Skip to main content

Advertisement

Log in

Habitat structure influences the spider fauna of short-rotation poplar plantations more than forest age

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Plantation forests comprise an important part of the forested areas in European countries. Intensive forestry management and short-rotation cycles of plantation forests reduce habitat diversity and change the composition of invertebrate assemblages, mainly by reducing the number of habitat specialist species. Here, we analysed the effect of vegetation structure, amount of dead organic matter (DOM) and plantation age on spider functional diversity and assemblage structure in short-rotation plantations of native silver poplar in Hungary. Three stages, representing young plantations, 6- to 10-year-old stands (five stands), middle-aged plantations, aged between 23 and 26 years (five stands) and mature, 35- to 37-year-old forests at commercial maturity (five stands) were sampled. Each sample consisted of the data of ten pitfall traps. Traps were installed 5 m from each other in a 2 × 5 grid. Functional diversity was positively related to vegetation structure. High functional diversity indicates a higher number of available niches and potential resources. The abundance of moist habitat species and forest specialist species was positively correlated with DOM. Furthermore, moist habitat species were also related to vegetation structure. The most important environmental parameters affecting spiders were factors attributed to trees (litter and DOM), understory vegetation structure and, to a lesser extent, forest age. Different-aged stands may be similar in terms of species composition of their spider fauna if they comprise the same habitat structural patterns. Our study emphasises that the simple habitat structure of plantation forests has a negative effect on spider communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allegro G, Sciaky R (2003) Assessing the potential role of ground beetles (Coleoptera, Carabidae) as bioindicators in poplar stands, with a newly proposed ecological index (FAI). For Ecol Manag 175:275–284. doi:10.1016/S0378-1127(02)00135-4

    Article  Google Scholar 

  • Ammer S, Weber K, Abs C, Ammer C, Prietzel J (2006) Factors influencing the distribution and abundance of earthworm communities in pure and converted Scots pine stands. Appl Soil Ecol 33:10–21. doi:10.1016/j.apsoil.2005.09.005

    Article  Google Scholar 

  • Baker SC, Spies TA, Wardlaw TJ, Balmer J, Franklin JF, Jordan GJ (2013) The harvested side of edges: effect of retained forests on the re-establishment of biodiversity in adjacent harvested areas. For Ecol Manag 302:107–121. doi:10.1016/j.foreco.2013.03.024

    Article  Google Scholar 

  • Barsoum N, Fuller L, Ashwood F, Reed K, Bonnet-Lebrun AS, Leung F (2014) Ground-dwelling spider (Araneae) and carabid beetle (Coleoptera: Carabidae) community assemblages in mixed and monoculture stands of oak (Quercus robur L./Quercus petraea (Matt.) Liebl.) and Scots pine (Pinus sylvestris L.). For Ecol Manag 321:29–41. doi:10.1016/j.foreco.2013.08.063

    Article  Google Scholar 

  • Bell JR, Bohan DA, Shaw EM, Weyman GS (2005) Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. Bull Entomol Res 95:69–114. doi:10.1079/BER2004350

    Article  CAS  PubMed  Google Scholar 

  • Blandenier G (2009) Ballooning of spiders (Araneae) in Switzerland: general results from an eleven-year survey. Arachnology 14:308–316. doi:10.13156/arac.2009.14.7.308

    Article  Google Scholar 

  • Brockerhoff E, Jactel H, Parrotta J, Quine C, Sayer J (2008) Plantation forests and biodiversity: oxymoron or opportunity? Biodivers Conserv 17:925–951. doi:10.1007/s10531-008-9380-x

    Article  Google Scholar 

  • Buchar J, Ruzicka V (2002) Catalogue of spiders of the Czech Republic. Peres, Prague

    Google Scholar 

  • Buddle CM, Spence JR, Langor DW (2000) Succession of boreal forest spider assemblages following wildfire and harvesting. Ecography 23:424–436. doi:10.1111/j.1600-0587.2000.tb00299.x

    Article  Google Scholar 

  • Buddle CM, Langor DW, Pohl GR, Spence JR (2006) Arthropod responses to harvesting and wildfire: implications for emulation of natural disturbance in forest management. Biol Conserv 128:346–357. doi:10.1016/j.biocon.2005.10.002

    Article  Google Scholar 

  • Bultman TL, Uetz GW (1982) Abundance and community structure of forest floor spiders following litter manipulation. Oecologia 55:34–41

