincaré flow with respect to H 1-metric on �-deformed F−b +
F− 2b−1

2
yields the Moyal deformed supersymmetric b-field equation

mt + 2bux � m + 2u � mx + 4ηx � βx + 4(2b − 1)ηxx � β = 0
(51)

βt + 2u � βx + (2b − 1)ux � β + +4ηx � m = 0
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Obviously, the best way to consider such deformations through the introduction of the
(super) Poisson bracket between two superfields and consider the Moyal-Weyl star product
of superfields.

7 Outlook

In the present paper, we have constructed various noncommutative integrable and superin-
tegrable systems in (1 + 1) through embedding of vector fields and its dual on the space
of pseudodifferential symbols on S1. In this process we have tacitly moved the coadjoint
action to Poisson action. We have used Grozman’s method coupled with the anticommu-
tativity properties of fermions to compute these actions. Then replacing the Poisson action
by Moyal action we have constructed the noncommutative or Moyal deformed integrable
systems. We claim that this method is much more elegant and geometrical than previously
known methods. It would be nice to formulate the solutions of these equations—hope one
should be able implement the methods developed by Takasaki [46] to study the geometry of
the corresponding Riemann-Hilbert problem in some Moyal algebra valued loop group.
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Ṫ ∗S1. Commun. Math. Phys. 198(1), 97–110 (1998)
43. Ovsienko, V., Roger, C.: Deforming the Lie algebra of vector fields on S1 inside the Lie algebra of

pseudodifferential symbols on S1. In: Differential Topology, Infinite-Dimensional Lie Algebras, and Ap-
plications. Amer. Math. Soc. Transl. Ser. 2, vol. 194, pp. 211–226. Am. Math. Soc., Providence (1999)

44. Seiberg, N., Witten, E.: String theory and noncommutative geometry. J. High Energy Phys. 9, Paper 32,
93 pages (1999). (Electronic)

45. Szabo, R.J.: D-branes in noncommutative field theory. hep-th/0512054 (2005)
46. Takasaki, K.: Dressing operator approach to Moyal algebraic deformation of selfdual gravity. J. Geom.

Phys. 14, 111–120 (1994)
47. Varadarajan, V.S.: Supersymmetry for Mathematicians: An Introduction. Courant Lecture Notes in Math-

ematics, vol. 11. New York University, Courant Institute of Mathematical Sciences/Am. Math. Soc., New
York/Providence (2004)

http://www.esi.ac.at
http://arxiv.org/abs/hep-th/0311206
http://arxiv.org/abs/hep-th/0211148
http://arxiv.org/abs/hep-th/0102076
http://arxiv.org/abs/hep-th/0600341
http://arxiv.org/abs/hep-th/070735221
http://arxiv.org/abs/hep-th/0012077
http://arxiv.org/abs/hep-th/0512054

	Virasoro Action on Pseudo-Differential Symbols and (Noncommutative) Supersymmetric Peakon Type Integrable Systems
	Abstract
	Prelude to Noncommutative Integrable Systems
	NC Integrable Systems and Its Connection to Neighbouring Fields
	Motivation, Result and Plan

	Background: Pseudodifferential Symbols on S1 and KdV Equation
	Construction of Full KdV Equation

	The N=2 Neveu-Schwarz Super Algebra and Construction of the N=2 Super KdV Equation
	Comment
	Generalization of Souriau Cocycle to N = 2 Superconformal Algebras

	Geodesic Flows on Group of Area Preserving Diffeomorphisms on Cyclider 
	Geodesic Flow with Respect to H1-Norm
	Computation of N=2 Supersymmetric Camassa-Holm Equation
	N=2 Supersymmetric Camassa-Holm Equation in Covariant Form

	Euler-Poincaré Flow and (Super) b-Field Equation
	Supersymmetric b-Field Equation

	Noncommutative Analogue of the Kuper Camassa-Holm and Supersymmetric b-Field Equations
	Construction of Noncommutative Bosonic Systems
	Construction of Noncommutative N=1 Super b-Field Systems

	Outlook
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