    Article  Google Scholar 

  • Castro A, Wise DH (2010) Influence of fallen coarse woody debris on the diversity and community structure of forest-floor spiders (Arachnida: Araneae). For Ecol Manag 260:2088–2101. doi:10.1016/j.foreco.2010.08.051

    Article  Google Scholar 

  • Chamberlain PM, McNamara NP, Chaplow J, Stott AW, Black HI (2006) Translocation of surface litter carbon into soil by Collembola. Soil Biol Biochem 38:2655–2664. doi:10.1016/j.soilbio.2006.03.021

    Article  CAS  Google Scholar 

  • Chen B, Wise DH (1999) Bottom-up limitation of predaceous arthropods in a detritus-based terrestrial food web. Ecology 80:761–772. doi:10.1890/0012-9658(1999)080%5B0761:BULOPA%5D2.0.CO;2/full

    Article  Google Scholar 

  • Coote L, French LJ, Moore KM, Mitchell FJG, Kelly DL (2012) Can plantation forests support plant species and communities of semi-natural woodland? For Ecol Manag 283:86–95. doi:10.1016/j.foreco.2012.07.013

    Article  Google Scholar 

  • Corcuera P, Valverde PL, Jiménez ML, Ponce-Mendoza A, De la Rosa G, Nieto G (2015) Ground spider guilds and functional diversity in native pine woodlands and eucalyptus plantations. Environ Entomol. doi:10.1093/ee/nvv181

    PubMed  Google Scholar 

  • Elek Z, Dauffy-Richard E, Gosselin F (2010) Carabid species responses to hybrid poplar plantations in floodplains in France. For Ecol Manag 260:1446–1455. doi:10.1016/j.foreco.2010.07.034

    Article  Google Scholar 

  • Entling W, Schmidt MH, Bacher S, Brandl R, Nentwig W (2007) Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche. Glob Ecol Biogeogr 16:440–448. doi:10.1111/j.1466-8238.2006.00305.x

    Article  Google Scholar 

  • Evans AM, Clinton PW, Allen RB, Frampton CM (2003) The influence of logs on the spatial distribution of litter-dwelling invertebrates and forest floor processes in New Zealand forests. For Ecol Manag 184:251–262. doi:10.1016/S0378-1127(03)00158-0

    Article  Google Scholar 

  • Gallé R (2008) The effect of a naturally fragmented landscape on the spider assemblages. North-West J Zool 4:61–71

    Google Scholar 

  • Gallé R, Torma A (2009) Epigeic spider (Araneae) assemblages of natural forest edges in the Kiskunság (Hungary). Community Ecol 10:146–151. doi:10.1556/ComEc.10.2009.2.2

    Article  Google Scholar 

  • Gallé R, Maák I, Szpisjak N (2014a) The effects of habitat parameters and forest age on the ground dwelling spiders of lowland poplar forests (Hungary). J Insect Conserv 18:791–799. doi:10.1007/s10841-014-9686-9

    Article  Google Scholar 

  • Gallé R, Kanizsai O, Ács V, Molnár B (2014b) Functioning of ecotones-spiders and ants of edges between native and non-native forest plantations. Pol J Ecol 62:815–820. doi:10.3161/104.062.0404

    Article  Google Scholar 

  • Gallé R, Erdélyi N, Szpisjak N, Tölgyesi C, Maák I (2015) The effect of the invasive Asclepias syriaca on the ground-dwelling arthropod fauna. Biologia 70:104–112. doi:10.1515/biolog-2015-0011

    Article  Google Scholar 

  • Irwin S, Pedley S, Coote L, Dietzsch A, Wilson M, Oxbrough A, Sweeney O, Moore K, Martin R, Kelly D, Mitchell F, Kelly T, O’Halloran J (2014) The value of plantation forests for plant, invertebrate and bird diversity and the potential for cross-taxon surrogacy. Biodivers Conserv 23:697–714. doi:10.1007/s10531-014-0627-4

    Article  Google Scholar 

  • Kajak A (1995) The role of soil predators in decomposition processes. Eur J Entomol 92:573–580

    Google Scholar 

  • Klimes P, Idigel C, Rimandai M, Fayle TM, Janda M, Weiblen GD, Novotny V (2012) Why are there more arboreal ant species in primary than in secondary tropical forests? J Anim Ecol 81:1103–1112. doi:10.1111/j.1365-2656.2012.02002.x

    Article  PubMed  Google Scholar 

  • Koivula M, Punttila P, Haila Y, Niemelä J (1999) Leaf litter and the small-scale distribution of carabid beetles (Coleoptera, Carabidae) in the boreal forest. Ecography 22:424–435. doi:10.1111/j.1600-0587.1999.tb00579.x

    Article  Google Scholar 

  • Koivula M, Kukkonen J, Niemelä J (2002) Boreal carabid-beetle (Coleoptera, Carabidae) assemblages along the clear-cut originated succession gradient. Biodivers Conserv 11:1269–1288. doi:10.1016/S0378-1127(01)00717-4

    Article  Google Scholar 

  • Košulič O, Michalko R, Hula V (2016) Impact of canopy openness on spider communities: implications for conservation management of formerly Coppiced Oak forests. PLoS ONE 11:e0148585. doi:10.1371/journal.pone.0148585

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuuluvainen T (2009) Forest management and biodiversity conservation based on natural ecosystem dynamics in northern Europe: the complexity challenge. Ambio 38:309–315. doi:10.1579/08-A-490.1

    Article  PubMed  Google Scholar 

  • Laliberte E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305. doi:10.1890/08-2244.1

    Article  PubMed  Google Scholar 

  • Lawrence KL, Wise DH (2000) Spider predation on forest-floor Collembola and evidence for indirect effects on decomposition. Pedobiologia 44:33–39. doi:10.1078/S0031-4056(04)70026-8

    Article  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. doi:10.1007/s004420100716

    Article  Google Scholar 

  • Magura T, Bogyó D, Mizser S, Nagy DD, Tóthmérész B (2015) Recovery of ground-dwelling assemblages during reforestation with native oak depends on the mobility and feeding habits of the species. For Ecol Manag 339:117–126. doi:10.1016/j.foreco.2014.12.015

    Article  Google Scholar 

  • Nentwig W, Blick T, Gloor D, Hänggi A, Kropf C (2015) Spiders of Europe. www.araneae.unibe.ch. Accessed 05 June 2014

  • Niemelä J, Haila Y, Punttila P (1996) The importance of small-scale heterogeneity in boreal forests: variation in diversity in forest-floor invertebrates across the succession gradient. Ecography 19:352–368. doi:10.1111/j.1600-0587.1996.tb01264.x

    Article  Google Scholar 

  • Niemelä J, Koivula M, Kotze DJ (2007) The effects of forestry on carabid beetles (Coleoptera: Carabidae) in boreal forests. J Insect Conserv 11:5–18. doi:10.1007/978-1-4020-6047-2_2

    Article  Google Scholar 

  • Okland T, Rydgren K, Okland RH, Storaunet KO, Rolstad J (2003) Variation in environmental conditions, understorey species number, abundance and composition among natural and managed Picea abies forest stands. For Ecol Manag 177:17–37. doi:10.1016/S0378-1127(02)00331-6

    Article  Google Scholar 

  • Oxbrough AG, Gittings T, O’Halloran J, Giller PS, Smith GF (2005) Structural indicators of spider communities across the forest plantation cycle. For Ecol Manag 212:171–183. doi:10.1016/j.foreco.2005.03.040

    Article  Google Scholar 

  • Oxbrough A, Irwin S, Kelly TC, O’Halloran J (2010) Ground-dwelling invertebrates in reforested conifer plantations. For Ecol Manag 259:2111–2121. doi:10.1016/j.foreco.2010.02.023

    Article  Google Scholar 

  • Oxbrough A, French V, Irwin S, Kelly TC, Smiddy P, O’Halloran J (2012) Can mixed species stands enhance arthropod diversity in plantation forests? For Ecol Manag 270:11–18. doi:10.1016/j.foreco.2012.01.006

    Article  Google Scholar 

  • Oxbrough A, García-Tejero S, Spence J, O’Halloran J (2016) Can mixed stands of native and non-native tree species enhance diversity of epigaeic arthropods in plantation forests? For Ecol Manag 367:21–29. doi:10.1016/j.foreco.2016.02.023

    Article  Google Scholar 

  • Ozanne CHP, Anhuf D, Boulter SL, Keller M, Kitching RL, Körner C, Meinzer FC, Mitchell AW, Nakashizuka T, Silva Dias PL, Stork NE, Wright SJ, Yoshimura M (2003) Biodiversity meets the atmosphere: a global view of forest canopies. Science 301:183–186. doi:10.1126/science.1084507

    Article  CAS  PubMed  Google Scholar 

  • Pla L, Casanoves F, Di Rienzo J (2011) Quantifying functional biodiversity. Springer, New York

    Google Scholar 

  • Podgaiski LR, Joner F, Lavorel S, Moretti M, Ibanez S, Mendonça MDS Jr, Pillar VD (2013) Spider trait assembly patterns and resilience under fire-induced vegetation change in South Brazilian grasslands. PLoS ONE 8(3):e60207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purchart L, Tuf IH, Hula V, Suchomel J (2013) Arthropod assemblages in Norway spruce monocultures during a forest cycle—a multi-taxa approach. For Ecol Manag 306:42–51. doi:10.1016/j.foreco.2013.06.012

    Article  Google Scholar 

  • Riley KN, Browne RA (2011) Changes in ground beetle diversity and community composition in age structured forests (Coleoptera, Carabidae). ZooKeys 147:601. doi:10.3897/zookeys.147.2102

    Article  Google Scholar 

  • Samu F, Lengyel G, Szita É, Bidló A, Ódor P (2014) The effect of forest stand characteristics on spider diversity and species composition in deciduous-coniferous mixed forests. J Arachnol 42:135–141. doi:10.1636/CP13-75.1

    Article  Google Scholar 

  • Sanders D, Nickel H, Grützner T, Platner C (2008) Habitat structure mediates top-down effects of spiders and ants on herbivores. Basic Appl Ecol 9:152–160. doi:10.1016/j.baae.2007.01.003

    Article  Google Scholar 

  • Sato Y, Kumagai TO, Kume A, Otsuki K, Ogawa S (2004) Experimental analysis of moisture dynamics of litter layers—the effects of rainfall conditions and leaf shapes. Hydrol Process 18:3007–3018. doi:10.1002/hyp.5746

    Article  Google Scholar 

  • Schirmel J, Blindow I, Buchholz S (2012) Life-history trait and functional diversity patterns of ground beetles and spiders along a coastal heathland successional gradient. Basic Appl Ecol 13:606–614. doi:10.1016/j.baae.2012.08.015

    Article  Google Scholar 

  • Sereda E, Blick T, Dorow WH, Wolters V, Birkhofer K (2012) Spatial distribution of spiders and epedaphic Collembola in an environmentally heterogeneous forest floor habitat. Pedobiologia 55:241–245. doi:10.1016/j.pedobi.2012.03.007

    Article  Google Scholar 

  • Sitvarin MI, Rypstra AL, Harwood J (2016) Linking the green and brown worlds through nonconsumptive predator effects. Oikos. doi:10.1111/oik.03190

    Google Scholar 

  • Spies TA (1998) Forest structure: a key to the ecosystem. Northwest Sci 72:34–36

    Google Scholar 

  • Uetz GW (1976) Gradient analysis of spider communities in a streamside forest. Oecologia 22:373–385. doi:10.1007/BF00345314

    Article  Google Scholar 

  • Uetz GW (1979) The influence of variation in litter habitats on spider communities. Oecologia 40:29–42. doi:10.1007/BF00388808

    Article  Google Scholar 

  • Ulyshen MD, Hanula JL (2009) Litter-dwelling arthropod abundance peaks near coarse woody debris in loblolly pine forests of the southeastern United States. Fla Entomol 92:163–164. doi:10.1653/024.092.0128

    Article  Google Scholar 

  • Varady-Szabo H, Buddle CM (2006) On the relationships between ground-dwelling spider (Araneae) assemblages and dead wood in a northern sugar maple forest. Biodivers Conserv 15:4119–4141. doi:10.1007/s10531-005-3369-5

    Article  Google Scholar 

  • Wise DH, Snyder WE, Tuntibunpakul P, Halaj J (1999) Spiders in decomposition food webs of agroecosystems: theory and evidence. J Arachnol 27:363–370

    Google Scholar 

  • Ysnel F, Canard A (2000) Spider biodiversity in connection with the vegetation structure and the foliage orientation of hedges. J Arachnol 28:107–114. doi:10.1636/0161-8202(2000)028%5B0107:SBICWT%5D2.0.CO%3B2

    Article  Google Scholar 

  • Ziesche TM, Roth M (2008) Influence of environmental parameters on small-scale distribution of soil-dwelling spiders in forests: what makes the difference, tree species or microhabitat? For Ecol Manag 255:738–752. doi:10.1016/j.foreco.2007.09.060

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Róbert Gallé.

Additional information

Communicated by Claus Bässler.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallé, R., Gallé-Szpisjak, N. & Torma, A. Habitat structure influences the spider fauna of short-rotation poplar plantations more than forest age. Eur J Forest Res 136, 51–58 (2017). https://doi.org/10.1007/s10342-016-1008-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-016-1008-1

Keywords

Navigation